Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (219)

Search Parameters:
Keywords = potential NPP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7292 KB  
Article
Revealing Nonlinear Relationships and Thresholds of Human Activities and Climate Change on Ecosystem Services in Anhui Province Based on the XGBoost–SHAP Model
by Lei Zhang, Xinmu Zhang, Shengwei Gao and Xinchen Gu
Sustainability 2025, 17(19), 8728; https://doi.org/10.3390/su17198728 - 28 Sep 2025
Viewed by 294
Abstract
Under the combined influence of global climate change and intensified human activities, ecosystem services (ESs) are undergoing substantial transformations. Identifying their nonlinear driving mechanisms is crucial for promoting regional sustainable development. Taking Anhui Province as a case study, this research evaluates the spatial [...] Read more.
Under the combined influence of global climate change and intensified human activities, ecosystem services (ESs) are undergoing substantial transformations. Identifying their nonlinear driving mechanisms is crucial for promoting regional sustainable development. Taking Anhui Province as a case study, this research evaluates the spatial patterns and temporal dynamics of six key ecosystem services from 2000 to 2020—namely, biodiversity maintenance (BM), carbon fixation (CF), crop production (CP), net primary productivity (NPP), soil retention (SR), and water yield (WY). The InVEST and CASA models were employed to quantify service values, and the XGBoost–SHAP framework was used to reveal the nonlinear response paths and threshold effects of dominant drivers. Results show a distinct “high in the south, low in the north” spatial gradient of ES across Anhui. Regulatory services such as BM, NPP, and WY are concentrated in the southern mountainous areas (high-value zones > 0.7), while CP is prominent in the northern and central agricultural zones (>0.8), indicating a clear spatial complementarity of service types. Over the two-decade period, areas with significant increases in NPP and CP accounted for 50% and 64%, respectively, suggesting notable achievements in ecological restoration and agricultural modernization. CF remained stable across 98.3% of the region, while SR and WY exhibited strong sensitivity to topography and precipitation. Temporal trend analysis indicated that NPP rose from 395.83 in 2000 to 537.59 in 2020; SR increased from 150.02 to 243.28; and CP rose from 203.18 to 283.78, reflecting an overall enhancement in ecosystem productivity and regulatory functions. Driver analysis identified precipitation (PRE) as the most influential factor for most services, while elevation (DEM) was particularly important for CF and NPP. Temperature (TEM) and potential evapotranspiration (PET) affected biomass formation and hydrothermal balance. SHAP analysis revealed key threshold effects, such as the peak positive contribution of PRE to NPP occurring near 1247 mm, and the optimal temperature for BM at approximately 15.5 °C. The human footprint index (HFI) exerted negative impacts on both BM and NPP, highlighting the suppressive effect of intensive anthropogenic disturbances on ecosystem functioning. Anhui’s ES exhibit a trend of multifunctional synergy, governed by the nonlinear coupling of climatic, hydrological, topographic, and anthropogenic drivers. This study provides both a modeling toolkit and quantitative evidence to support ecosystem restoration and service optimization in similar transitional regions. Full article
Show Figures

Figure 1

34 pages, 8683 KB  
Article
Shentong Zhuyu Decoction Alleviates Neuropathic Pain in Mice by Inhibiting the NMDAR-2B Receptor-Mediated CaMKII/CREB Signaling Pathway in GABAergic Neurons of the Interpeduncular Nucleus
by Ying Liu, Rujie Li, Haojie Cheng, Yuxin Wang, Jian Sun and Meiyu Zhang
Pharmaceuticals 2025, 18(10), 1456; https://doi.org/10.3390/ph18101456 - 28 Sep 2025
Viewed by 227
Abstract
Background: Shentong Zhuyu Decoction (STZYD) is a traditional Chinese medicine formula that has shown promise in alleviating neuropathic pain (NPP), yet its central mechanisms remain unclear. Methods: We investigated the STZYD effects on NPP using network pharmacology, in vivo assays, and [...] Read more.
Background: Shentong Zhuyu Decoction (STZYD) is a traditional Chinese medicine formula that has shown promise in alleviating neuropathic pain (NPP), yet its central mechanisms remain unclear. Methods: We investigated the STZYD effects on NPP using network pharmacology, in vivo assays, and analytical chemistry, focusing on molecular pathways and GABAergic neuronal modulation. Results: Network pharmacology revealed 254 potential STZYD targets enriched in calcium signaling and GABAergic synapse pathways, especially the NMDAR-2B/CaMKII/CREB axis. High-dose STZYD (1.25 g·mL−1) and ifenprodil (6 mg·kg−1) reversed hyperalgesia and anxiety-like behaviors in spared nerve injury (SNI) mice, and microdialysis showed that STZYD and ifenprodil reduced the glutamate, D-serine, aspartate, glycine, and gamma-aminobutyric acid levels in the interpeduncular nucleus (IPN). Immunofluorescence and fiber photometry showed reduced c-Fos expression and suppressed GCaMP signals in IPN GABAergic neurons, with chemogenetic experiments confirming their role in pain modulation. Multimodal molecular biology experiments demonstrated that STZYD and ifenprodil significantly downregulated the GluN2B, p-CaMKII, and p-CREB expressions within the IPN. We identified 145 constituents in STZYD through high-resolution mass spectrometry analysis, among which 40 were absorbed into plasma and 7 were able to cross the blood–brain barrier and accumulate in the IPN. Molecular docking revealed the strong binding of licoricesaponin K2 and senkyunolide F to NMDAR-2B. Conclusions: STZYD exerts dose-dependent antinociceptive effects by modulating IPN GABAergic neuronal activity through the inhibition of the NMDAR-2B-mediated CaMKII/CREB pathway. Full article
Show Figures

