Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,898)

Search Parameters:
Keywords = potential induced degradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5565 KiB  
Article
Green Mild Acid Treatment of Recycled Concrete Aggregates: Concentration Thresholds for Mortar Removal While Avoiding Degradation of Original Limestone Aggregate and Concrete
by Shunquan Zhang and Yifan Zhang
Materials 2025, 18(15), 3673; https://doi.org/10.3390/ma18153673 - 5 Aug 2025
Abstract
While acetic acid has proven effective as a mild acidic treatment for removing adhered mortar from recycled concrete aggregate (RCA) surfaces, its potential for dissolving damage to the surface of the original natural coarse aggregate (NCA) within the RCA and its impact on [...] Read more.
While acetic acid has proven effective as a mild acidic treatment for removing adhered mortar from recycled concrete aggregate (RCA) surfaces, its potential for dissolving damage to the surface of the original natural coarse aggregate (NCA) within the RCA and its impact on the resultant concrete properties require careful consideration. This investigation systematically evaluates the effects of varying concentrations of dilute acetic acid solutions, commonly used in RCA treatment protocols, through a multi-methodological approach that includes comprehensive physical characterization, stylus and 3D optical profilometry, scanning electron microscopy (SEM), and nanoindentation analysis. The results show that even dilute acid solutions have an upper concentration limit, as excessive acid concentration, specifically 0.4 M, induces significant textural dislocations on NCA surfaces, creating millimeter-scale erosion pits that increase aggregate water absorption by 18.5%. These morphological changes significantly impair concrete workability and reduce compressive strength performance. Furthermore, microstructural analysis reveals a 45.24% expansion in interfacial transition zone (ITZ) thickness, accompanied by notable reductions in elastic modulus and microhardness characteristics. In practical RCA treatment applications, for RCA containing limestone-based NCA, it is recommended to use acetic acid concentrations between 0.1 and 0.3 M to avoid substantial physical and microstructural degradation of aggregates and concrete. Full article
Show Figures

Graphical abstract

23 pages, 2656 KiB  
Article
rRNA-specific antisense DNA and dsDNA trigger rRNA biogenesis and cause potent insecticidal effect on insect pest Coccus hesperidum L.
by Vol Oberemok, Nikita Gal’chinsky, Ilya Novikov, Alexander Sharmagiy, Ekaterina Yatskova, Ekaterina Laikova and Yuri Plugatar
Int. J. Mol. Sci. 2025, 26(15), 7530; https://doi.org/10.3390/ijms26157530 (registering DOI) - 4 Aug 2025
Abstract
Contact unmodified antisense DNA biotechnology (CUADb), developed in 2008, employs short antisense DNA oligonucleotides (oligos) as a novel approach to insect pest control. These oligonucleotide-based insecticides target pest mature rRNAs and/or pre-rRNAs and have demonstrated high insecticidal efficacy, particularly against sap-feeding insect pests, [...] Read more.
Contact unmodified antisense DNA biotechnology (CUADb), developed in 2008, employs short antisense DNA oligonucleotides (oligos) as a novel approach to insect pest control. These oligonucleotide-based insecticides target pest mature rRNAs and/or pre-rRNAs and have demonstrated high insecticidal efficacy, particularly against sap-feeding insect pests, which are key vectors of plant DNA viruses and among the most economically damaging herbivorous insects. To further explore the potential of CUADb, this study evaluated the insecticidal efficacy of short 11-mer antisense DNA oligos against Coccus hesperidum, in comparison with long 56-mer single-stranded and double-stranded DNA sequences. The short oligos exhibited higher insecticidal activity. By day 9, the highest mortality rate (97.66 ± 4.04%) was recorded in the Coccus-11 group, while the most effective long sequence was the double-stranded DNA in the dsCoccus-56 group (77.09 ± 6.24%). This study also describes the architecture of the DNA containment (DNAc) mechanism, highlighting the intricate interactions between rRNAs and various types of DNA oligos. During DNAc, the Coccus-11 treatment induced enhanced ribosome biogenesis and ATP production through a metabolic shift from carbohydrates to lipid-based energy synthesis. However, this ultimately led to a ‘kinase disaster’ due to widespread kinase downregulation resulting from insufficient ATP levels. All DNA oligos with high or moderate complementarity to target rRNA initiated hypercompensation, but subsequent substantial rRNA degradation and insect mortality occurred only when the oligo sequence perfectly matched the rRNA. Both short and long oligonucleotide insecticide treatments led to a 3.75–4.25-fold decrease in rRNA levels following hypercompensation, which was likely mediated by a DNA-guided rRNase, such as RNase H1, while crucial enzymes of RNAi (DICER1, Argonaute 2, and DROSHA) were downregulated, indicating fundamental difference in molecular mechanisms of DNAc and RNAi. Consistently, significant upregulation of RNase H1 was detected in the Coccus-11 treatment group. In contrast, treatment with random DNA oligos resulted in only a 2–3-fold rRNA decrease, consistent with the normal rRNA half-life maintained by general ribonucleases. These findings reveal a fundamental new mechanism of rRNA regulation via complementary binding between exogenous unmodified antisense DNA and cellular rRNA. From a practical perspective, this minimalist approach, applying short antisense DNA dissolved in water, offers an effective, eco-friendly and innovative solution for managing sternorrhynchans and other insect pests. The results introduce a promising new concept in crop protection: DNA-programmable insect pest control. Full article
(This article belongs to the Special Issue New Insights into Plant and Insect Interactions (Second Edition))
Show Figures

