Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,024)

Search Parameters:
Keywords = power-to-hydrogen

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1315 KB  
Article
Planning of Far-Offshore Wind Power Considering Nearshore Relay Points and Coordinated Hydrogen Production
by Lei Zhang, Yitong Hu, Jing Ye and Yuanchen Qiu
Electronics 2026, 15(3), 508; https://doi.org/10.3390/electronics15030508 (registering DOI) - 24 Jan 2026
Abstract
Under the dual imperatives of carbon neutrality and marine energy transition, hydrogen has emerged as an emerging energy storage carrier, offering a new pathway for offshore wind power consumption. This study addresses the critical challenges of offshore wind power intermittency and hydrogen transport [...] Read more.
Under the dual imperatives of carbon neutrality and marine energy transition, hydrogen has emerged as an emerging energy storage carrier, offering a new pathway for offshore wind power consumption. This study addresses the critical challenges of offshore wind power intermittency and hydrogen transport efficiency bottlenecks by proposing an innovative solution. A coordinated planning method for far-offshore wind–hydrogen systems considering nearshore relay points is developed, establishing a multi-stage optimization framework of “offshore hydrogen production—relay point storage and transportation—hierarchical vessel delivery”. By optimizing hydrogen transport routes through coordinated allocation of electrolyzers, storage tanks, and vessel transportation, and designing a hierarchical transportation model that differentiates between ocean-going and nearshore vessels, the simulation results of a coastal area in China demonstrate that, compared with traditional methods, the proposed approach reduces investment costs and operation costs by nearly 10% while decreasing the monthly wind curtailment rate by 10.53%. Full article
(This article belongs to the Section Power Electronics)
27 pages, 2150 KB  
Article
Conceptual Retrofit of a Hydrogen–Electric VTOL Rotorcraft: The Hawk Demonstrator Simulation
by Jubayer Ahmed Sajid, Seeyama Hossain, Ivan Grgić and Mirko Karakašić
Designs 2026, 10(1), 9; https://doi.org/10.3390/designs10010009 (registering DOI) - 24 Jan 2026
Abstract
Decarbonisation of the aviation sector is essential for achieving global-climate targets, with hydrogen propulsion emerging as a viable alternative to battery–electric systems for vertical flight. Unlike previous studies focusing on clean-sheet eVTOL concepts or fixed-wing platforms, this work provides a comprehensive retrofit evaluation [...] Read more.
Decarbonisation of the aviation sector is essential for achieving global-climate targets, with hydrogen propulsion emerging as a viable alternative to battery–electric systems for vertical flight. Unlike previous studies focusing on clean-sheet eVTOL concepts or fixed-wing platforms, this work provides a comprehensive retrofit evaluation of a two-seat light helicopter (Cabri G2/Robinson R22 class) to a hydrogen–electric hybrid powertrain built around a Toyota TFCM2-B PEM fuel cell (85 kW net), a 30 kg lithium-ion buffer battery, and 700 bar Type-IV hydrogen storage totalling 5 kg, aligned with the Vertical Flight Society (VFS) mission profile. The mass breakdown, mission energy equations, and segment-wise hydrogen use for a 100 km sortie are documented using a single main rotor with a radius of R = 3.39 m, with power-by-segment calculations taken from the team’s final proposal. Screening-level simulations are used solely for architectural assessment; no experimental validation is performed. Mission analysis indicates a 100 km operational range with only 3.06 kg of hydrogen consumption (39% fuel reserve). The main contribution is a quantified demonstration of a practical retrofit pathway for light rotorcraft, showing approximately 1.8–2.2 times greater range (100 km vs. 45–55 km battery-only baseline, including respective safety reserves). The Hawk demonstrates a 28% reduction in total propulsion system mass (199 kg including PEMFC stack and balance-of-plant 109 kg, H2 storage 20 kg, battery 30 kg, and motor with gearbox 40 kg) compared to a battery-only configuration (254.5 kg battery pack, plus equivalent 40 kg motor and gearbox), representing approximately 32% system-level mass savings when thermal-management subsystems (15 kg) are included for both configurations. Full article
(This article belongs to the Section Mechanical Engineering Design)
Show Figures