Graphical abstract

24 pages, 3200 KB  
Article
Prospecting Araucaria-Associated Yeasts for Second-Generation Biorefineries
by Anderson Giehl, Angela A. dos Santos, Larissa Werlang, Elisa A. A. Teixeira, Joana C. Lopes, Helen Treichel, Rubens T. D. Duarte, Carlos A. Rosa, Boris U. Stambuk and Sérgio L. Alves
Sustainability 2025, 17(18), 8134; https://doi.org/10.3390/su17188134 - 10 Sep 2025
Viewed by 695
Abstract
Native yeasts are a promising microbial resource for the development of sustainable biorefineries. In this study, we isolated 30 yeast strains from soil, decaying wood, and tree bark in a preserved Araucaria Forest in Southern Brazil and characterized them phenotypically and taxonomically. All [...] Read more.
Native yeasts are a promising microbial resource for the development of sustainable biorefineries. In this study, we isolated 30 yeast strains from soil, decaying wood, and tree bark in a preserved Araucaria Forest in Southern Brazil and characterized them phenotypically and taxonomically. All strains were able to grow on glucose, xylose, and cellobiose, and 50% of them could metabolize arabinose. Several isolates showed high growth rates on xylose (up to 0.47 h−1) and cellobiose (up to 0.45 h−1). Notably, 19 strains (63% of the analyzed yeasts) exhibited xylanase activity at 50 °C (up to 156.84 U/mL), and four strains (13%) showed significant cellulase production. β-Glucosidase activities were particularly high in permeabilized cells of CHAP-258, CHAP-277, and CHAP-278 (up to 584.33 U/mg DCW), with kinetic parameters indicating high enzymatic performance. Twelve strains (40% of the total) were classified as oleaginous, and three (10%) displayed both lipogenic and esterase activity. Lipase activity against p-nitrophenyl palmitate (pNPP) reached 55.55 U/mL in CHAP-260. Taxonomic identification revealed representatives of seven genera, including Meyerozyma, Papiliotrema, Scheffersomyces, and Sugiyamaella, with potential for biotechnological use. Overall, the biochemical diversity observed highlights the value of native yeasts from Araucaria Forests as biocatalysts for lignocellulose-based bioprocesses, particularly due to their ability to grow on pentoses, secrete hydrolytic enzymes, and accumulate lipids. Full article
Show Figures