Figure 1

21 pages, 3334 KiB  
Article
Protective Efficacy of Lactobacillus plantarum Postbiotic beLP-K in a Dexamethasone-Induced Sarcopenia Model
by Juyeong Moon, Jin-Ho Lee, Eunwoo Jeong, Harang Park, Hye-Yeong Song, Jinsu Choi, Min-ah Kim, Kwon-Il Han, Doyong Kim, Han Sung Kim and Tack-Joong Kim
Int. J. Mol. Sci. 2025, 26(15), 7504; https://doi.org/10.3390/ijms26157504 (registering DOI) - 3 Aug 2025
Viewed by 54
Abstract
Sarcopenia is characterized by a reduction in muscle function and skeletal muscle mass relative to that of healthy individuals. In older adults and those who are less resistant to sarcopenia, glucocorticoid secretion or accumulation during treatment exacerbates muscle protein degradation, potentially causing sarcopenia. [...] Read more.
Sarcopenia is characterized by a reduction in muscle function and skeletal muscle mass relative to that of healthy individuals. In older adults and those who are less resistant to sarcopenia, glucocorticoid secretion or accumulation during treatment exacerbates muscle protein degradation, potentially causing sarcopenia. This study assessed the preventive effects and mechanisms of heat-killed Lactobacillus plantarum postbiotic beLP-K (beLP-K) against dexamethasone (DEX)-induced sarcopenia in C2C12 myotubes and Sprague-Dawley rats. The administration of beLP-K did not induce cytotoxicity and mitigated cell damage caused by DEX. Furthermore, beLP-K significantly reduced the expression of forkhead box O3 α (FoxO3α), muscle atrophy f-box (MAFbx)/atrogin-1, and muscle RING-finger protein-1 (MuRF1), which are associated with muscle protein degradation. DEX induced weight loss in rats; however, in the beLP-K group, weight gain was observed. Micro-computed tomography analysis revealed that beLP-K increased muscle mass, correlating with weight and grip strength. beLP-K alleviated the DEX-induced reduction in grip strength and increased the mass of hind leg muscles. The correlation between beLP-K administration and increased muscle mass was associated with decreased expression levels of muscle degradation-related proteins such as MAFbx/atrogin-1 and MuRF1. Therefore, beLP-K may serve as a treatment for sarcopenia or as functional food material. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

