Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = potassium feldspar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6856 KiB  
Article
Selection of Optimal Parameters for Chemical Well Treatment During In Situ Leaching of Uranium Ores
by Kuanysh Togizov, Zhiger Kenzhetaev, Akerke Muzapparova, Shyngyskhan Bainiyazov, Diar Raushanbek and Yuliya Yaremkiv
Minerals 2025, 15(8), 811; https://doi.org/10.3390/min15080811 (registering DOI) - 31 Jul 2025
Viewed by 168
Abstract
The aim of this study was to improve the efficiency of in situ uranium leaching by developing a specialized methodology for selecting rational parameters for the chemical treatment of production wells. This approach was designed to enhance the filtration properties of ores and [...] Read more.
The aim of this study was to improve the efficiency of in situ uranium leaching by developing a specialized methodology for selecting rational parameters for the chemical treatment of production wells. This approach was designed to enhance the filtration properties of ores and extend the uninterrupted operation period of wells, considering the clay content of the productive horizon, the geological characteristics of the ore-bearing layer, and the composition of precipitation-forming materials. The mineralogical characteristics of ore and precipitate samples formed during the in situ leaching of uranium under various mining and geological conditions at a uranium deposit in the Syrdarya depression were identified using an X-ray diffraction analysis. It was established that ores of the Santonian stage are relatively homogeneous and consist mainly of quartz. During well operation, the precipitates formed are predominantly gypsum, which has little impact on the filtration properties of the ore. Ores of the Maastrichtian stage are less homogeneous and mainly composed of quartz and smectite, with minor amounts of potassium feldspar and kaolinite. The leaching of these ores results in the formation of gypsum with quartz impurities, which gradually reduces the filtration properties of the ore. Ores of the Campanian stage are heterogeneous, consisting mainly of quartz with varying proportions of clay minerals and gypsum. The leaching of these ores generates a variety of precipitates that significantly reduce the filtration properties of the productive horizon. Effective compositions and concentrations of decolmatant (clog removal) solutions were selected under laboratory conditions using a specially developed methodology and a TESCAN MIRA scanning electron microscope. Based on a scanning electron microscope analysis of the samples, the effectiveness of a decolmatizing solution based on hydrochloric and hydrofluoric acids (taking into account the concentration of the acids in the solution) was established for the destruction of precipitate formation during the in situ leaching of uranium. Geological blocks were ranked by their clay content to select rational parameters of decolmatant solutions for the efficient enhancement of ore filtration properties and the prevention of precipitation formation. Pilot-scale testing of the selected decolmatant parameters under various mining and geological conditions allowed the optimal chemical treatment parameters to be determined based on the clay content and the composition of precipitates in the productive horizon. An analysis of pilot well trials using the new approach showed an increase in the uninterrupted operational period of wells by 30%–40% under average mineral acid concentrations and by 25%–45% under maximum concentrations with surfactant additives in complex geological settings. As a result, an effective methodology for ranking geological blocks based on their ore clay content and precipitate composition was developed to determine the rational parameters of decolmatant solutions, enabling a maximized filtration performance and an extended well service life. This makes it possible to reduce the operating costs of extraction, control the geotechnological parameters of uranium well mining, and improve the efficiency of the in situ leaching of uranium under complex mining and geological conditions. Additionally, the approach increases the environmental and operational safety during uranium ore leaching intensification. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