Figure 1

21 pages, 3597 KB  
Article
Turbocharging Matching Investigation for High-Altitude Power Recovery in Aviation Hydrogen Internal Combustion Engines
by Weicheng Wang and Yu Yan
Fire 2026, 9(2), 51; https://doi.org/10.3390/fire9020051 - 23 Jan 2026
Abstract
Aviation hydrogen internal combustion engines represent a critical pathway for rapid decarbonization due to their reliability and compatibility with existing aircraft platforms. However, the significant reduction in air density at high altitudes causes severe power degradation in naturally aspirated port-fuel-injected hydrogen internal combustion [...] Read more.
Aviation hydrogen internal combustion engines represent a critical pathway for rapid decarbonization due to their reliability and compatibility with existing aircraft platforms. However, the significant reduction in air density at high altitudes causes severe power degradation in naturally aspirated port-fuel-injected hydrogen internal combustion engines, making turbocharging essential for maintaining propulsion capability. This study utilizes a combined experimental and simulation framework to investigate turbocharger matching for power recovery in a 1.4 L hydrogen engine. A simulation model was constructed and validated against experimental data within a 5% error margin to ensure technical accuracy. Theoretical compressor and turbine operating parameters were derived for altitudes ranging from 4 to 8 km, comparing two boost-pressure control strategies: variable geometry turbine and waste-gate turbine. The results demonstrate that both boosting strategies successfully restore sea-level power at altitudes up to 8 km, increasing high-altitude power output by approximately four-fold to five-fold compared to naturally aspirated conditions. Specifically, the variable of geometry turbine demonstrates superior overall performance, maintaining normalized turbine efficiencies between 78.4% and 96.3% while achieving lower pumping losses and improved brake thermal efficiency. These advantages arise from the variable geometry turbine’s ability to optimize exhaust-energy utilization across varying altitudes. This study establishes a quantitative methodology for turbocharger matching, providing essential guidance for developing efficient, high-altitude hydrogen propulsion systems. Full article
24 pages, 9410 KB  
Article
Performance Analysis and Optimization of Fuel Cell Vehicle Stack Based on Second-Generation Mirai Vehicle Data
by Liangyu Tao, Yan Zhu, Hongchun Zhao and Zheshu Ma
Sustainability 2026, 18(3), 1172; https://doi.org/10.3390/su18031172 - 23 Jan 2026
Abstract
To accurately investigate the loss characteristics of fuel cell vehicles (FCVs) under actual operating conditions and enhance their power performance and economic efficiency, this study establishes a numerical model of the proton exchange membrane fuel cell (PEMFC) stack based on real-world data from [...] Read more.
To accurately investigate the loss characteristics of fuel cell vehicles (FCVs) under actual operating conditions and enhance their power performance and economic efficiency, this study establishes a numerical model of the proton exchange membrane fuel cell (PEMFC) stack based on real-world data from the second-generation Mirai. The stack model incorporates leakage current losses and imposes a limit on maximum current density. Besides, this study analyzes the effects of operating parameters (PEM water content, hydrogen partial pressure, current density, oxygen partial pressure, and operating temperature) on stack power output, efficiency, and eco-performance coefficient (ECOP). Furthermore, Non-Dominated Sequential Genetic Algorithm (NSGA-II) is employed to optimize the PEMFC stack performance, yielding the optimal operating parameter set for FCV operation. Further simulations are conducted on dynamic performance characteristics of the second-generation Mirai under two typical driving cycles, evaluating the power performance and economy of the FCV before and after optimization. Results demonstrate that the established PEMFC stack model accurately analyzes the output performance of an actual FCV when compared with real-world performance test data from the second-generation Mirai. Through optimization, output power increases by 7.4%, efficiency improves by 1.95%, and ECOP rises by 3.84%, providing guidance for enhancing vehicle power performance and improving overall vehicle economy. This study provides a practical framework for enhancing the power performance and overall energy sustainability of fuel cell vehicles, contributing to the advancement of sustainable transportation. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

