Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,412)

Search Parameters:
Keywords = poultry products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3186 KB  
Article
Whole-Genome Sequencing Reveals Genetic Diversity and Structure of Taiwan Commercial Red-Feathered Country Chickens
by Ya-Wen Hsiao, Kang-Yi Su and Chi-Sheng Chang
Animals 2026, 16(2), 286; https://doi.org/10.3390/ani16020286 (registering DOI) - 16 Jan 2026
Abstract
Whole-genome sequencing is a powerful approach for exploring genomic diversity in livestock species. Chickens (Gallus gallus) are an important food source worldwide, and in Taiwan, poultry production contributes substantially to the livestock industry. Taiwan’s commercial red- and black-feathered country chickens dominate [...] Read more.
Whole-genome sequencing is a powerful approach for exploring genomic diversity in livestock species. Chickens (Gallus gallus) are an important food source worldwide, and in Taiwan, poultry production contributes substantially to the livestock industry. Taiwan’s commercial red- and black-feathered country chickens dominate this category and play a crucial role in local poultry production. However, fundamental genomic information on their population structure remains limited. To address this gap, this study generated whole-genome sequencing data from red-feathered country chickens originating from four major breeding farms. Genetic diversity analyses revealed uniformly low genetic diversity across all farms. Runs of homozygosity (ROH) analyses indicated predominantly historical inbreeding, with farm-specific differences in recent inbreeding patterns. Population structure analyses revealed clear clustering of individuals according to farm origin, indicating distinct line structures among breeding farms. These results provide the first comprehensive genomic overview of Taiwan’s commercial red-feather country chickens and offer valuable reference information for future breeding strategies and the development of new lines. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

15 pages, 270 KB  
Article
Assessment of Fast-Growing and Dual-Purpose Chicken Meat Quality Characteristics in Different Production Systems
by Ioannis-Emmanouil Stavropoulos, Georgios Manessis, Zoitsa Basdagianni, Aikaterini Tsiftsi, Anne-Jo Smits, Peter van de Beek, Vasilios Tsiouris, Georgios Arsenos and Ioannis Bossis
Animals 2026, 16(2), 272; https://doi.org/10.3390/ani16020272 - 16 Jan 2026
Abstract
This study focused on comparing broiler meat quality across different production systems and seasons. Chicken carcasses from intensive, free-range, and dual-purpose poultry systems were analyzed for intrinsic and extrinsic quality traits. The results revealed significant effects of the production system and season. Carcasses [...] Read more.
This study focused on comparing broiler meat quality across different production systems and seasons. Chicken carcasses from intensive, free-range, and dual-purpose poultry systems were analyzed for intrinsic and extrinsic quality traits. The results revealed significant effects of the production system and season. Carcasses from dual-purpose and intensive systems were heavier. Greater carcass weight was recorded in autumn and winter. The mean post-mortem pH of breast and thigh was lower in extensive and dual-purpose systems and significantly lower in winter and spring. Colorimetric parameters varied by system, as higher means of redness (intensive), yellowness (free-range), and lightness (dual-purpose) were observed. Meat from intensive systems was less firm, showed higher levels of unsaturated fatty acids and better oxidation stability. Dual-purpose displayed higher levels of polyunsaturated fatty acids. The interaction effect was significant for most quality parameters. Full article
(This article belongs to the Special Issue Featured Papers in the 'Animal Products' Section)
12 pages, 1426 KB  
Article
Protection Against Salmonella by Vaccination with Toxin–Antitoxin Self-Destructive Bacteria
by Nady Gruzdev, Jacob Pitcovski, Chen Katz, Nili Ruimi, Dalia Eliahu, Caroline Noach, Ella Rosenzweig, Avner Finger and Ehud Shahar
Vaccines 2026, 14(1), 89; https://doi.org/10.3390/vaccines14010089 - 15 Jan 2026
Viewed by 40
Abstract
Background: Salmonella is a major zoonotic foodborne pathogen. Conventional poultry vaccines may present limitations in terms of efficacy, safety, and practicality. Objectives: This study focuses on enhancing the immunogenicity and improving the safety of a novel oral vaccination employing inducible toxin–antitoxin [...] Read more.
Background: Salmonella is a major zoonotic foodborne pathogen. Conventional poultry vaccines may present limitations in terms of efficacy, safety, and practicality. Objectives: This study focuses on enhancing the immunogenicity and improving the safety of a novel oral vaccination employing inducible toxin–antitoxin (TA) systems, which lead to self-destruction of virulent Salmonella Enteritidis. Methods: A Hok/Sok (HS) TA system was designed to induce cell death upon absence of arabinose. Point mutations were introduced to the Hok toxin promoter to moderate toxin production. A combination of HS and CeaB/CeiB (CC) TA systems was designed to induce cell death both in low di-cation levels or anaerobic conditions. Survival of Salmonella-carrying TA systems was tested in culture and in the Raw264.7 macrophage cell line. One-day old chicks were inoculated with Salmonella carrying the TA system to evaluate bacterial persistence and induction of a protective immune response. Results: Attenuation of the Hok toxin promoter prolonged bacterial survival in vitro. Salmonella carrying the combined TA systems was eliminated completely both in vitro and in inoculated chickens, eliciting high levels of antibodies and conferring protection against challenge with wild-type Salmonella. Conclusions: These findings highlight the potential of the adaptable TA-based vaccination platform to generate safe and efficacious Salmonella vaccines for poultry, contributing to reduced transmission in the food chain. Full article
(This article belongs to the Special Issue New Approaches to Vaccine Development and Delivery)
Show Figures