22 pages, 5123 KiB  
Article
Tailored Effects of Plasma-Activated Water on Hair Structure Through Comparative Analysis of Nitrate-Rich and Peroxide-Rich Formulations Across Different Hair Types
by Antonia de Souza Leal, Michaela Shiotani Marcondes, Ariane Leite, Douglas Leite, Clodomiro Alves Junior, Laurita dos Santos and Rodrigo Pessoa
Appl. Sci. 2025, 15(15), 8573; https://doi.org/10.3390/app15158573 (registering DOI) - 1 Aug 2025
Viewed by 181
Abstract
Plasma-activated water (PAW), enriched with reactive oxygen and nitrogen species (RONS), presents oxidative and antimicrobial characteristics with potential in cosmetic applications. This study examined the effects of two PAW formulations—nitrate-rich (PAW-N) and peroxide-rich (PAW-P)—on human hair types classified as straight (Type 1), wavy [...] Read more.
Plasma-activated water (PAW), enriched with reactive oxygen and nitrogen species (RONS), presents oxidative and antimicrobial characteristics with potential in cosmetic applications. This study examined the effects of two PAW formulations—nitrate-rich (PAW-N) and peroxide-rich (PAW-P)—on human hair types classified as straight (Type 1), wavy (Type 2), and coily/kinky (Type 4). The impact of PAW on hair structure and chemistry was evaluated using Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV–Vis spectrophotometry, and physicochemical analyses of the liquids (pH, ORP, conductivity, and TDS). PAW-N, with high nitrate content (~500 mg/L), low pH (2.15), and elevated conductivity (6244 µS/cm), induced significant damage to porous hair types, including disulfide bond cleavage, protein oxidation, and lipid degradation, as indicated by FTIR and EDS data. SEM confirmed severe cuticle disruption. In contrast, PAW-P, containing >25 mg/L of hydrogen peroxide and exhibiting milder acidity and lower ionic strength, caused more localized and controlled oxidation with minimal morphological damage. Straight hair showed greater resistance to both treatments, while coily and wavy hair were more susceptible, particularly to PAW-N. These findings suggest that the formulation and ionic profile of PAW should be matched to hair porosity for safe oxidative treatments, supporting the use of PAW-P as a gentler alternative in hair care technologies. Full article
Show Figures

Figure 1

18 pages, 762 KiB  
Review
Djulis (Chenopodium formosanum) Extract as a Promising Natural Agent Against Skin Aging
by Jia-Ling Lyu, Po-Yuan Wu, Hsiao-Fang Liao, Chia-Lin Lee, Kuo-Ching Wen, Chang-Cheng Chang and Hsiu-Mei Chiang
Molecules 2025, 30(15), 3209; https://doi.org/10.3390/molecules30153209 - 31 Jul 2025
Viewed by 292
Abstract
Photoaging, predominantly induced by ultraviolet radiation, is a primary driver of premature skin aging, characterized by complex molecular mechanisms including oxidative stress, inflammation, matrix metalloproteinase activation, and extracellular matrix degradation. Consequently, there is growing scientific interest in identifying effective natural agents to counteract [...] Read more.
Photoaging, predominantly induced by ultraviolet radiation, is a primary driver of premature skin aging, characterized by complex molecular mechanisms including oxidative stress, inflammation, matrix metalloproteinase activation, and extracellular matrix degradation. Consequently, there is growing scientific interest in identifying effective natural agents to counteract skin aging and photoaging. Djulis (Chenopodium formosanum), an indigenous Taiwanese pseudocereal from the Amaranthaceae family, has emerged as a promising candidate for skincare applications because of its rich phytochemicals and diverse bioactivities. This review describes the current understanding of the molecular mechanisms underlying photoaging and examines the therapeutic potential of djulis extract as a multifunctional agent for skin aging. Its mechanisms of action include enhancing antioxidant defenses, modulating inflammatory pathways, preserving the extracellular matrix, and inhibiting the formation of advanced glycation end products. Bioactive constituents of djulis extract, including phenolic compounds, flavonoids, and betanin, are known to exhibit potent antioxidant and photoprotective activities by modulating multiple molecular pathways essential for skin protection. The bioactivities of djulis in in vitro and animal studies, and four skin clinical trials of djulis extract products are presented in this review article. Ultimately, this review provides an overview that supports the potential of djulis extract in the development of evidence-based skincare formulations for the prevention and treatment of skin aging. Full article
Show Figures