21 pages, 1523 KB  
Article
Game-Theoretic Assessment of Grid-Scale Hydrogen Energy Storage Adoption in Island Grids of the Philippines
by Alvin Garcia Palanca, Cherry Lyn Velarde Chao, Kristian July R. Yap and Rizalinda L. de Leon
Hydrogen 2026, 7(1), 15; https://doi.org/10.3390/hydrogen7010015 - 22 Jan 2026
Viewed by 41
Abstract
This study introduces an integrated Life Cycle Assessment–Multi-Criteria Decision Analysis–Nash Equilibrium (LCA–MCDA–NE) framework to assess the feasibility of hydrogen energy storage (HES) in Philippine island grids. It starts with a cradle-to-gate LCA of hydrogen production across various electricity mix scenarios, from diesel-dominated Small [...] Read more.
This study introduces an integrated Life Cycle Assessment–Multi-Criteria Decision Analysis–Nash Equilibrium (LCA–MCDA–NE) framework to assess the feasibility of hydrogen energy storage (HES) in Philippine island grids. It starts with a cradle-to-gate LCA of hydrogen production across various electricity mix scenarios, from diesel-dominated Small Power Utilities Group (SPUG) systems to high-renewable configurations, quantifying greenhouse gas emissions. These impacts are normalized and integrated into an MCDA framework that considers four stakeholder perspectives: Regulatory (PRF), Developer (DF), Scientific (SF), and Local Social (LSF). Attribute utilities for Maintainability, Energy Efficiency, Geographic–Climatic Suitability, and Regulatory Compliance inform a 2 × 2 strategic game where net utility gain (Δ) and switching costs (C1, C2) influence adoption behavior. The findings indicate that the baseline Nash Equilibrium favors non-adoption due to limited utility gains and high switching barriers. However, enhancements in Maintainability and reduced costs can shift this equilibrium toward adoption. The LCA results show that meaningful decarbonization occurs only when low-carbon generation exceeds 60% of the electricity mix. This integrated framework highlights that successful HES deployment in remote grids relies on stakeholder coordination, reduced risks, and access to low-carbon electricity, offering a replicable model for emerging economies. Full article
Show Figures

Figure 1

15 pages, 3988 KB  
Article
The Influence of Hydrogen-Storage Metal Dust on the Explosion Characteristics of Solid–Liquid Mixed Fuel
by Jiafan Ren, Zhisong Wang, Changqi Liu and Chunhua Bai
Fire 2026, 9(1), 48; https://doi.org/10.3390/fire9010048 - 21 Jan 2026
Viewed by 52
Abstract
To investigate the explosive characteristics of solid–liquid mixed fuels containing different types of metal powders—including hydrogen-storage metal powders—and volatile liquid fuels, explosion experiments and corresponding numerical simulations were conducted under unconstrained space conditions. The studied system consisted of Et2O/Al/B/MgH2 mixed [...] Read more.
To investigate the explosive characteristics of solid–liquid mixed fuels containing different types of metal powders—including hydrogen-storage metal powders—and volatile liquid fuels, explosion experiments and corresponding numerical simulations were conducted under unconstrained space conditions. The studied system consisted of Et2O/Al/B/MgH2 mixed fuels with varying composition ratios. Research has shown that the dispersion effect of solid–liquid mixed fuel containing metal dust under strong shock waves is higher than that of pure liquid fuel. And the explosion overpressure and temperature of solid–liquid mixed fuel are higher than that of pure liquid fuel. Under the same solid–liquid ratio, the explosive overpressure of Et2O/Al/B/MgH2 mixed fuel was the highest, which was 110.8% higher than that of pure liquid fuel at the 5 m position. For solid–liquid mixed fuels containing different metal powders, due to the high reaction threshold of boron powder, a high-activity MgH2 reaction is required to drive the reaction. Therefore, the explosive strength of the mixed fuel systems follows the order Et2O/Al/B/MgH2 > Et2O/Al/MgH2 > Et2O/Al > Et2O/Al/B. Meanwhile, simulation models for pure liquid and solid–liquid fuel explosions were established. The discrepancy between the simulated results and the experimental data was within 10%, demonstrating that the proposed model provides an effective and reliable approach for predicting the explosive power and hazardous range of fuel–air explosions. Full article
(This article belongs to the Special Issue Fire and Explosion Safety with Risk Assessment and Early Warning)
Show Figures