Figure 1

29 pages, 2399 KB  
Systematic Review
Genomic Insights into Abdominal and Intramuscular Fat Deposition in Chickens and Their Implications for Productivity Traits: A Systematic Review
by Olga Kochetova, Gulnaz Korytina, Yanina Timasheva, Irina Gilyazova, Askar Akhmetshin, Gulshat Abdeeva, Alexandra Karunas, Elza Khusnutdinova and Oleg Gusev
Animals 2026, 16(2), 260; https://doi.org/10.3390/ani16020260 - 15 Jan 2026
Viewed by 45
Abstract
Abdominal fat deposition in chickens significantly impacts production efficiency and is influenced by complex genetic and molecular mechanisms. This review summarizes current genomic and transcriptomic research on the regulation of adipogenesis and fat accumulation in chickens, highlighting key genes and loci identified through [...] Read more.
Abdominal fat deposition in chickens significantly impacts production efficiency and is influenced by complex genetic and molecular mechanisms. This review summarizes current genomic and transcriptomic research on the regulation of adipogenesis and fat accumulation in chickens, highlighting key genes and loci identified through genome-wide association studies as well as other candidates involved in lipogenesis, lipolysis, and transcriptional regulation. Major metabolic pathways, including MAPK, AMPK, PI3K/AKT/mTOR, TGFβ1/Smad3, FoxO, JAK–STAT, Wnt/β-catenin, and Sonic Hedgehog signaling, are examined for their roles in fat deposition. The regulatory functions of non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, are discussed, focusing on their interactions with target mRNAs and signaling networks that control lipid metabolism, adipocyte differentiation, and energy balance. Integrating insights from both avian and human studies, this review emphasizes the molecular mechanisms underlying adipogenesis and highlights potential strategies for genetic selection aimed at reducing excessive abdominal fat and improving poultry productivity. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