Figure 1

24 pages, 7063 KB  
Article
An Improved InTEC Model for Estimating the Carbon Budgets in Eucalyptus Plantations
by Zhipeng Li, Mingxing Zhou, Kunfa Luo, Yunzhong Wu and Dengqiu Li
Remote Sens. 2025, 17(15), 2741; https://doi.org/10.3390/rs17152741 - 7 Aug 2025
Viewed by 417
Abstract
Eucalyptus has become a major plantation crop in southern China, with a carbon sequestration capacity significantly higher than that of other species. However, its long-term carbon sequestration capacity and regional-scale potential remain highly uncertain due to commonly applied short-rotation management practices. The InTEC [...] Read more.
Eucalyptus has become a major plantation crop in southern China, with a carbon sequestration capacity significantly higher than that of other species. However, its long-term carbon sequestration capacity and regional-scale potential remain highly uncertain due to commonly applied short-rotation management practices. The InTEC (Integrated Terrestrial Ecosystem Carbon) model is a process-based biogeochemical model that simulates carbon dynamics in terrestrial ecosystems by integrating physiological processes, environmental drivers, and management practices. In this study, the InTEC model was enhanced with an optimized eucalyptus module (InTECeuc) and a data assimilation module (InTECDA), and driven by multiple remote sensing products (Net Primary Productivity (NPP) and carbon density) to simulate the carbon budgets of eucalyptus plantations from 2003 to 2023. The results indicated notable improvements in the performance of the InTECeuc model when driven by different datasets: carbon density simulation showed improvements in R2 (0.07–0.56), reductions in MAE (5.99–28.51 Mg C ha−1), reductions in RMSE (8.1–31.85 Mg C ha−1), and improvements in rRMSE (12.37–51.82%), excluding NPPLin. The carbon density-driven InTECeuc model outperformed the NPP-driven model, with improvements in R2 (0.28), MAE (−8.15 Mg C ha−1), RMSE (−9.43 Mg C ha−1), and rRMSE (−15.34%). When the InTECDA model was employed, R2 values for carbon density improved by 0–0.03 (excluding ACDYan), with MAE reductions between 0.17 and 7.22 Mg C ha−1, RMSE reductions between 0.33 and 12.94 Mg C ha−1 and rRMSE improvements ranging from 0.51 to 20.22%. The carbon density-driven InTECDA model enabled the production of high-resolution and accurate carbon budget estimates for eucalyptus plantations from 2003 to 2023, with average NPP, Net Ecosystem Productivity (NEP), and Net Biome Productivity (NBP) values of 17.80, 10.09, and 9.32 Mg C ha−1 yr−1, respectively, offering scientific insights and technical support for the management of eucalyptus plantations in alignment with carbon neutrality targets. Full article
Show Figures

Figure 1

32 pages, 4311 KB  
Article
Proteomics-Based Prediction of Candidate Effectors in the Interaction Secretome of Trichoderma harzianum and Pseudocercospora fijiensis
by Jewel Nicole Anna Todd, Karla Gisel Carreón-Anguiano, Gabriel Iturriaga, Roberto Vázquez-Euán, Ignacio Islas-Flores, Miguel Tzec-Simá, Miguel Ángel Canseco-Pérez, César De Los Santos-Briones and Blondy Canto-Canché
Microbiol. Res. 2025, 16(8), 175; https://doi.org/10.3390/microbiolres16080175 - 1 Aug 2025
Viewed by 788
Abstract
Microbe–microbe interactions have been explored at the molecular level to a lesser degree than plant–pathogen interactions, primarily due to the economic impact of crop losses caused by pathogenic microorganisms. Effector proteins are well known for their role in disease development in many plant–pathogen [...] Read more.
Microbe–microbe interactions have been explored at the molecular level to a lesser degree than plant–pathogen interactions, primarily due to the economic impact of crop losses caused by pathogenic microorganisms. Effector proteins are well known for their role in disease development in many plant–pathogen pleinteractions, but there is increasing evidence showing their involvement in other types of interaction, including microbe–microbe interactions. Through the use of LC-MS/MS sequencing, effector candidates were identified in the in vitro interaction between a banana pathogen, Pseudocercospora fijiensis and a biological control agent, Trichoderma harzianum. The diverse interaction secretome revealed various glycoside hydrolase families, proteases and oxidoreductases. T. harzianum secreted more proteins in the microbial interaction compared to P. fijiensis, but its presence induced the secretion of more P. fijiensis proteins that were exclusive to the interaction secretome. The interaction secretome, containing 256 proteins, was screened for effector candidates using the algorithms EffHunter and WideEffHunter. Candidates with common fungal effector motifs and domains such as LysM, Cerato-platanin, NPP1 and CFEM, among others, were identified. Homologs of true effectors and virulence factors were found in the interaction secretome of T. harzianum and P. fijiensis. Further characterization revealed a potential novel effector of T. harzianum. Full article
Show Figures