Figure 1

23 pages, 890 KB  
Article
Network-RBV for Critical Minerals: How Standards, Permits, and Licensing Shape Midstream Bottlenecks
by Zhandos Kegenbekov, Alima Alipova and Ilya Jackson
Sustainability 2026, 18(2), 1084; https://doi.org/10.3390/su18021084 - 21 Jan 2026
Viewed by 75
Abstract
Critical mineral supply chains underpin electric mobility, power electronics, clean hydrogen, and advanced manufacturing. Drawing on the resource-based view (RBV), the relational view, and dynamic capabilities, we conceptualize advantage not as ownership of ore bodies but as orchestration of multi-tier resource systems: upstream [...] Read more.
Critical mineral supply chains underpin electric mobility, power electronics, clean hydrogen, and advanced manufacturing. Drawing on the resource-based view (RBV), the relational view, and dynamic capabilities, we conceptualize advantage not as ownership of ore bodies but as orchestration of multi-tier resource systems: upstream access, midstream processing know-how, standards and permits, and durable inter-organizational ties. In a world of high concentration at key stages (refining, separation, engineered materials), full “decoupling” is economically costly and technologically constraining. We argue for structured cooperation among the United States, European Union, China, and other producers and consumers, combined with selective domestic capability building for bona fide security needs. Methodologically, we conduct a structured conceptual synthesis integrating RBV, relational view, dynamic capabilities, and network-of-network research, combined with a structured comparative policy analysis of U.S./EU/Chinese instruments anchored in official documents. We operationalize the argument via technology–material dependency maps that identify midstream bottlenecks and the policy/standard levers most likely to expand qualified, compliant capacity. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

24 pages, 9785 KB  
Article
Small Modular Reactors for a Low-Carbon Future: An In-Depth Analysis of Technology, Impact and Market Potential
by Eleni Himona and Andreas Poullikkas
Energies 2026, 19(2), 522; https://doi.org/10.3390/en19020522 - 20 Jan 2026
Viewed by 306
Abstract
In this work a comprehensive analysis of Small Modular Reactors (SMRs) as a pivotal technology for addressing global energy challenges while minimizing carbon emissions is presented. The study examines SMRs’ technical characteristics, economic considerations, and technological maturity, with particular emphasis on their potential [...] Read more.
In this work a comprehensive analysis of Small Modular Reactors (SMRs) as a pivotal technology for addressing global energy challenges while minimizing carbon emissions is presented. The study examines SMRs’ technical characteristics, economic considerations, and technological maturity, with particular emphasis on their potential as polygeneration systems. SMRs, representing evolutionary advancements of nuclear fission technology, offer near-term deployability, enhanced safety features, and modular economic benefits through factory fabrication and standardized production. The analysis specifically focuses on the competitiveness of SMRs in electricity, hydrogen and large-scale water desalination production. Through parametric optimization using complementary algorithms, the study rigorously quantifies SMR competitiveness by calculating the Levelized Cost of Electricity (LCOE), Levelized Cost of Hydrogen (LCOH), and Levelized Cost of Water (LCOW) across varying capacity ranges (50–600 MWe) and capital costs (3000–8000 US$/kW). The results demonstrate that capital cost minimization is the primary factor for achieving cost-competitiveness, with economies of scale providing secondary benefits. The findings indicate that SMRs can achieve competitive LCOE values within the 40–100 US$/MWh range for electricity markets, while hydrogen production costs range from 3.33 to 11.68 US$/kg and desalination costs from 0.40 to 0.98 US$/m3, positioning SMRs as economically viable solutions for integrated energy–water–hydrogen systems. Full article
Show Figures