19 pages, 10255 KB  
Article
Genomic Epidemiology of Salmonella Isolated from Meat Products in China: Population Structure, Phylodynamics, and Antimicrobial Resistance
by Shaoting Li, Wentao Ye, Yuheng Yang, Tianyue Zhu, Jiahao Ji, Miaomiao Chen, Yuxin Zheng, Hongmei Zhang and Qianwen Lu
Microorganisms 2026, 14(1), 191; https://doi.org/10.3390/microorganisms14010191 - 15 Jan 2026
Viewed by 51
Abstract
Salmonella is a major foodborne pathogen, and its increasing antimicrobial resistance poses a significant public health challenge. In this study, we conducted a comprehensive genomic epidemiological investigation of Salmonella isolates recovered from meat products across multiple provinces in China. A total of 141 [...] Read more.
Salmonella is a major foodborne pathogen, and its increasing antimicrobial resistance poses a significant public health challenge. In this study, we conducted a comprehensive genomic epidemiological investigation of Salmonella isolates recovered from meat products across multiple provinces in China. A total of 141 isolates were collected and subjected to antimicrobial susceptibility testing and whole-genome sequencing. Core genome MLST and hierarchical clustering (HierCC) were performed using EnteroBase, while SNP phylogeny and phylodynamic analyses were conducted to characterize the evolutionary dynamics of Salmonella populations. The predominant serovars were Enteritidis and Infantis, with a high proportion of multidrug-resistant isolates. Potentially transferable plasmids carrying ARGs, such as blaCTX-M, qnrS1, sul2, and mcr-1.1, were frequently detected, indicating a risk of horizontal transfer during transmission. Genomic epidemiological investigation of our sequenced strains and their associated cgMLST HierCC clusters revealed both persistent Salmonella lineages, such as Enteritidis HC50-87 and Agona HC20-419, and emerging China-specific lineages, including Enteritidis HC20-10145 and Typhimurium HC50-2304. The estimated divergence times of these lineages mostly dated to the late mid-20th century, coinciding with the intensification of poultry farming in China. These findings highlight the power of genomic epidemiology in uncovering antimicrobial resistance patterns and transmission dynamics, underscoring the need for strengthened Salmonella surveillance. Full article
Show Figures

Figure 1

18 pages, 2734 KB  
Article
Feeding Rate Impacts on Hermetia Illucens Growth and Bioconversion Efficiency When Using Low-Value Organic Wastes
by Martha Sumba, Carlos Amador, Diego Portalanza, Jorge Amaya, Omar Ruiz, Malena Torres, Narcisa Gorotiza, Barbara Guerrero, Juan D. Cabrera and Eduardo Álava
Recycling 2026, 11(1), 17; https://doi.org/10.3390/recycling11010017 - 15 Jan 2026
Viewed by 46
Abstract
The growing generation of organic solid waste from small-scale agriculture poses major environmental challenges in developing countries like Ecuador, where rural areas often lack waste management infrastructure. Residues from livestock rearing and traditional brewing such as poultry manure (PM), bovine manure (BM), and [...] Read more.
The growing generation of organic solid waste from small-scale agriculture poses major environmental challenges in developing countries like Ecuador, where rural areas often lack waste management infrastructure. Residues from livestock rearing and traditional brewing such as poultry manure (PM), bovine manure (BM), and barley by-product (BB) are often discarded untreated. This study evaluated the bioconversion potential of Hermetia illucens (black soldier fly larvae (BSFL), using a local Ecuadorian strain reared on these substrates under natural conditions and three feeding rates (50, 100, and 150 mg·larva−1·day−1). Larval growth and process efficiency were analyzed on a dry-matter basis. Both substrate and feeding rate significantly influenced performance (p < 0.05). PM and BB produced the highest larval dry weights (37.4 and 35.9 mg, respectively) at 100 mg·larva−1·day−1, with development completed in 35 days. BM-fed larvae reached only 17.6 mg and required up to 91 days. Bioconversion peaked at 4.6% (PM100) and 4.2% (BB50), while all BM treatments showed very low efficiency (<0.8%). Waste reduction was highest in BB100 (52.9%) and PM100 (43.5%). These results demonstrate the potential of BSFL as a biological treatment option for rural organic waste streams; however, performance strongly depended on substrate quality and feeding rate, indicating that not all locally available residues are equally suitable for larval bioconversion. Full article
(This article belongs to the Special Issue Biomass Revival: Rethinking Waste Recycling for a Greener Future)
Show Figures