Figure 1

23 pages, 3216 KB  
Article
Spatial Prediction and Environmental Response of Skipjack Tuna Resources from the Perspective of Geographic Similarity: A Case Study of Purse Seine Fisheries in the Western and Central Pacific
by Shuyang Feng, Xiaoming Yang, Menghao Li, Zhoujia Hua, Siquan Tian and Jiangfeng Zhu
J. Mar. Sci. Eng. 2025, 13(8), 1444; https://doi.org/10.3390/jmse13081444 - 29 Jul 2025
Viewed by 566
Abstract
Skipjack tuna constitutes a crucial fishery resource in the Western and Central Pacific Ocean (WCPO) purse seine fishery, with high economic value and exploitation potential. It also serves as an essential subject for studying the interaction between fishery resource dynamics and marine ecosystems, [...] Read more.
Skipjack tuna constitutes a crucial fishery resource in the Western and Central Pacific Ocean (WCPO) purse seine fishery, with high economic value and exploitation potential. It also serves as an essential subject for studying the interaction between fishery resource dynamics and marine ecosystems, as its resource abundance is significantly influenced by marine environmental factors. Skipjack tuna can be categorized into unassociated schools and associated schools, with the latter being predominant. Overfishing of the associated schools can adversely affect population health and the ecological environment. In-depth exploration of the spatial distribution responses of these two fish schools to environmental variables is significant for the rational development and utilization of tuna resources and for enhancing the sustainability of fishery resources. In sparsely sampled and complex marine environments, geographic similarity methods effectively predict tuna resources by quantifying local fishing ground environmental similarities. This study introduces geographical similarity theory. This study focused on 1° × 1° fishery data (2004–2021) released by the Western and Central Pacific Fisheries Commission (WCPFC) combined with relevant marine environmental data. We employed Geographical Convergent Cross Mapping (GCCM) to explore significant environmental factors influencing catch and variations in causal intensity and employed a Geographically Optimal Similarity (GOS) model to predict the spatial distribution of catch for the two types of tuna schools. The research findings indicate that the following: (1) Sea surface temperature (SST), sea surface salinity (SSS), and net primary productivity (NPP) are key factors in GCCM model analysis, significantly influencing the catch of two fish schools. (2) The GOS model exhibits higher prediction accuracy and stability compared to the Generalized Additive Model (GAM) and the Basic Configuration Similarity (BCS) model. R2 values reaching 0.656 and 0.649 for the two types of schools, respectively, suggest that the geographical similarity method has certain applicability and application potential in the spatial prediction of fishery resources. (3) Uncertainty analysis revealed more stable predictions for unassociated schools, with 72.65% of the results falling within the low-uncertainty range (0.00–0.25), compared to 52.65% for associated schools. This study, based on geographical similarity theory, elucidates differential spatial responses of distinct schools to environmental factors and provides a novel approach for fishing ground prediction. It also provides a scientific basis for the dynamic assessment and rational exploitation and utilization of skipjack tuna resources in the Pacific Ocean. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

22 pages, 3160 KB  
Article
Monthly Urban Electricity Power Consumption Prediction Using Nighttime Light Remote Sensing: A Case Study of the Yangtze River Delta Urban Agglomeration
by Shuo Chen, Dongmei Yan, Cuiting Li, Jun Chen, Jun Yan and Zhe Zhang
Remote Sens. 2025, 17(14), 2478; https://doi.org/10.3390/rs17142478 - 17 Jul 2025
Viewed by 649
Abstract
Urban electricity power consumption (EPC) prediction plays a crucial role in urban management and sustainable development. Nighttime light (NTL) remote sensing imagery has demonstrated significant potential in estimating urban EPC due to its strong correlation with human activities and energy use. However, most [...] Read more.
Urban electricity power consumption (EPC) prediction plays a crucial role in urban management and sustainable development. Nighttime light (NTL) remote sensing imagery has demonstrated significant potential in estimating urban EPC due to its strong correlation with human activities and energy use. However, most existing models focus on annual-scale estimations, limiting their ability to capture month-scale EPC. To address this limitation, a novel monthly EPC prediction model that incorporates monthly average temperature, and the interaction between NTL data and temperature was proposed in this study. The proposed method was applied to cities within the Yangtze River Delta (YRD) urban agglomeration, and was validated using datasets constructed from NPP/VIIRS and SDGSAT-1 satellite imageries, respectively. For the NPP/VIIRS dataset, the proposed method achieved a Mean Absolute Relative Error (MARE) of 7.96% during the training phase (2017–2022) and of 10.38% during the prediction phase (2023), outperforming the comparative methods. Monthly EPC spatial distribution maps from VPP/VIIRS data were generated, which not only reflect the spatial patterns of EPC but also clearly illustrate the temporal evolution of EPC at the spatial level. Annual EPC estimates also showed superior accuracy compared to three comparative methods, achieving a MARE of 7.13%. For the SDGSAT-1 dataset, leave-one-out cross-validation confirmed the robustness of the model, and high-resolution (40 m) monthly EPC maps were generated, enabling the identification of power consumption zones and their spatial characteristics. The proposed method provides a timely and accurate means for capturing monthly EPC dynamics, effectively supporting the dynamic monitoring of urban EPC at the monthly scale in the YRD urban agglomeration. Full article
Show Figures