Figure 1

20 pages, 2303 KB  
Article
Numerical Investigation of Sustainable Diesel Engine Performance and Emissions Using Directly Integrated Steam Methane Reforming Syngas
by Tolga Bayramoğlu, Kubilay Bayramoğlu, Semih Yılmaz and Kerim Deniz Kaya
Sustainability 2026, 18(2), 1012; https://doi.org/10.3390/su18021012 - 19 Jan 2026
Viewed by 106
Abstract
The transition toward sustainable energy systems necessitates innovative solutions that reduce greenhouse gas emissions while improving fuel efficiency in existing combustion technologies. Hydrogen has emerged as a promising clean energy carrier; however, its widespread deployment is limited by challenges associated with large-scale transportation [...] Read more.
The transition toward sustainable energy systems necessitates innovative solutions that reduce greenhouse gas emissions while improving fuel efficiency in existing combustion technologies. Hydrogen has emerged as a promising clean energy carrier; however, its widespread deployment is limited by challenges associated with large-scale transportation and storage. This study investigates a practical alternative in which hydrogen-rich syngas produced via steam methane reforming (SMR) is directly integrated into the diesel engine intake, thereby eliminating the need for fuel transport, storage, and separation while supporting a more sustainable fuel pathway. A validated computational fluid dynamics (CFD) model was developed to examine the effects of varying SMR gas mixture ratios (0–20%) on engine combustion, performance, and emissions. The findings reveal that increasing the SMR fraction enhances in-cylinder pressure by up to 15.7%, heat release rate by 100%, and engine power output by 102.5% compared to conventional diesel operation. Additionally, under SMR20 conditions, CO2 emissions are reduced by approximately 12%, demonstrating the potential contribution of this approach to decarbonization and climate mitigation efforts. However, the rise in in-cylinder temperatures was found to increase NOx formation, indicating the necessity for complementary emission control strategies. Overall, the results suggest that direct SMR syngas integration offers a promising pathway to improve the environmental and performance characteristics of conventional diesel engines while supporting cleaner energy transitions. Full article
Show Figures

Figure 1

16 pages, 1483 KB  
Article
Hydrogen Fuel in Aviation: Quantifying Risks for a Sustainable Future
by Ozan Öztürk and Melih Yıldız
Fuels 2026, 7(1), 5; https://doi.org/10.3390/fuels7010005 - 19 Jan 2026
Viewed by 127
Abstract
The aviation industry, responsible for approximately 2.5–3.5% of global greenhouse gas emissions, faces increasing pressure to adopt sustainable energy solutions. Hydrogen, with its high gravimetric energy density and zero carbon emissions during use, has emerged as a promising alternative fuel to support aviation [...] Read more.
The aviation industry, responsible for approximately 2.5–3.5% of global greenhouse gas emissions, faces increasing pressure to adopt sustainable energy solutions. Hydrogen, with its high gravimetric energy density and zero carbon emissions during use, has emerged as a promising alternative fuel to support aviation decarbonization. However, its large-scale implementation remains hindered by cryogenic storage requirements, safety risks, infrastructure adaptation, and economic constraints. This study aims to identify and evaluate the primary technical and operational risks associated with hydrogen utilization in aviation through a comprehensive Monte Carlo Simulation-based risk assessment. The analysis specifically focuses on four key domains—hydrogen leakage, cryogenic storage, explosion hazards, and infrastructure challenges—while excluding economic and lifecycle aspects to maintain a technical scope only. A 10,000-iteration simulation was conducted to quantify the probability and impact of each risk factor. Results indicate that hydrogen leakage and explosion hazards represent the most critical risks, with mean risk scores exceeding 20 on a 25-point scale, whereas investment costs and technical expertise were ranked as comparatively low-level risks. Based on these findings, strategic mitigation measures—including real-time leak detection systems, composite cryotank technologies, and standardized safety protocols—are proposed to enhance system reliability and support the safe integration of hydrogen-powered aviation. This study contributes to a data-driven understanding of hydrogen-related risks and provides a technological roadmap for advancing carbon-neutral air transport. Full article
(This article belongs to the Special Issue Sustainable Jet Fuels from Bio-Based Resources)
Show Figures