30 pages, 7220 KiB  
Article
Automated Hyperspectral Ore–Waste Discrimination for a Gold Mine: Comparative Study of Data-Driven and Knowledge-Based Approaches in Laboratory and Field Environments
by Mehdi Abdolmaleki, Saleh Ghadernejad and Kamran Esmaeili
Minerals 2025, 15(7), 741; https://doi.org/10.3390/min15070741 - 16 Jul 2025
Viewed by 380
Abstract
Hyperspectral imaging has been increasingly used in mining for detailed mineral characterization and enhanced ore–waste discrimination, which is essential for optimizing resource extraction. However, the full deployment of this technology still faces challenges due to the variability of field conditions and the spectral [...] Read more.
Hyperspectral imaging has been increasingly used in mining for detailed mineral characterization and enhanced ore–waste discrimination, which is essential for optimizing resource extraction. However, the full deployment of this technology still faces challenges due to the variability of field conditions and the spectral complexity inherent in real-world mining environments. In this study, we compare the performance of two approaches for ore–waste discrimination in both laboratory and actual mine site conditions: (i) a data-driven feature extraction (FE) method and (ii) a knowledge-based mineral mapping method. Rock samples, including ore and waste from an open-pit gold mine, were obtained and scanned using a hyperspectral imaging system under laboratory conditions. The FE method, which quantifies the frequency absorption peaks at different wavelengths for a given rock sample, was used to train three discriminative models using the random forest classifier (RFC), support vector classification (SVC), and K-nearest neighbor classifier (KNNC) algorithms, with RFC achieving the highest performance with an F1-score of 0.95 for the laboratory data. The mineral mapping method, which quantifies the presence of pyrite, calcite, and potassium feldspar based on prior geochemical analysis, yielded an F1-score of 0.78 for the ore class using the RFC algorithm. In the next step, the performance of the developed discriminative models was tested using hyperspectral data of two muck piles scanned in the open-pit gold mine. The results demonstrated the robustness of the mineral mapping method under field conditions compared to the FE method. These results highlight hyperspectral imaging as a valuable tool for improving ore-sorting efficiency in mining operations. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

26 pages, 9198 KiB  
Article
The Exotic Igneous Clasts Attributed to the Cuman Cordillera: Insights into the Makeup of a Cadomian/Pan-African Basement Covered by the Moldavides of the Eastern Carpathians, Romania
by Sarolta Lőrincz, Marian Munteanu, Ştefan Marincea, Relu Dumitru Roban, Valentina Maria Cetean, George Dincă and Mihaela Melinte-Dobrinescu
Geosciences 2025, 15(7), 256; https://doi.org/10.3390/geosciences15070256 - 3 Jul 2025
Viewed by 304
Abstract
The Eastern Carpathians are thrust to the east and north over their Eastern European foreland, tectonically covering it over an area several hundred kilometers across. Information about the nature of the underthrust part of the Carpathian foreland can be obtained from the rock [...] Read more.
The Eastern Carpathians are thrust to the east and north over their Eastern European foreland, tectonically covering it over an area several hundred kilometers across. Information about the nature of the underthrust part of the Carpathian foreland can be obtained from the rock fragments preserved in the sedimentary successions of the Carpathian fold and thrust belt, specifically in the Outer Dacides and the Moldavides. Fragments of felsic rocks occurring within the sedimentary units of the Upper Cretaceous successions of the Moldavides have long been attributed to the Cuman Cordillera—an intrabasinal ridge in the Eastern Outer Carpathians. This work is the first complex geochemical and geochronological study on the exotic igneous clasts of the Cuman Cordillera. Igneous clasts from the southern part of the Moldavides (Variegated clay nappe/formation) are investigated here. They include mainly granites and rhyolites. Phaneritic rocks are composed of cumulus plagioclase, albite, amphibole and biotite, and intercumulus quartz and potassium feldspar, with apatite, magnetite, sphene, and zircon as main accessories, while the porphyritic rocks have a mineral assemblage similar to that mentioned above, displayed in a porphyritic texture with a usually crystallized groundmass. SHRIMP U-Pb zircon dating indicated the 583–597 Ma age interval for magma crystallization. Based on calcareous nannofossils, the depositional age of the investigated igneous clasts is Cenomanian to Maastrichtian, implying that the Cuman Cordillera was an emerged piece of land, herein an active source of sediments in the flysch basin for at least 40 Ma, from the Early Cretaceous (Aptian) to the Late Cretaceous (Maastrichtian). The intrusive and subvolcanic rocks show similar trends for trace and major elements, evincing their comagmatic nature. The enrichment in LILE and LREE relative to HFSE and HREE, as well as the element anomalies (e.g., negative Nb, Ta, and Eu and positive Rb, Ba, K, and Pb) suggest a convergent continental plate margin tectonic setting. Mineral chemistry suggests magma crystallization in relatively oxic conditions (magnetite series), during ascent within a depth of 15 km to 5 km. The igneous rocks attributed to the Cuman ridge display compositional and geochronological features similar to Brno and Thaya batholiths in the Brunovistulian terrane, which could be a piece of the Carpathian foreland not covered by the Tertiary thrusts. Our data confirm the non-Carpathian origin of the igneous clasts, revealing a Neoproterozoic history of the Carpathian foreland units, which include a Cadomian/Pan-African continental arc, exposed mainly during the Late Cretaceous as an intrabasinal island of the Alpine Tethys, traditionally known as the Cuman Cordillera. Full article
Show Figures