Graphical abstract

16 pages, 805 KB  
Review
Heparin, Heparin-like Molecules, and Heparin Mimetics in Breast Cancer: A Concise Review
by Diego R. Gatica Portillo, Yishu Li, Navneet Goyal, Brian G. Rowan, Rami A. Al-Horani and Muralidharan Anbalagan
Biomolecules 2025, 15(7), 1034; https://doi.org/10.3390/biom15071034 - 17 Jul 2025
Viewed by 967
Abstract
Heparin and heparan sulfate are essential in various biological processes relevant to cancer biology and pathology. Given the clinical importance of breast cancer, it is of high interest to seek more effective and safer treatment. The application of heparins (UFH, LMWH, ULMWH, fondaparinux) [...] Read more.
Heparin and heparan sulfate are essential in various biological processes relevant to cancer biology and pathology. Given the clinical importance of breast cancer, it is of high interest to seek more effective and safer treatment. The application of heparins (UFH, LMWH, ULMWH, fondaparinux) and heparin mimetics as potential treatments is particularly interesting. Their use led to promising results in various breast cancer models by exhibiting anti-angiogenic and anti-metastatic properties. This article concisely reviews studies involving heparins and mimetics in both in vitro and in vivo breast cancer settings. We highlight molecules, conjugates, delivery systems, and combinations involving heparin or its mimetics. We also survey several potential biological targets such as VEGF, FGF-2, TGFβ-1, PDGF-B, NPP-1, CXCL12-CXCR4 axis, and CCR7-CCL21 axis. Overall, heparins and their mimetics, conjugates, and combinations represent a powerful strategy to effectively and safely treat breast cancer, which is the most common cancer diagnosed in women worldwide and the fifth leading cause of cancer-related deaths worldwide. Full article
(This article belongs to the Special Issue Advances in Glycosaminoglycans (GAGs) and Mimetics)
Show Figures

Figure 1

20 pages, 2217 KB  
Article
Organic Nitrogen Substitution Enhances Carbon Sequestration but Increases Greenhouse Gas Emissions in Maize Cropping Systems
by Yanan Liu, Xiaoqing Zhao, Yuchen Cheng, Rui Xie, Tiantian Meng, Liyu Chen, Yongfeng Ren, Chunlei Xue, Kun Zhao, Shuli Wei, Jing Fang, Xiangqian Zhang, Fengcheng Sun and Zhanyuan Lu
Agronomy 2025, 15(7), 1703; https://doi.org/10.3390/agronomy15071703 - 15 Jul 2025
Viewed by 717
Abstract
Excessive chemical fertilizers degrade soil and increase greenhouse gas (GHG) emissions. Organic substitution of nitrogen fertilizers is recognized as a sustainable agricultural-management practice, yet its dual role in carbon sequestration and emissions renders the net GHG balance (NGHGB) uncertain. To assess the GHG [...] Read more.
Excessive chemical fertilizers degrade soil and increase greenhouse gas (GHG) emissions. Organic substitution of nitrogen fertilizers is recognized as a sustainable agricultural-management practice, yet its dual role in carbon sequestration and emissions renders the net GHG balance (NGHGB) uncertain. To assess the GHG mitigation potential of organic substitution strategies, this study analyzed GHG fluxes, soil organic carbon (SOC) dynamics, indirect GHG emissions, and Net Primary Productivity (NPP) based on a long-term field positioning experiment initiated in 2016. Six fertilizer regimes were systematically compared: no fertilizer control (CK); only phosphorus and potassium fertilizer (PK); total chemical fertilizer (NPK); 1/3 chemical N substituted with sheep manure (OF1); dual substitution protocol with 1/6 chemical N substituted by sheep manure and 1/6 substituted by straw-derived N (OF2); complete chemical N substitution with sheep manure (OF3). The results showed that OF1 and OF2 maintained crop yields similar to those under NPK, whereas OF3 reduced yield by over 10%; relative to NPK, OF1, OF2, and OF3 significantly increased SOC sequestration rates by 50.70–149.20%, reduced CH4 uptake by 7.9–70.63%, increased CO2 emissions by 1.4–23.9%, decreased N2O fluxes by 3.6–56.2%, and mitigated indirect GHG emissions from farm inputs by 24.02–63.95%. The NGHGB was highest under OF1, 9.44–23.99% greater than under NPK. These findings demonstrate that partial organic substitution increased carbon sequestration, maintained crop yields, whereas high substitution rates increase the risk of carbon emissions. The study results indicate that substituting 1/3 of chemical nitrogen with sheep manure in maize cropping systems represents an effective fertilizer management approach to simultaneously balance productivity and ecological sustainability. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