Figure 1

37 pages, 2307 KB  
Systematic Review
Effectiveness of Interventions and Control Measures in the Reduction of Campylobacter in Poultry Farms: A Comprehensive Meta-Analysis
by Odete Zefanias, Ursula Gonzales-Barron and Vasco Cadavez
Foods 2026, 15(2), 307; https://doi.org/10.3390/foods15020307 - 14 Jan 2026
Viewed by 179
Abstract
Campylobacter is a leading foodborne bacterial pathogen, and poultry production is a major reservoir contributing to human exposure. Reducing Campylobacter at farm level is therefore critical to limit downstream contamination. This systematic review and meta-analysis aimed to identify and quantitively summarise the current [...] Read more.
Campylobacter is a leading foodborne bacterial pathogen, and poultry production is a major reservoir contributing to human exposure. Reducing Campylobacter at farm level is therefore critical to limit downstream contamination. This systematic review and meta-analysis aimed to identify and quantitively summarise the current interventions and control measures applied in poultry farms to control the contamination and bird colonisation by Campylobacter. The Scopus electronic database was accessed to collect primary research articles that focused on observational studies and in vivo experiments, reporting results on Campylobacter concentrations or prevalence in both non-intervened and intervened groups. A total of 4080 studies were reviewed, from which 112 were selected and included in the meta-analysis according to predefined criteria, yielding 1467 observations. Meta-regression models were adjusted to the full data set and by intervention strategy based on the type of outcome measure (i.e., concentration and prevalence). In general terms, the results reveal that the effectiveness to reduce Campylobacter colonisation vary among interventions. A highly significant effect (p < 0.001) was observed in interventions such as organic acids, bacteriophages, plant extracts, probiotics, and organic iron complexes added to feed or drinking water; although drinking water was proven to be a more effective means of administration than feed for extracts and organic acids. In contrast, interventions such as chemical treatments, routine cleaning and disinfection, and vaccination showed both lower and more heterogeneous effects on Campylobacter loads. Vaccination effects were demonstrated to be driven by route and schedule, with intramuscular administration, longer vaccination periods and sufficient time before slaughter linked to greater reduction in Campylobacter colonisation. Probiotics, plant extracts and routine cleaning and disinfection were associated with lower Campylobacter prevalence in flocks. Meta-regression models consistently showed that the interventions were proven more effective when the sample analysed was caecal contents in comparison to faeces (p < 0.001). Overall, the findings of this meta-analysis study emphasise the application of a multi-barrier approach that combines targeted interventions with robust biosecurity and hygiene measures in order to reduce Campylobacter levels in poultry farms. Full article
(This article belongs to the Special Issue Quality and Safety of Poultry Meat)
Show Figures

Figure 1

21 pages, 4442 KB  
Article
Heat-Inactivated Selenium Nanoparticle-Enriched Lactobacillus Enhance Mucosal IgA Responses and Systemic Responses of Clostridium perfringens Multi-Epitope Vaccine Correlated with TGF-β and NF-κB Pathways in Mice
by Xinyao Zhou, Zheng Jia, Xinqi De, Zaixing Yang, Yifan Li, Runhang Liu, Lingdi Niu, Xinran Yao, Yuxuan Jiang, Fang Wang and Junwei Ge
Microorganisms 2026, 14(1), 180; https://doi.org/10.3390/microorganisms14010180 - 14 Jan 2026
Viewed by 118
Abstract
Clostridium perfringens is one of the main causes of death in poultry with no vaccines approved for poultry at present. The appropriate adjuvant is critical for the development of vaccines in C. perfringens in poultry. Here, we utilized Levilactobacillus brevis for high-yielding selenium [...] Read more.
Clostridium perfringens is one of the main causes of death in poultry with no vaccines approved for poultry at present. The appropriate adjuvant is critical for the development of vaccines in C. perfringens in poultry. Here, we utilized Levilactobacillus brevis for high-yielding selenium biotransformation and demonstrated that heat-inactivated nano-selenium Lactobacillus (HiSeL) is a safe, efficient, and chemically stable selenium immunopotentiator for C. perfringens vaccines. We evaluated the effectiveness of HiSeL as an immune adjuvant to modulate the efficacy of multi-epitope vaccine in mice. Subcutaneous immunization mice with HiSeL promoted high levels of specific IgG, modulated cytokine secretion, downregulated stress-related gene expression, and provided 100% protection against lethal challenge with C. perfringens. Surprisingly, we found that HiSeL can quickly and effectively induce SIgA production even by subcutaneous immunization. Transcriptome sequencing revealed the pivotal role of TGF-β and NF-κB signaling pathways in IgA immune responses in mice immunized with the HiSeL-adjuvanted multi-epitope vaccine. Collectively, our study provides proof-of-concept evidence that HiSeL functions as a potent adjuvant candidate for the multi-epitope vaccine in a murine model, offering new insights into the development of engineered postbiotic-based adjuvants. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Graphical abstract