Graphical abstract

11 pages, 737 KiB  
Article
Generation of an In Vitro Cartilage Aging Model Using Human Sera from Old Donors
by Sophie Hines, Meagan J. Makarczyk, Joseph Garzia and Hang Lin
Bioengineering 2025, 12(8), 823; https://doi.org/10.3390/bioengineering12080823 - 30 Jul 2025
Viewed by 332
Abstract
Cartilage degradation is a key feature of osteoarthritis (OA), a joint disease that significantly impacts the quality of life of the elderly population. While advanced age is recognized as one of the major risk factors for OA, the underlying mechanisms are not fully [...] Read more.
Cartilage degradation is a key feature of osteoarthritis (OA), a joint disease that significantly impacts the quality of life of the elderly population. While advanced age is recognized as one of the major risk factors for OA, the underlying mechanisms are not fully understood. Research involving cartilage from aged animals has improved our understanding of the changes associated with aging. However, studies with aged animals can be time-consuming and costly. In this study, we investigate the use of human sera from older donors as a stressor to induce aging-like changes in cultured human chondrocytes. First, we assess the expression levels of markers related to chondrogenesis, hypertrophy, fibrosis, and inflammation in human chondrocytes treated with sera from younger or older human donors. Next, we evaluate the regenerative potential of these sera-treated chondrocytes by stimulating them with the anabolic factor transforming growth factor (TGF)-β3. The results show that treatment with sera from older donors induced an aging-like phenotype in chondrocytes and impaired their ability to generate new cartilage. These findings provide insight into the role of systemic factors (serum) in cartilage aging and offer a novel in vitro model for studying age-related changes in chondrocytes. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Graphical abstract

20 pages, 6787 KiB  
Article
PKC-ι Regulates an Oncogenic Positive Feedback Loop Between the MAPK/JNK Signaling Pathway, c-Jun/AP-1 and TNF-α in Breast Cancer
by Nuzhat Nowshin Oishee, Mahfuza Marzan, Abigail Oluwafisayo Olatunji, Khandker Mohammad Khalid, Abiral Hasib Shourav, Radwan Ebna Noor, Anna Kharitonova, Aaron Joshua Astalos, James W. Leahy and Mildred Acevedo-Duncan
Int. J. Mol. Sci. 2025, 26(15), 7288; https://doi.org/10.3390/ijms26157288 - 28 Jul 2025
Viewed by 333
Abstract
Breast cancer is the second most common cancer in the United States and consists of 30% of all new female cancer each year. PKC iota (PKC-ι) is a bonafide human oncogene and is overexpressed in many types of cancer, including breast [...] Read more.
Breast cancer is the second most common cancer in the United States and consists of 30% of all new female cancer each year. PKC iota (PKC-ι) is a bonafide human oncogene and is overexpressed in many types of cancer, including breast cancer. This study explores the role of PKC-ι in regulating the transcription factor Jun proto-oncogene (c-Jun), pro-inflammatory cytokine Tumor Necrosis Factor-alpha (TNF-α), and the Mitogen-Activated Protein Kinase/Jun N-terminal kinase (MAPK/JNK) pathway, which also exhibits an oncogenic role in breast cancer. ICA-1S, a PKC-ι specific inhibitor, was used to inhibit PKC-ι to observe the subsequent effect on the levels of c-Jun, TNF-α, and the MAPK/JNK signaling pathway. To obtain the results, cell proliferation assay, Western blotting, co-immunoprecipitation, small interfering RNA (siRNA), immunofluorescence, flow cytometry, cycloheximide (CHX) chase assay, and reverse transcription quantitative PCR (RT-qPCR) techniques were implemented. ICA-1S significantly inhibited cell proliferation and induced apoptosis in both breast cancer cell lines. Treatment with ICA-1S and siRNA also reduced the expression levels of the MAPK/JNK pathway protein, c-Jun, and TNF-α in both cell lines. PKC-ι was also found to be strongly associated with c-Jun, via which it regulated the MAPK/JNK pathway. Additionally, ICA-1S was found to promote the degradation of c-Jun and decrease the mRNA levels of c-Jun. We concluded that PKC-ι plays a crucial role in regulating breast cancer, and the inhibition of PKC-ι by ICA-1S reduces breast cancer cell proliferation and induces apoptosis. Therefore, targeting PKC-ι as a potential therapeutic target in breast cancer could be a significant approach in breast cancer research. Full article
(This article belongs to the Special Issue Molecular Research and Cellular Biology of Breast Cancer)
Show Figures