17 pages, 2373 KB  
Article
Analytical Workflow for Tracking Aquatic Biomass Responses to Sea Surface Temperature Changes
by Teodoro Semeraro, Jessica Titocci, Lorenzo Liberatore, Flavio Monti, Francesco De Leo, Gianmarco Ingrosso, Milad Shokri and Alberto Basset
Environments 2025, 12(7), 210; https://doi.org/10.3390/environments12070210 - 20 Jun 2025
Viewed by 640
Abstract
Ocean ecosystem services provisioning is driven by phytoplankton, which form the base of the ocean food chain in aquatic ecosystems and play a critical role as the Earth‘s carbon sink. Phytoplankton is highly sensitive to temperature, making it vulnerable to the effects of [...] Read more.
Ocean ecosystem services provisioning is driven by phytoplankton, which form the base of the ocean food chain in aquatic ecosystems and play a critical role as the Earth‘s carbon sink. Phytoplankton is highly sensitive to temperature, making it vulnerable to the effects of temperature variations. The aim of this research was to develop and test a workflow analysis to monitor the impact of sea surface temperature (SST) on phytoplankton biomass and primary production by combining field and remote sensing data of Chl-a and net primary production (NPP) (as proxies of phytoplankton biomass). The tropical zone was used as a case study to test the procedure. Firstly, machine learning algorithms were applied to the field data of SST, Chl-a and NPP, showing that the Random Forest was the most effective in capturing the dataset’s patterns. Secondly, the Random Forest algorithm was applied to MODIS SST images to build Chl-a and NPP time series. The time series analysis showed a significant increase in SST which corresponded to a significant negative trend in Chl-a concentrations and NPP variation. The recurrence plot of the time series revealed significant disruptions in Chl-a and NPP evolutions, potentially linked to El Niño–Southern Oscillation (ENSO) events. Therefore, the analysis can help to highlight the effects of temperature variation on Chl-a and NPP, such as the long-term evolution of the trend and short perturbation events. The methodology, starting from local studies, can support broader spatial–temporal-scale studies and provide insights into future scenarios. Full article
Show Figures

Figure 1

19 pages, 1325 KB  
Article
Identifying and Prioritizing Climate-Related Natural Hazards for Nuclear Power Plants in Korea Using Delphi
by Dongchang Kim, Shinyoung Kwag, Minkyu Kim, Raeyoung Jung and Seunghyun Eem
Sustainability 2025, 17(12), 5400; https://doi.org/10.3390/su17125400 - 11 Jun 2025
Viewed by 697
Abstract
Climate change is projected to increase the intensity and frequency of natural hazards such as heat waves, extreme rainfall, heavy snowfall, typhoons, droughts, floods, and cold waves, potentially impacting the operational safety of critical infrastructure, including nuclear power plants (NPPs). Although quantitative indicators [...] Read more.
Climate change is projected to increase the intensity and frequency of natural hazards such as heat waves, extreme rainfall, heavy snowfall, typhoons, droughts, floods, and cold waves, potentially impacting the operational safety of critical infrastructure, including nuclear power plants (NPPs). Although quantitative indicators exist to screen-out natural hazards at NPPs, comprehensive methodologies for assessing climate-related hazards remain underdeveloped. Furthermore, given the variability and uncertainty of climate change, it is realistically and resource-wise difficult to evaluate all potential risks quantitatively. Using a structured expert elicitation approach, this study systematically identifies and prioritizes climate-related natural hazards for Korean NPPs. An iterative Delphi survey involving 42 experts with extensive experience in nuclear safety and systems was conducted and also evaluated using the best–worst scaling (BWS) method for cross-validation to enhance the robustness of the Delphi priorities. Both methodologies identified extreme rainfall, typhoons, marine organisms, forest fires, and lightning as the top five hazards. The findings provide critical insights for climate resilience planning, inform vulnerability assessments, and support regulatory policy development to mitigate climate-induced risks to Korean nuclear power plants. Full article
Show Figures