13 pages, 395 KB  
Article
Impact of Dietary Supplementation of Probiotics on Cecal Microbial Ecology, Immune Response, and Meat Quality of Muscovy Ducks
by Ahmed Mohammed, Eman Negm, Nadim Amarin, Sherief Sayed, Ahmed Soliman, Hussam Askar, Shaymaa Yusuf and Asmaa Adel Rayan
Microorganisms 2026, 14(1), 182; https://doi.org/10.3390/microorganisms14010182 - 14 Jan 2026
Viewed by 90
Abstract
Probiotics represent a beneficial approach to boost the welfare, health, and meat quality of poultry. One hundred and twenty one-day-old male Muscovy ducklings were divided among 24 floor pens (five ducklings per pen). The pens were randomly distributed among one of four dietary [...] Read more.
Probiotics represent a beneficial approach to boost the welfare, health, and meat quality of poultry. One hundred and twenty one-day-old male Muscovy ducklings were divided among 24 floor pens (five ducklings per pen). The pens were randomly distributed among one of four dietary treatments with six replicates (G-C) without any supplementation of probiotics; (G-A) was supplemented with 0.4 g/kg of Amnil®; (G-M) was supplemented with 0.5 g/kg of M-Mobilize®; and (G-A-M) was supplemented with 0.4 g/kg of Amnil® (1–30 day) and 0.5 g/kg of M-Mobilize® (31–60 day), respectively. The results indicated that BW at day 60 was improved in (G-A) birds compared with (G-C) ones, IL-6 was decreased in (G-A) and (G-A-M) in liver and spleen in comparison with (G-C) (p < 0.05), but no differences were observed between (G-C) and (G-M) (p > 0.05); IL-10 was decreased in all the probiotic-fed ducklings compared with (G-C) birds in the spleen (p < 0.05), and IL-10 was decreased in the (G-A) birds compared with the other treatments in the liver (p < 0.05). Probiotic-fed birds showed a higher enumeration of Lactobacillus spp. compared to (G-C) group (p < 0.05). In addition, the (G-M) group showed improved breast meat flavor, general acceptability, and water-holding capacity (WHC%) compared to (G-C) group (p < 0.05). These results suggest that the probiotic supplement (G-A), could be a good management tool for improving Muscovy ducks’ health and production and further research is needed to improve meat quality traits. Full article
(This article belongs to the Special Issue Veterinary Microbiology and Immunology)
Show Figures