Figure 1

18 pages, 2342 KiB  
Article
Accelerated Hydrolytic Degradation of PLA/Magnesium Composite Films: Material Properties and Stem Cell Interaction
by Valentina Fabi, Maria Luisa Valicenti, Franco Dominici, Francesco Morena, Luigi Torre, Sabata Martino and Ilaria Armentano
Polymers 2025, 17(15), 2052; https://doi.org/10.3390/polym17152052 - 27 Jul 2025
Viewed by 351
Abstract
The accelerated hydrolytic degradation of poly(L-lactide) (PLA)/magnesium (Mg) composite films was investigated to elucidate the influence of surface modification of Mg particles on the degradation behavior and characteristics of PLA composites. Accelerated degradation studies were conducted at 60 °C in a pH 7.4 [...] Read more.
The accelerated hydrolytic degradation of poly(L-lactide) (PLA)/magnesium (Mg) composite films was investigated to elucidate the influence of surface modification of Mg particles on the degradation behavior and characteristics of PLA composites. Accelerated degradation studies were conducted at 60 °C in a pH 7.4 phosphate-buffered solution over 7 weeks, with degradation monitored using several techniques: mass loss, water absorption, thermal analysis, and Raman spectroscopy. The results indicated that all composite films experienced more than 90% mass loss at the end of experiment; however, PLA/5MgTT and PLA/5MgPEI exhibited the highest resistance to degradation, likely due to the protective effect of the surface modification induced by thermal treatment and polyethylenimine (PEI). Notably, these characteristics did not compromise the biocompatibility or osteogenic potential of the films, which remained comparable to the control samples when tested on human bone marrow multipotent mesenchymal/stromal cells. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

21 pages, 32710 KiB  
Article
Differences in Starvation-Induced Autophagy Response and miRNA Expression Between Rat Mammary Epithelial and Cancer Cells: Uncovering the Role of miR-218-5p
by Mateusz Gotowiec, Antoni Smoliński, Katarzyna Marcinkowska, Wiktor Pascal and Paweł Krzysztof Włodarski
Cancers 2025, 17(15), 2446; https://doi.org/10.3390/cancers17152446 - 23 Jul 2025
Viewed by 358
Abstract
Background: Breast cancer (BC) is highly heterogeneous, with varying molecular characteristics, such as reliance on autophagy. Autophagy is a critical cellular degradation process that helps cells survive under stress, but its regulation can be influenced by altered microRNA (miRNA) expression. Studying miRNA [...] Read more.
Background: Breast cancer (BC) is highly heterogeneous, with varying molecular characteristics, such as reliance on autophagy. Autophagy is a critical cellular degradation process that helps cells survive under stress, but its regulation can be influenced by altered microRNA (miRNA) expression. Studying miRNA changes during starvation-induced autophagy in both mammary epithelial cells and BC cells could reveal potential molecular therapy targets. Methods: Rat mammary gland healthy epithelial and cancer cells were subjected to starvation, and differences in proliferation, migration, invasion, autophagy, and expression of autophagy-associated miRNAs were determined. Afterward, we assessed the effects of miR-218-5p modulation on the aforementioned processes. Results: Starvation-induced autophagy reduced the proliferation of all cells and increased the invasive and migratory capacity of cancer cells (p ≤ 0.05). We identified a miRNA signature related to starvation, comprising twenty-seven miRNAs. One miRNA had a significantly elevated baseline expression, while another six, including miR-218-5p, had a significantly lower basal expression in cancer cells compared to healthy cells (p ≤ 0.05). However, starvation caused significant miRNA expression changes, with miR-218-5p being upregulated specifically in cancer cells (p = 0.20–0.01). Functional studies on the role of miR-218-5p show that its inhibition decreases migration and leads to autophagosome accumulation. The study of miR-218-5p molecular targets has shown that its inhibition of sorting nexin 18 (SNX18) may act as an important regulator of the starvation-induced response in cancer cells. Conclusions: The baseline expression of miRNA related to starvation and autophagy differs between rat mammary gland cancer and healthy cells. The response to starvation also varies between cancer cells and normal cells. Starvation induces BC-specific miRNA dysregulation, affecting particularly miR-218-5p, which acts via SNX18, promoting the cancer cells’ survival. Full article
(This article belongs to the Special Issue The Role of Apoptosis and Autophagy in Cancer)
Show Figures