Figure 1

19 pages, 2957 KB  
Article
Carbon, Water, and Light Use Efficiency Under Conservation Practice on Sloped Arable Land
by Gergana Kuncheva, Atanas Z. Atanasov, Milena Kercheva, Margaritka Filipova, Plamena D. Nikolova, Petar Nikolov, Valentin Vlăduț and Veselin Dochev
Resources 2025, 14(6), 87; https://doi.org/10.3390/resources14060087 - 23 May 2025
Viewed by 995
Abstract
Agroecosystems play a key role in the global carbon cycle, with CO2 exchange driven by photosynthesis and respiration. Indicators such as gross primary productivity (GPP), net primary productivity (NPP), and carbon, water, and light use efficiency (CUE, WUE, LUE) are essential for [...] Read more.
Agroecosystems play a key role in the global carbon cycle, with CO2 exchange driven by photosynthesis and respiration. Indicators such as gross primary productivity (GPP), net primary productivity (NPP), and carbon, water, and light use efficiency (CUE, WUE, LUE) are essential for assessing resource use in agricultural systems. Conventional tillage depletes carbon, water, and nutrients, negatively impacting the environment, while conservation practices aim to improve soil health and biodiversity. This study evaluated the effects of a cover crop in a wheat–maize rotation on sloped arable land prone to water erosion. The experiment involved minimum contour tillage combined with cover cropping, and its impact on carbon balance components and resource use efficiency was assessed. The results demonstrated that the inclusion of a cover crop significantly improved GPP and NPP. Water and light use efficiency also increased, particularly in 2022 and 2023, which were characterized by summer drought. However, carbon use efficiency remained unchanged over the study period. These findings highlight the potential of conservation practices, such as cover cropping and reduced tillage, to enhance productivity and resource efficiency in sloped agricultural landscapes under water stress conditions. Full article
Show Figures

Figure 1

25 pages, 2300 KB  
Article
Discovery and Genome Characterization of Three New Rhabdoviruses Infecting Passiflora spp. in Brazil
by Andreza Henrique Vidal, Ana Clara Rodrigues Abreu, Jorge Flávio Sousa Dantas-Filho, Monique Jacob Xavier Vianna, Cristiano Lacorte, Emanuel Felipe Medeiros Abreu, Gustavo Pereira Felix, Dione Mendes Teixeira Alves-Freitas, Bruna Pinheiro-Lima, Isadora Nogueira, Fabio Gelape Faleiro, Raul Castro Carriello Rosa, Onildo Nunes Jesus, Marcio Martinello Sanches, Yam Sousa Santos, Rosana Blawid, José Leonardo Santos Jiménez, Maite Freitas Silva Vaslin, Elliot Watanabe Kitajima, Magnolia de Araujo Campos, Rafaela Salgado Fontenele, Arvind Varsani, Fernando Lucas Melo and Simone Graça Ribeiroadd Show full author list remove Hide full author list
Viruses 2025, 17(5), 725; https://doi.org/10.3390/v17050725 - 19 May 2025
Viewed by 966
Abstract
This study aimed to explore the RNA viruses affecting Passiflora species in Brazil. Our results enhance the understanding of the viruses that infect Passiflora plants by identifying and characterizing three previously unrecognized viruses: Passiflora cytorhabdovirus (PFCV), Passiflora nucleorhabdovirus 1 (PaNV1), and Passiflora nucleorhabdovirus [...] Read more.
This study aimed to explore the RNA viruses affecting Passiflora species in Brazil. Our results enhance the understanding of the viruses that infect Passiflora plants by identifying and characterizing three previously unrecognized viruses: Passiflora cytorhabdovirus (PFCV), Passiflora nucleorhabdovirus 1 (PaNV1), and Passiflora nucleorhabdovirus 2 (PaNV2). These rhabdoviruses were identified through high-throughput sequencing and validated by reverse transcription-polymerase chain reaction (RT-PCR) in various Passiflora species. PFCV has a genome organization 3′-N-P-P3-P4-M-G-P7-L-5′ and was classified as a novel member of the Gammacytorhabdovirus genus. A particularly noteworthy feature of PFCV is its glycoprotein, as the genomes of other gammarhabdoviruses do not contain this gene. PFCV has a high incidence across multiple locations and was identified in plants from Northeastern, Central, and Southeastern Brazil. PaNV1 with genome structure 3′-N-P-P3-M-G-L-5′ and PaNV2 with genome organization 3′-N-X-P-Y-M-G-L-5′ are new members of the Alphanucleorhabdovirus genus and have a more restricted occurrence. Importantly, all three viruses were found in mixed infections alongside at least one other virus. In situ observations confirmed mixed infections, with PaNV2 particles co-located in tissues with a potyvirus and a carlavirus. Phylogenetic and glycoprotein sequence similarity network analysis provided insights into their evolutionary placement and potential vector associations. These findings expand the known diversity of rhabdoviruses in Passiflora and contribute to the understanding of their evolution and epidemiology. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