Figure 1

18 pages, 297 KB  
Review
Integrating Worker and Food Safety in Poultry Processing Through Human-Robot Collaboration: A Comprehensive Review
by Corliss A. O’Bryan, Kawsheha Muraleetharan, Navam S. Hettiarachchy and Philip G. Crandall
Foods 2026, 15(2), 294; https://doi.org/10.3390/foods15020294 - 14 Jan 2026
Viewed by 184
Abstract
This comprehensive review synthesizes current advances and persistent challenges in integrating worker safety and food safety through human-robot collaboration (HRC) in poultry processing. Rapid industry expansion and rising consumer demand for ready-to-eat poultry products have heightened occupational risks and foodborne contamination concerns, necessitating [...] Read more.
This comprehensive review synthesizes current advances and persistent challenges in integrating worker safety and food safety through human-robot collaboration (HRC) in poultry processing. Rapid industry expansion and rising consumer demand for ready-to-eat poultry products have heightened occupational risks and foodborne contamination concerns, necessitating holistic safety strategies. The review examines ergonomic, microbiological, and regulatory risks specific to poultry lines, and maps how state-of-the-art collaborative robots (“cobots”)—including power and force-limiting arms, adaptive soft grippers, machine vision, and biosensor integration—can support safer, more hygienic, and more productive operations. The authors analyze technical scientific literature (2018–2025) and real-world case studies, highlighting how automation (e.g., vision-guided deboning and intelligent sanitation) can reduce repetitive strain injuries, lower contamination rates, and improve production consistency. The review also addresses the psychological and sociocultural dimensions that affect workforce acceptance, as well as economic and regulatory barriers to adoption, particularly in small- and mid-sized plants. Key research gaps include gripper adaptability, validation of food safety outcomes in mixed human-cobot workflows, and the need for deeper workforce retraining and feedback mechanisms. The authors propose a multidisciplinary roadmap: harmonizing ergonomic, safety, and hygiene standards; developing adaptive food-grade robotic end-effectors; fostering explainable AI for process transparency; and advancing workforce education programs. Ultimately, successful HRC deployment in poultry processing will depend on continuous collaboration among industry, researchers, and regulatory authorities to ensure both safety and competitiveness in a rapidly evolving global food system. Full article
18 pages, 2633 KB  
Article
Prediction of Ammonia Mitigation Efficiency in Sodium Bisulfate-Treated Broiler Litter Using Artificial Neural Networks
by Busra Yayli and Ilker Kilic
Animals 2026, 16(2), 210; https://doi.org/10.3390/ani16020210 - 10 Jan 2026
Viewed by 109
Abstract
The increasing demand for poultry meat, driven by its favorable nutritional profile, including low cholesterol and high protein content, has resulted in intensified production volumes and, consequently, elevated ammonia (NH3) emissions. Artificial intelligence-based predictive approaches offer an effective alternative to conventional [...] Read more.
The increasing demand for poultry meat, driven by its favorable nutritional profile, including low cholesterol and high protein content, has resulted in intensified production volumes and, consequently, elevated ammonia (NH3) emissions. Artificial intelligence-based predictive approaches offer an effective alternative to conventional treatment-oriented methods by enabling faster and more accurate estimation of NH3 removal performance. This study aimed to predict the ammonia removal efficiency of broiler litter generated during a production cycle under controlled laboratory-scale conditions using artificial neural networks (ANNs) trained with different learning algorithms. Four ANN models were developed based on the Levenberg–Marquardt (LM), Fletcher–Reeves (FR), Scaled Conjugate Gradient (SCG), and Bayesian Regularization (BR) algorithms. The results showed that the LM-based model with 12 hidden neurons achieved the highest predictive performance (R2 = 0.9777; MSE = 0.0033; RMSE = 0.0574; MAPE = 0.0833), while the BR-based model with 10 neurons showed comparable accuracy. In comparison with the FR and SCG models, the LM algorithm demonstrated superior predictive accuracy and generalization capability. Overall, the findings suggest that ANN-based modeling is a reliable, data-informed approach for estimating NH3 removal efficiency, providing a potential decision-support framework for ammonia mitigation strategies in poultry production systems. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

9 pages, 458 KB  
Article
A Novel Combination of Postbiotics and Essential Oil Compounds Supports a Consistent Improvement in Broiler Performance
by Vivek A. Kuttappan, Gregory S. Archer, Yann Fournis and Marc Decoux
Animals 2026, 16(2), 209; https://doi.org/10.3390/ani16020209 - 10 Jan 2026
Viewed by 160
Abstract
Recent innovations in poultry feed technology have emphasized the role of postbiotics and phytogenics as promising strategies to strengthen gut health and improve overall performance in broilers. Within this context, the current study evaluated the effectiveness of Biostrong™ Dual (Cargill Inc., Cedar Rapids, [...] Read more.
Recent innovations in poultry feed technology have emphasized the role of postbiotics and phytogenics as promising strategies to strengthen gut health and improve overall performance in broilers. Within this context, the current study evaluated the effectiveness of Biostrong™ Dual (Cargill Inc., Cedar Rapids, IA, USA), a novel product that integrates Saccharomyces cerevisiae fermentation-derived postbiotic products (SCFPs) with a proprietary blend of essential oil compounds (EOCs). The objective was to determine whether this dual formulation could consistently enhance growth, feed efficiency, and carcass quality across multiple production phases. To test this, three independent trials were conducted using commercial broiler strains. Birds were allocated to either a control group (CON) receiving a basal diet or a treatment group (DUAL) receiving the same diet supplemented with 0.4 kg/MT of Biostrong™ Dual. Each trial employed a randomized block design with 24 replicates per treatment and 16–25 birds per replicate. Results consistently demonstrated that DUAL improved (p < 0.05) body weight and the cumulative feed conversion ratio (cFCR) at 42 days. Pooled analysis revealed body weight gains of 5.5%, a cFCR improvement of 5 points, increased feed intake, and a 0.86% rise in breast meat yield. Additionally, one trial showed reduced footpad lesion scores. Collectively, these findings highlight Biostrong™ Dual as a valuable nutritional intervention to optimize productivity and carcass quality in poultry production and further research is needed to understand the mode of action of the product. Full article
(This article belongs to the Special Issue Novel Feed Additives in Livestock and Poultry Nutrition)
Show Figures