Figure 1

34 pages, 1200 KB  
Review
The Role of Hydrogen in Energy Communities: Current Status, Challenges, and Future Developments
by Néstor Velaz-Acera, Cristina Sáez Blázquez, Víctor Casado-Lorenzo and Susana Lagüela
Hydrogen 2026, 7(1), 14; https://doi.org/10.3390/hydrogen7010014 - 19 Jan 2026
Viewed by 115
Abstract
Renewable hydrogen has become a versatile technology that can play a key role in the deployment of energy communities, although technological, economic, environmental, legal, and social challenges remain to be addressed. This study conducts a systematic review based on the Preferred Reporting Items [...] Read more.
Renewable hydrogen has become a versatile technology that can play a key role in the deployment of energy communities, although technological, economic, environmental, legal, and social challenges remain to be addressed. This study conducts a systematic review based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) methodology that analyzes the current state of technologies, the different applications, challenges and limitations, and future lines of research related to the enabling role of hydrogen in energy communities. Results from the bibliometric analysis show sustained growth in the number of publications over the last five years (2020–2025), with a predominance of applications in which hydrogen is combined with other energy carriers (58%). The versatility of hydrogen has prompted the evaluation of different applications, with particular emphasis on energy storage to capitalize on energy surpluses (51%), mobility (19%), and heating (20%). The main existing barriers come from the absence of stable long-term regulation, interoperability between components and technologies, and a lack of real data. Overcoming these challenges should be based on new technologies such as artificial intelligence and the construction and operation of pilot projects. In addition, a Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis has been conducted building upon the SHARED-H2 SUDOE project, yielding particularly insightful results through the active involvement of stakeholders in the preparatory process. Based on all the points given above, the research concludes that it is necessary to improve long-term policies and increase training at all levels aimed at active end-user participation and a profound restructuring of the energy system. Full article
Show Figures