Figure 1

21 pages, 3048 KiB  
Article
Transfersome-Based Delivery of Optimized Black Tea Extract for the Prevention of UVB-Induced Skin Damage
by Nadia Benedetto, Maria Ponticelli, Ludovica Lela, Emanuele Rosa, Flavia Carriero, Immacolata Faraone, Carla Caddeo, Luigi Milella and Antonio Vassallo
Pharmaceutics 2025, 17(8), 952; https://doi.org/10.3390/pharmaceutics17080952 - 23 Jul 2025
Viewed by 296
Abstract
Background/Objectives: Ultraviolet B (UVB) radiation contributes significantly to skin aging and skin disorders by promoting oxidative stress, inflammation, and collagen degradation. Natural antioxidants such as theaflavins and thearubigins from Camellia sinensis L. (black tea) have shown photoprotective effects. This study aimed to optimize [...] Read more.
Background/Objectives: Ultraviolet B (UVB) radiation contributes significantly to skin aging and skin disorders by promoting oxidative stress, inflammation, and collagen degradation. Natural antioxidants such as theaflavins and thearubigins from Camellia sinensis L. (black tea) have shown photoprotective effects. This study aimed to optimize the extraction of theaflavins and thearubigins from black tea leaves and evaluate the efficacy of the extract against UVB-induced damage using a transfersome-based topical formulation. Methods: Extraction of theaflavins and thearubigins was optimized via response surface methodology (Box-Behnken Design), yielding an extract rich in active polyphenols. This extract was incorporated into transfersomes that were characterized for size, polydispersity, zeta potential, storage stability, and entrapment efficiency. Human dermal fibroblasts (NHDF) were used to assess cytotoxicity, protection against UVB-induced viability loss, collagen degradation, and expression of inflammatory (IL6, COX2, iNOS) and matrix-degrading (MMP1) markers. Cellular uptake of the extract’s bioactive marker compounds was measured via LC-MS/MS. Results: The transfersomes (~60 nm) showed a good stability and a high entrapment efficiency (>85%). The transfersomes significantly protected NHDF cells from UVB-induced cytotoxicity, restored collagen production, and reduced gene expression of MMP1, IL6, COX2, and iNOS. Cellular uptake of key extract’s polyphenols was markedly enhanced by the nanoformulation compared to the free extract. Conclusions: Black tea extract transfersomes effectively prevented UVB-induced oxidative and inflammatory damage in skin fibroblasts. This delivery system enhanced bioavailability of the extract and cellular protection, supporting the use of the optimized extract in cosmeceutical formulations targeting photoaging and UV-induced skin disorders. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

19 pages, 4851 KiB  
Article
Natural Frequency of Monopile Supported Offshore Wind Turbine Structures Under Long-Term Cyclic Loading
by Rong Chen, Haitao Yang, Yilong Sun, Jinglong Zou, Boyan Sun and Jialin Xu
Appl. Sci. 2025, 15(15), 8143; https://doi.org/10.3390/app15158143 - 22 Jul 2025
Viewed by 273
Abstract
Offshore wind turbine structures (OWTs) commonly use monopile foundations for support, and long-term exposure to wind–wave cyclic loads may induce changes in foundation stiffness. Variations in foundation stiffness can significantly alter the inherent vibration characteristics of OWTs, potentially leading to amplified vibrations or [...] Read more.
Offshore wind turbine structures (OWTs) commonly use monopile foundations for support, and long-term exposure to wind–wave cyclic loads may induce changes in foundation stiffness. Variations in foundation stiffness can significantly alter the inherent vibration characteristics of OWTs, potentially leading to amplified vibrations or resonant conditions. In this study, a numerical model considering soil–pile interaction was developed on the FLAC3D platform to analyze the natural frequency of OWTs under long-term cyclic loading. The study first validated the numerical model’s effectiveness through comparison with measured data; a degradation stiffness model (DSM) was then embedded to assess how prolonged cyclic loading affects the degradation of foundation stiffness. A series of parametric studies were conducted in medium-dense and dense sand layers to investigate natural frequency alterations induced by prolonged cyclic loading. Finally, a simplified method for evaluating long-term natural frequency changes was established, and a 3.6 MW offshore wind turbine case was used to reveal the evolution characteristics of its natural frequency under long-term cyclic loads. The data reveal that the natural frequency of the structure undergoes a downward tendency as cyclic loading and frequency increase. To ensure long-term safe operation, the designed natural frequency should preferably shift toward 3P (where P is the blade rotation frequency). Full article
Show Figures