19 pages, 11465 KB  
Article
Scots Pine at Its Southern Range in Siberia: A Combined Drought and Fire Influence on Tree Vigor, Growth, and Regeneration
by Viacheslav I. Kharuk, Il’ya A. Petrov, Alexander S. Shushpanov, Sergei T. Im and Sergei O. Ondar
Forests 2025, 16(5), 819; https://doi.org/10.3390/f16050819 - 14 May 2025
Viewed by 619
Abstract
Climate models have predicted changes in woody plant growth, vitality, and species distribution. Those changes are expected mainly within the boundaries of species ranges. We studied the influence of changing hydrothermal and burning-rate regimes on relict pine stands at the southern edge of [...] Read more.
Climate models have predicted changes in woody plant growth, vitality, and species distribution. Those changes are expected mainly within the boundaries of species ranges. We studied the influence of changing hydrothermal and burning-rate regimes on relict pine stands at the southern edge of the Pinus sylvestris range in Siberia. We hypothesize that (1) warming has stimulated pine growth under conditions of sufficient moisture supply, and (2) increased burning rate has threatened forest viability. We found that the increase in air temperature, combined with the decrease in soil and air drought, stimulated tree growth. Since the “warming restart” around 2000, the growth index (GI) of pines has exceeded its historical value by 1.4 times. The GI strongly correlates with the GPP and NPP of pine stands (r = 0.82). Despite the increased fire rate, the GPP/NPP and EVI index of both pine stands and surrounding bush–steppes are increasing, i.e., the pine habitat is “greening” since the warming restart. These results support the prediction (by climatic scenarios SSP4.5, SSP7.0, and SSP8.5) of improvement in tree habitat in the Siberian South. Meanwhile, warming has led to a reduction in the fire-return interval (up to 3–5 y). Although the post-fire density of seedlings on burns (ca. 10,000 per ha) is potentially sufficient for pine forest recovery, repeated surface fires have eliminated the majority of the undergrowth and afforestation. In a changing climate, the preservation of relict pine forests depends on a combination of moisture supply, burning rate, and fire suppression. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

20 pages, 4567 KB  
Article
Changes in Net Primary Productivity in the Wuyi Mountains of Southern China from 2000 to 2022
by Yanrong Yang, Qianqian Li, Shuang Wang, Yirong Zhang, Weifeng Wang and Chenhui Zhang
Forests 2025, 16(5), 809; https://doi.org/10.3390/f16050809 - 13 May 2025
Viewed by 550
Abstract
Forest carbon sinks have faced significant challenges with the accelerating warming trend in the 21st century. Net primary productivity (NPP) serves as a critical indicator of the carbon cycle in forest ecosystems and is intricately influenced by both human activities and climate change. [...] Read more.
Forest carbon sinks have faced significant challenges with the accelerating warming trend in the 21st century. Net primary productivity (NPP) serves as a critical indicator of the carbon cycle in forest ecosystems and is intricately influenced by both human activities and climate change. This study focuses on the subtropical Southern Forests of China as the research object, using the Wuyi Mountains as a representative study area. The positive and negative contributions of ecologically oriented human activities driven by China’s forestry construction over the past few decades were investigated along with potential extreme climate factors affecting the forest NPP from an altitude gradient perspective and regional-scale forest NPP changes from a novel viewpoint. MODIS NPP, climate, and land use data, along with a vegetation type transfer matrix and statistical methods, were utilized for this purpose. The results are summarized as follows. (1) From 2000 to 2022, NPP in the Wuyi Mountains exhibited a high distribution pattern in the northeastern and southern areas and a low distribution pattern in the central region, with a weak overall increase and an average annual growth increment of only 0.11 gC·m−2·year−1. NPP increased with altitude, with a mean growth rate of 5.0 gC·m−2·hm−1. Notably, the growth rate of NPP was most pronounced in the altitude range below 298 m in both temporal and vertical dimensions. (2) In the context of China’s long-term Forestry Ecological Engineering Projects and Natural Forest Protection Projects, as well as climate warming, the transformation of vegetation types from relatively low NPP types to high NPP types in the Wuyi Mountains has resulted in a total NPP increase of 211.58 GgC over the past 23 years. Specifically, only the altitude range below 298 m showed negative vegetation type transformation, leading to an NPP decrease of 119.44 GgC. The expansion of urban and built-up lands below 500 m over the 23-year period reduced NPP by 147.92 GgC. (3) The climatic factors inhibiting NPP in the Wuyi Mountains were extreme nighttime high temperatures from June to September, which significantly weakened the NPP of evergreen broadleaf forests above 500 m in elevation. This inhibitory effect still resulted in a reduction of 127.36 GgC in the NPP of evergreen broadleaf forests within this altitude range, despite a cumulative increment in the area of evergreen broadleaf forests above 500 m over the past 23 years. In conclusion, the growth in NPP in the southern inland subtropical regions of China slowed after 2000, primarily due to the significant rise in nighttime extreme high temperatures and the expansion of human-built areas in the region. This study provides valuable data support for the adaptation of subtropical forests to climate change. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

Back to TopTop