Figure 1

22 pages, 7336 KiB  
Article
The Formation Process and Mechanism of Total Activated Potassium During the Preparation of Si–Ca–K–Mg Fertilizer from Molybdenum Tailings
by Tuanliu Hu, Yifan Li, Aihua Xiang, Xinglan Li and Kun Liu
Minerals 2025, 15(5), 450; https://doi.org/10.3390/min15050450 - 26 Apr 2025
Viewed by 343
Abstract
Silicon–calcium–potassium–magnesium fertilizer (Si–Ca–K–Mg fertilizer), a critical acidic soil conditioner for remediating polluted acidic soils, encounters a significant challenge: substantial potassium loss through flue gas during high–temperature calcination, which increases production costs. This study optimized the blending ratio of molybdenum tailings (MTs) with CaCO [...] Read more.
Silicon–calcium–potassium–magnesium fertilizer (Si–Ca–K–Mg fertilizer), a critical acidic soil conditioner for remediating polluted acidic soils, encounters a significant challenge: substantial potassium loss through flue gas during high–temperature calcination, which increases production costs. This study optimized the blending ratio of molybdenum tailings (MTs) with CaCO3 and CaSO4, systematically investigating the interplay between clinker–soluble potassium, volatile potassium loss, and total activated potassium content during calcination. Key findings include the large–scale utilization of molybdenum tailings; a mass ratio of mMTs:mCaCO3:mCaSO4 = 1:0.5:1.0 leads to a total activated K2O content of 3.05 wt.%. Enhancing nutrient efficiency by increasing the proportion of additives (with a mass ratio of 1:0.7:0.4) results in a total activated K2O content of 4.50 wt.%, which is 1.5 times the national standard. Mechanistically, calcination decomposes potassium feldspar (K–feldspar) in the tailings into leucite and SiO2. CaO derived from CaCO3 reacts with SiO2 to form calcium silicate, facilitating the decomposition of leucite into water–soluble kaliophilite. Simultaneously, thermal diffusion promotes the ion exchange between Ca2+ of CaSO4 and K+ of feldspar and leucite, thereby forming potassium sulfate. However, part of this potassium sulfate, along with some water–soluble kaliophilite, volatilizes at high temperatures, contributing to flue gas loss. Recycling the lost potassium back into fertilizers enables complete potassium utilization. This work establishes a robust framework for efficiently producing Si–Ca–K–Mg fertilizer from molybdenum tailings, addressing key challenges in potassium retention and resource recycling during industrial synthesis. Full article
Show Figures