Figure 1

21 pages, 2144 KiB  
Article
In Vitro Release and In Vivo Study of Recombinant TGF-β and EGCG from Dual Self-Cross-Linked Alginate-Di-Aldehyde In Situ Injectable Hydrogel for the Repair of a Degenerated Intervertebral Disc in a Rat Tail
by Bushra Begum, Seema Mudhol, Baseera Begum, Syeda Noor Madni, Sharath Honganoor Padmanabha, Vazir Ashfaq Ahmed and N. Vishal Gupta
Gels 2025, 11(8), 565; https://doi.org/10.3390/gels11080565 - 22 Jul 2025
Viewed by 250
Abstract
Background and Objective: Intervertebral disc degeneration (IVDD) is a leading cause of lower back pain with limited regenerative treatments. Among emerging regenerative approaches, growth factor-based therapies, such as recombinant human transforming growth factor-beta (Rh-TGF-β), have shown potential for disc regeneration but are [...] Read more.
Background and Objective: Intervertebral disc degeneration (IVDD) is a leading cause of lower back pain with limited regenerative treatments. Among emerging regenerative approaches, growth factor-based therapies, such as recombinant human transforming growth factor-beta (Rh-TGF-β), have shown potential for disc regeneration but are hindered by rapid degradation and uncontrolled release by direct administration. Additionally, mechanical stress elevates heat shock protein 90 (HSP-90), impairing cell function and extracellular matrix (ECM) production. This study aimed to investigate a dual self-cross-linked alginate di-aldehyde (ADA) hydrogel system for the sustained delivery of Rh-TGF-β and epigallocatechin gallate (EGCG) to enhance protein stability, regulate release, and promote disc regeneration by targeting both regenerative and stress-response pathways. Methods: ELISA and UV-Vis spectrophotometry assessed Rh-TGF-β and EGCG release profiles. A rat tail IVDD model was established with an Ilizarov-type external fixator for loading, followed by hydrogel treatment with or without bioactive agents. Disc height, tissue structure, and protein expression were evaluated via radiography, histological staining, immunohistochemistry, and Western blotting. Results: The hydrogel demonstrated a biphasic release profile with 100% Rh-TGF-β released over 60 days and complete EGCG release achieved within 15 days. Treated groups showed improved disc height, structural integrity, and proteoglycan retention revealed by histological analysis and elevated HSP-90 expression by immunohistochemistry. In contrast, Western blot analysis confirmed that EGCG effectively downregulated HSP-90 expression, suggesting a reduction in mechanical stress-induced degeneration. Conclusions: ADA hydrogel effectively delivers therapeutic agents, offering a promising strategy for IVDD treatment. Full article
Show Figures

Figure 1

17 pages, 1618 KiB  
Article
Can Biochar Alleviate Machinery-Induced Soil Compaction? A Field Study in a Tuscan Vineyard
by Fabio De Francesco, Giovanni Mastrolonardo, Gregorio Fantoni, Fabrizio Ungaro and Silvia Baronti
Soil Syst. 2025, 9(3), 81; https://doi.org/10.3390/soilsystems9030081 - 19 Jul 2025
Viewed by 253
Abstract
Soil compaction from mechanized agriculture is a major concern, as frequent machinery use degrades soil structure, reduces porosity, and ultimately impairs crop productivity. Among potential mitigation strategies to enhance soil resilience to machinery-induced compaction, biochar has shown promise in laboratory settings but remains [...] Read more.
Soil compaction from mechanized agriculture is a major concern, as frequent machinery use degrades soil structure, reduces porosity, and ultimately impairs crop productivity. Among potential mitigation strategies to enhance soil resilience to machinery-induced compaction, biochar has shown promise in laboratory settings but remains untested under real field conditions. To address this, we monitored soil in a Tuscan vineyard where biochar was applied at 16 and 32 Mg ha−1, compared to control, on both flat and sloped plots. Soil compaction was induced by 20 passes of a wheeled orchard tractor. Soil bulk density (BD) was measured before, immediately after, and one year following the initial passes, during which 19 additional machine passes occurred as part of the vineyard’s routine agronomic management. Initial results showed a significant BD increase (up to 12.8%) across all treatments, though biochar significantly limited soil compaction, regardless of the applied dose. After one year, in which the soil underwent further compaction, BD further increased across all treatments (up to 20.2%), with the steepest increase observed on the sloped terrain. At this stage, the mitigating effect of biochar on soil compaction was no longer evident. Our findings suggest that biochar may offer some short-term relief from compaction, but further investigations are needed to clarify its long-term effectiveness under field conditions. Full article
(This article belongs to the Special Issue Research on Soil Management and Conservation: 2nd Edition)
Show Figures