Figure 1

15 pages, 3432 KB  
Article
Clonal and Plasmid-Mediated Dissemination of Multidrug-Resistant Salmonella Enteritidis in Chicken Production, Northeastern Thailand
by Zhihui Zhang, Fanan Suksawat, Xue Zhang, Xianghua Shu and Sunpetch Angkititrakul
Pathogens 2026, 15(1), 75; https://doi.org/10.3390/pathogens15010075 - 10 Jan 2026
Viewed by 245
Abstract
Background: The global dissemination of multidrug-resistant (MDR) Salmonella poses a persistent and serious threat to food safety systems. As a leading poultry-exporting country, Thailand requires a comprehensive understanding of how resistance plasmids spread among Salmonella populations within its chicken production chain. Methods: Between [...] Read more.
Background: The global dissemination of multidrug-resistant (MDR) Salmonella poses a persistent and serious threat to food safety systems. As a leading poultry-exporting country, Thailand requires a comprehensive understanding of how resistance plasmids spread among Salmonella populations within its chicken production chain. Methods: Between March 2023 and February 2024, 223 Salmonella isolates were collected from chicken slaughterhouses and markets in northeastern Thailand. From these, 19 representative MDR Salmonella enterica isolates, selected based on distinct spatiotemporal distributions, underwent whole-genome sequencing. Genomic analyses included sequence typing, core-genome phylogenetics, and screening for antimicrobial resistance genes. Plasmid replicons were identified, and functional annotation was performed using the COG database. Results: Phylogenetic analysis revealed 11 distinct sequence types within the population. Among these, ST1541 and ST50 showed clear evidence of clonal transmission across different production stages, with a notable clustering pattern observed during the winter season. All sequenced isolates exhibited an MDR phenotype. Plasmids were detected in 78.9% of isolates, with conjugative plasmids being the most frequent type (57.9%). The β-lactamase gene blaTEM-60 was the most prevalent (78.9%) and showed a strong correlation (r ≥ 0.7) with resistance to both ampicillin and cefotaxime. Functional annotation further revealed an abundance of genes involved in carbohydrate and amino acid metabolism across all isolates. Conclusions: These findings indicate that MDR Salmonella dissemination is driven by two synergistic mechanisms: the clonal expansion of fit lineages and the horizontal transfer of conjugative plasmids harboring β-lactamase genes. We identified IncI-gamma-K1 and Col-related plasmids as key vectors in this process. This study advocates for targeted interventions, guided by a One Health approach, that specifically aim to disrupt plasmid transmission at critical control points, such as slaughterhouses, to curb the spread of antimicrobial resistance. Full article
(This article belongs to the Special Issue Salmonella: A Global Health Threat and Food Safety Challenge)
Show Figures