Figure 1

15 pages, 2150 KB  
Article
Liquid Metal Particles–Graphene Core–Shell Structure Enabled Hydrogel-Based Triboelectric Nanogenerators
by Sangkeun Oh, Yoonsu Lee, Jungin Yang, Yejin Lee, Seoyeon Won, Sang Sub Han, Jung Han Kim and Taehwan Lim
Gels 2026, 12(1), 86; https://doi.org/10.3390/gels12010086 - 19 Jan 2026
Viewed by 184
Abstract
The development of flexible and self-powered electronic systems requires triboelectric materials that combine high charge retention, mechanical compliance, and stable dielectric properties. Here, we report a redox reaction approach to prepare liquid metal particle-reduced graphene oxide (LMP@rGO) core–shell structures and introduce into a [...] Read more.
The development of flexible and self-powered electronic systems requires triboelectric materials that combine high charge retention, mechanical compliance, and stable dielectric properties. Here, we report a redox reaction approach to prepare liquid metal particle-reduced graphene oxide (LMP@rGO) core–shell structures and introduce into a poly(acrylic acid) (PAA) hydrogel to create a high-performance triboelectric layer. The spontaneous interfacial reaction between gallium oxide of LMP and graphene oxide produces a conformal rGO shell while simultaneously removing the native insulating oxide layer onto the LMP surface, resulting in enhanced colloidal stability and a controllable semiconductive bandgap of 2.7 (0.01 wt%), 2.9 (0.005 wt%) and 3.2 eV (0.001 wt%). Increasing the GO content promotes more complete core–shell formation, leading to higher zeta potentials, stronger interfacial polarization, and higher electrical performance. After embedding in PAA, the LMP@rGO structures form hydrogen-bonding networks with the hydrogel nature, improving both dielectric constant and charge retention while notably preserving soft mechanical compliance. The resulting LMP@rGO/PAA hydrogels show enhanced triboelectric output, with the 2.0 wt/vol% composite generating sufficient power to illuminate more than half of 504 series-connected LEDs. All the results demonstrate the potential of LMP@rGO hydrogel composites as promising triboelectric layer materials for next-generation wearable and self-powered electronic systems. Full article
Show Figures

Figure 1

23 pages, 2328 KB  
Article
Dual-Control Environmental–Economic Dispatch of Power Systems Considering Regional Carbon Allowances and Pollutant Concentration Constraints
by Tiejiang Yuan, Liang Ran, Yaling Mao and Yue Teng
Sustainability 2026, 18(2), 934; https://doi.org/10.3390/su18020934 - 16 Jan 2026
Viewed by 159
Abstract
To achieve more precise and regionally adaptive emission control, this study develops a dual-control framework that simultaneously constrains both total carbon emissions and pollutant concentration levels. Regional environmental heterogeneity is incorporated into the dispatch of generating units to balance emission reduction and operational [...] Read more.
To achieve more precise and regionally adaptive emission control, this study develops a dual-control framework that simultaneously constrains both total carbon emissions and pollutant concentration levels. Regional environmental heterogeneity is incorporated into the dispatch of generating units to balance emission reduction and operational efficiency. Based on this concept, a regional carbon emission allowance allocation model is constructed by integrating ecological pollutant concentration thresholds. A multi-source Gaussian plume dispersion model is further developed to characterize the spatial and temporal distribution of pollutants from coal-fired power units. These pollutant concentration constraints are embedded into an environmental–economic dispatch model of a coupled electricity–hydrogen–carbon system supported by hybrid storage. By optimizing resource use and minimizing environmental damage at the energy-supply stage, the proposed model provides a low-carbon foundation for the entire industrial production cycle. This approach aligns with the sustainable development paradigm by integrating precision environmental management with circular economy principles. Simulation results reveal that incorporating pollutant concentration control can effectively reduce localized environmental pressure while maintaining overall system economy, highlighting the importance of region-specific environmental capacity in enhancing the overall environmental friendliness of the industrial chain. Full article
Show Figures