Graphical abstract

12 pages, 1871 KiB  
Article
Physical and Mechanical Properties of Fired Bricks from Amazon Bauxite Tailings with Granite Powder
by Igor A. R. Barreto and Marcondes L. da Costa
Ceramics 2025, 8(2), 37; https://doi.org/10.3390/ceramics8020037 - 13 Apr 2025
Viewed by 562
Abstract
In the Amazon region, bauxite processing generates significant quantities of clay mineral-rich tailings, which pose a major challenge for bauxite mining operations. This study explores the use of bauxite tailings to produce fired bricks and evaluates their properties. Using a Box–Behnken experimental design, [...] Read more.
In the Amazon region, bauxite processing generates significant quantities of clay mineral-rich tailings, which pose a major challenge for bauxite mining operations. This study explores the use of bauxite tailings to produce fired bricks and evaluates their properties. Using a Box–Behnken experimental design, nine specimens were prepared with varying granite content (0%, 5%, 10%, 20%, and 30%) and fired at three different temperatures: 800 °C, 900 °C, and 1000 °C. The bauxite tailings contain gibbsite, kaolinite, Al-goethite, and hematite, while the granite powder comprises quartz, potassium feldspar, sodium plagioclase, muscovite, and occasionally kaolinite. Linear shrinkage values remained within recommended limits, below 8%. Apparent porosity (AP) results ranged from 60.2% to 72%, with maximum water absorption reaching 23.6%. The compressive strength of bricks without granite addition was 11.9 MPa at 900 °C, with the highest value recorded at 14.9 MPa at 800 °C when granite was added. These findings indicate that bauxite tailings, when supplemented with pulverized granite, exhibit promising potential for fired brick production. Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
Show Figures

Figure 1

31 pages, 16566 KiB  
Article
The Role of Fluid Chemistry in the Diagenetic Transformation of Detrital Clay Minerals: Experimental Insights from Modern Estuarine Sediments
by Anas Muhammad Salisu, Abdulwahab Muhammad Bello, Abduljamiu O. Amao and Khalid Al-Ramadan
Minerals 2025, 15(3), 317; https://doi.org/10.3390/min15030317 - 19 Mar 2025
Viewed by 693
Abstract
The diagenetic transformation of detrital clay minerals significantly influences sandstone reservoir quality, with fluid chemistry and temperature playing key roles in dictating transformation pathways during burial diagenesis. While these processes are well-documented in basinal settings, the diagenetic alterations of sediments in dynamic environments [...] Read more.
The diagenetic transformation of detrital clay minerals significantly influences sandstone reservoir quality, with fluid chemistry and temperature playing key roles in dictating transformation pathways during burial diagenesis. While these processes are well-documented in basinal settings, the diagenetic alterations of sediments in dynamic environments like estuaries remain underexplored. This study investigates the impact of fluid composition on the transformation of modern estuarine sediments through hydrothermal experiments using sediments from the Gironde estuary, SW France. A range of natural and synthetic solutions including seawater (SW), 0.1 M KCl (SF1), 0.1 M NaCl, KCl, CaCl2·2H2O, MgCl2·6H2O (SF2), estuarine water (EW), and 0.1 M Na2CO3 (SF3) were used under temperatures from 50 °C to 250 °C for 14 days, with a fixed fluid-to-sediment ratio of 10:1. The results revealed distinct mineralogical transformations driven by fluid composition. Dissolution of detrital feldspars and clay materials began at lower temperatures (<100 °C). The authigenic formation of smectite and its subsequent illitization in K-rich fluids (SW, SF1) occurred between 150 °C and 250 °C, replicating potassium-driven illitization processes observed in natural sandstones. Additionally, chlorite formation occurred through the conversion of smectite in SF2 and EW. Geochemical analysis showed that SF2 produced Mg-rich chlorites, while EW yielded Fe-rich chlorites. This aligns with diagenetic trends in coastal environments, where Fe-rich chlorites are typically associated with estuarine systems. The resulting authigenic illite and chlorite exhibited morphological and chemical characteristics similar to those found in natural sandstones, forming through dissolution-crystallization and solid-state transformation mechanisms. In contrast to illite and chlorite, SF3 produced entirely different mineral phases, including halite and analcime (zeolite), attributed to the high alkalinity and Na-rich composition of the solution. These findings provide valuable insights into the role of fluid chemistry in the diagenetic alteration of modern sediments and their implications for the evolution of sandstone reservoirs, which is critical for energy exploration and transition. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Graphical abstract