Figure 1

25 pages, 1670 KB  
Review
Staphylococcus spp. Epidemiology, Virulence, Genomic Adaptability and Coinfection in Broiler Chickens
by Delvin O. Combar, Sung J. Yu, Emmanuel Asare, Thi T. H. Van, Yadav S. Bajagai and Dragana Stanley
Animals 2026, 16(2), 208; https://doi.org/10.3390/ani16020208 - 9 Jan 2026
Viewed by 399
Abstract
Staphylococcus species are saprophytic, opportunistic, and nosocomial pathogens that frequently co-infect with other microorganisms, causing severe infections in birds. Some of the notable examples include bacterial chondronecrosis with osteomyelitis (BCO), cellulitis, dermatitis, and systemic infections. Understanding of how Staphylococcus spp. cause infections evading [...] Read more.
Staphylococcus species are saprophytic, opportunistic, and nosocomial pathogens that frequently co-infect with other microorganisms, causing severe infections in birds. Some of the notable examples include bacterial chondronecrosis with osteomyelitis (BCO), cellulitis, dermatitis, and systemic infections. Understanding of how Staphylococcus spp. cause infections evading the host immune system is crucial for helping farmers and veterinarians develop long-term solutions for poultry production system management. The aim of this review is to broaden the understanding of Staphylococcus spp. epidemiology, virulence, genomic adaptability and coinfection patterns. The peer-reviewed articles were obtained from various databases, including Google Scholar, Web of Science, and PubMed. The review primarily focused on papers published between 1999 and 2025. The review presents an opportunity to identify research gaps and apply this knowledge to develop innovative approaches to address staphylococcal infections in broiler chickens. Additionally, BCO is often attributed to coinfection with Staphylococcus species and other pathogens. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

14 pages, 2851 KB  
Article
DMP1-Mediated FAK Activation Contributes to P Utilization of Broiler Osteoblasts by Suppressing FGF23 Expression
by Tingting Li, Xinyu Feng, Weiyun Zhang, Jingyi Zhao, Liyang Zhang, Yun Hu, Xiaoyan Cui, Shengchen Wang and Xugang Luo
Biology 2026, 15(2), 121; https://doi.org/10.3390/biology15020121 - 8 Jan 2026
Viewed by 189
Abstract
Improving phosphorus (P) utilization in broilers is crucial for reducing feed costs and environmental pollution. Bone mineralization trait is strongly associated with P utilization in poultry and is thus often used as an alternative trait for evaluating P utilization. Dentin matrix protein 1 [...] Read more.
Improving phosphorus (P) utilization in broilers is crucial for reducing feed costs and environmental pollution. Bone mineralization trait is strongly associated with P utilization in poultry and is thus often used as an alternative trait for evaluating P utilization. Dentin matrix protein 1 (DMP1), an essential matrix protein for bone mineralization and P deposition, has been shown to be actively involved in P utilization in broilers, but the underlying mechanisms remain unclear. The current study aimed to investigate the possible mechanisms whereby DMP1 regulates P utilization of poultry by using gene silencing and overexpression technologies, combined with an in vitro model of primary broiler osteoblasts. The results showed that DMP1 overexpression augmented the P utilization of broiler osteoblasts, characterized by significant increases (p < 0.001) in P utilization rate, mineralization formation, alkaline phosphatase activity, and bone gla protein content. Meanwhile, DMP1 overexpression effectively (p < 0.05) activated the focal adhesion kinase (FAK) signaling, along with obvious (p < 0.01) decreases in fibroblast growth factor 23 (FGF23) expression and production. In contrast, DMP1 silencing reversed (p < 0.05) the above effects. Consistently, FAK activation promoted (p < 0.05) P utilization accompanied by remarkable (p < 0.05) decreases in FGF23 expression and production. Furthermore, gain- and loss-of-function assays demonstrated that a high level of FGF23 contributed to impaired P utilization, while a low level was beneficial. Interestingly, blocking FAK signaling not only recovered (p < 0.05) the FGF23 expression and production in DMP1 overexpressed cells but also obviously (p < 0.05) weakened their P utilization. These findings indicate that DMP1 inhibits FGF23 expression by activating FAK, thereby contributing to P utilization in broiler osteoblasts. They reveal a novel DMP1-FAK-FGF23 regulatory axis in broiler osteoblasts and provide a potential target for improving P efficiency in poultry. Full article
(This article belongs to the Special Issue Nutritional Physiology of Animals)
Show Figures

Figure 1

Back to TopTop