Figure 1

16 pages, 6793 KB  
Article
Experimental Study on Onboard Hydrogen Production Performance from Methanol Reforming Based on Novel Spinel
by Yufei Sun, Qiuwan Shen, Shian Li and He Miao
J. Mar. Sci. Eng. 2026, 14(2), 188; https://doi.org/10.3390/jmse14020188 - 16 Jan 2026
Viewed by 194
Abstract
The green transformation of the shipping industry urgently requires zero-carbon power, and hydrogen-powered ships such as hydrogen fuel cell ships face bottlenecks in in situ hydrogen production and storage and transportation. Methanol steam reforming (MSR) online hydrogen production is suitable for ship scenarios, [...] Read more.
The green transformation of the shipping industry urgently requires zero-carbon power, and hydrogen-powered ships such as hydrogen fuel cell ships face bottlenecks in in situ hydrogen production and storage and transportation. Methanol steam reforming (MSR) online hydrogen production is suitable for ship scenarios, reducing costs and increasing efficiency while helping achieve zero carbon throughout the entire lifecycle, which has important practical significance. The key technology for MSR technology is the performance of the catalyst. A series of Cu1−xMnxAl2O4 catalysts were successfully synthesized and applied for hydrogen production in this study. The catalyst structure was characterized using physicochemical techniques including XRD, SEM, and EDS. Hydrogen production performance was evaluated in a fixed-bed reactor under the following conditions: a liquid hourly space velocity (LHSV) of 20 h−1, a water-to-methanol molar ratio of 3:1, and a reaction temperature range of 275 °C–350 °C. The results demonstrate that A-site Mn substitution significantly enhanced the catalytic performance. In addition, XRD analysis revealed that Mn incorporation effectively suppressed the formation of segregated CuO phases. However, excessive substitution (x is 0.9) led to the generation of an MnAl2O4 impurity phase. Finally, the Cu0.7Mn0.3Al2O4 catalyst achieved a methanol conversion of 68.336% at 325 °C, with a hydrogen production rate of 5.611 mmol/min/gcat, and maintained CO selectivity below 1%. The results demonstrate that the hydrogen production catalyst developed in this study is a promising material for meeting the requirements of online hydrogen sources for ships. Full article
(This article belongs to the Special Issue Alternative Fuels and Emission Control in Maritime Applications)
Show Figures

Figure 1

22 pages, 3747 KB  
Article
Integrated Triple-Diode Modeling and Hydrogen Turbine Power for Green Hydrogen Production
by Abdullah Alrasheedi, Mousa Marzband and Abdullah Abusorrah
Energies 2026, 19(2), 435; https://doi.org/10.3390/en19020435 - 15 Jan 2026
Viewed by 151
Abstract
The study establishes a comprehensive mathematical modeling framework for solar-driven hydrogen production by integrating a triple-diode photovoltaic (PV) model, an alkaline electrolyzer, and a hydrogen turbine (H2T), subsequently using hybrid power utilization to optimize hydrogen output. The Triple-Diode Model (TDM) accurately [...] Read more.
The study establishes a comprehensive mathematical modeling framework for solar-driven hydrogen production by integrating a triple-diode photovoltaic (PV) model, an alkaline electrolyzer, and a hydrogen turbine (H2T), subsequently using hybrid power utilization to optimize hydrogen output. The Triple-Diode Model (TDM) accurately reproduces the electrical performance of a 144-cell photovoltaic module under standard test conditions (STC), enabling precise calculations of hourly maximum power point outputs based on real-world conditions of global horizontal irradiance and ambient temperature. The photovoltaic system produced 1.07 MWh during the summer months (May to September 2025), which was sent straight to the alkaline electrolyzer. The electrolyzer, using Specific Energy Consumption (SEC)-based formulations and Faraday’s law, produced 22.6 kg of green hydrogen and used around 203 L of water. The generated hydrogen was later utilized to power a hydrogen turbine (H2T), producing 414.6 kWh, which was then integrated with photovoltaic power to create a hybrid renewable energy source. This hybrid design increased hydrogen production to 31.4 kg, indicating a substantial improvement in renewable hydrogen output. All photovoltaic, electrolyzer, and turbine models were integrated into a cohesive MATLAB R2024b framework, allowing for an exhaustive depiction of system dynamics. The findings validate that the amalgamation of H2T with photovoltaic-driven electrolysis may significantly improve both renewable energy and hydrogen production. This research aligns with Saudi Vision 2030 and global clean-energy initiatives, including the Paris Agreement, to tackle climate change and its negative impacts. An integrated green hydrogen system, informed by this study’s findings, could significantly improve energy sustainability, strengthen production reliability, and augment hydrogen output, fully aligning with economical, technical, and environmental objectives. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production in Renewable Energy Systems)
Show Figures

Figure 1

Back to TopTop