Figure 1

41 pages, 9748 KiB  
Article
Wind Turbine Fault Detection Through Autoencoder-Based Neural Network and FMSA
by Welker Facchini Nogueira, Arthur Henrique de Andrade Melani and Gilberto Francisco Martha de Souza
Sensors 2025, 25(14), 4499; https://doi.org/10.3390/s25144499 - 19 Jul 2025
Viewed by 452
Abstract
Amid the global shift toward clean energy, wind power has emerged as a critical pillar of the modern energy matrix. To improve the reliability and maintainability of wind farms, this work proposes a novel hybrid fault detection approach that combines expert-driven diagnostic knowledge [...] Read more.
Amid the global shift toward clean energy, wind power has emerged as a critical pillar of the modern energy matrix. To improve the reliability and maintainability of wind farms, this work proposes a novel hybrid fault detection approach that combines expert-driven diagnostic knowledge with data-driven modeling. The framework integrates autoencoder-based neural networks with Failure Mode and Symptoms Analysis, leveraging the strengths of both methodologies to enhance anomaly detection, feature selection, and fault localization. The methodology comprises five main stages: (i) the identification of failure modes and their observable symptoms using FMSA, (ii) the acquisition and preprocessing of SCADA monitoring data, (iii) the development of dedicated autoencoder models trained exclusively on healthy operational data, (iv) the implementation of an anomaly detection strategy based on the reconstruction error and a persistence-based rule to reduce false positives, and (v) evaluation using performance metrics. The approach adopts a fault-specific modeling strategy, in which each turbine and failure mode is associated with a customized autoencoder. The methodology was first validated using OpenFAST 3.5 simulated data with induced faults comprising normal conditions and a 1% mass imbalance fault on a blade, enabling the verification of its effectiveness under controlled conditions. Subsequently, the methodology was applied to a real-world SCADA data case study from wind turbines operated by EDP, employing historical operational data from turbines, including thermal measurements and operational variables such as wind speed and generated power. The proposed system achieved 99% classification accuracy on simulated data detect anomalies up to 60 days before reported failures in real operational conditions, successfully identifying degradations in components such as the transformer, gearbox, generator, and hydraulic group. The integration of FMSA improves feature selection and fault localization, enhancing both the interpretability and precision of the detection system. This hybrid approach demonstrates the potential to support predictive maintenance in complex industrial environments. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

14 pages, 2459 KiB  
Article
Investigating the Correlation Between Corrosion-Induced Bolt Head Damage and Preload Loss Using Ultrasonic Testing
by Jay Shah, Hao Wang and Abhijit Mukherjee
Sensors 2025, 25(14), 4491; https://doi.org/10.3390/s25144491 - 19 Jul 2025
Viewed by 300
Abstract
The integrity of bolted components primarily relies on the quality of interfacial contact, which is achieved by maintaining prescribed bolt torque levels. However, challenges arise from corrosion-induced bolt head damage, potentially compromising the bolt preload, and quantifying such effects remains unanswered. Many studies [...] Read more.
The integrity of bolted components primarily relies on the quality of interfacial contact, which is achieved by maintaining prescribed bolt torque levels. However, challenges arise from corrosion-induced bolt head damage, potentially compromising the bolt preload, and quantifying such effects remains unanswered. Many studies often compare bolt corrosion’s effects to bolt loosening as both affect the interfacial contact stresses to some extent. This technical study aimed to investigate whether a correlation exists between the impact of bolt head damage and the different levels of bolt torque. Guided wave ultrasonic testing (UT) was implemented for this investigation. Laboratory experiments were conducted to monitor the transmission of ultrasonic signals across the bolted interface first during the bolt-tightening process. Once the highest bolt torque was achieved, the process was repeated for a simplified corrosion scenario, simulated by artificially damaging the bolt head in a controlled manner. The analysis focused on studying the transmission of signal energy for both scenarios. The findings revealed different trends for the signal energy transmission during bolt tightening, which are subjective to the inspection frequency. On the contrary, even at an advanced level of bolt head damage corresponding to 16% mass loss, no clear or monotonic trend was observed in the total transmitted energy. While the total energy remained relatively stable across all inspection frequencies, distinct waveform changes, such as energy redistribution and the emergence of additional wave packets, were observed. The findings emphasize the need for more advanced waveform-based analysis techniques to detect and interpret subtle changes caused by bolt degradation. Full article
Show Figures

Figure 1

Back to TopTop