28 pages, 9029 KiB  
Article
Petrogenesis, Geochemistry, and Geological Significance of the Kongco Granitic Porphyry Dykes in the Northern Part of the Central Lhasa Microblock, Tibet
by Anping Xiang, Hong Liu, Wenxin Fan, Qing Zhou, Hong Wang and Kaizhi Li
Minerals 2025, 15(3), 283; https://doi.org/10.3390/min15030283 - 11 Mar 2025
Viewed by 783
Abstract
The Kongco area of Nima in the northern part of the Lhasa terrane has a suite of alkaline granitic porphyry dykes associated with Early Cretaceous granites and accompanied by Cu/Mo mineralization. LA-ICP-MS 206Pb/238U zircon geochronology performed on the dykes produced [...] Read more.
The Kongco area of Nima in the northern part of the Lhasa terrane has a suite of alkaline granitic porphyry dykes associated with Early Cretaceous granites and accompanied by Cu/Mo mineralization. LA-ICP-MS 206Pb/238U zircon geochronology performed on the dykes produced an age of 104.15 ± 0.94 Ma (MSWD = 0.98), indicating the Early Cretaceous emplacement of the dykes. The dykes exhibit high silica (SiO2 = 76.22~77.90 wt.%), high potassium (K2O = 4.97~6.21 wt.%), high alkalinity (K2O + Na2O = 8.07~8.98 wt.%), low calcium (CaO = 0.24~0.83 wt.%), low magnesium (MgO = 0.06~0.20 wt.%), and moderate aluminum content (Al2O3 = 11.93~12.45 wt.%). The Rieterman index (σ) ranges from 1.93 to 2.34. A/NK (molar ratio Al2O3/(Na2O + K2O)) and A/CNK (molar ratio Al2O3/(CaO + Na2O + K2O)) values of the dykes range from 1.06 to 1.18 and 0.98 to 1.09, respectively. The dykes are relatively enriched in Rb, Th, U, K, Ta, Ce, Nd, Zr, Hf, Sm, Y, Yb, and Lu, and they show a noticeable relative depletion in Ba, Nb, Sr, P, Eu, and Ti, as well as an average differentiation index (DI) of 96.42. The dykes also exhibit high FeOT/MgO ratios (3.60~10.41), Ga/Al ratios (2.22 × 10−4~3.01 × 10−4), Y/Nb ratios (1.75~2.40), and Rb/Nb ratios (8.36~20.76). Additionally, they have high whole-rock Zr saturation temperatures (884~914 °C), a pronounced Eu negative anomaly (δEu = 0.04~0.23), and a rightward-sloping “V-shaped” rare earth element pattern. These characteristics suggest that the granitic porphyry dykes can be classified as A2-type granites formed in a post-collisional tectonic environment and that they are weakly peraluminous, high-potassium, and Calc-alkaline basaltic rocks. Positive εHf(t) values = 0.43~3.63 and a relatively young Hf crustal model age (TDM2 = 826~1005 Ma, 87Sr/86Sr ratios = 0.7043~0.7064, and εNd(t) = −8.60~−2.95 all indicate lower crust and mantle mixing. The lower crust and mantle mixing model is also supported by (206Pb/204Pb)t = 18.627~18.788, (207Pb/204Pb)t = 15.707~15.719, (208Pb/204Pb)t = 39.038~39.110). Together, the Hf, Sr and Pb isotopic ratios indicate that the Kongco granitic porphyry dykes where derived from juvenile crust formed by the addition of mantle material to the lower crust. From this, we infer that the Kongco granitic porphyry dykes are related to a partial melting of the lower crust induced by subduction slab break-off and asthenospheric upwelling during the collision between the Qiangtang and Lhasa terranes and that they experienced significant fractional crystallization dominated by potassium feldspar and amphibole. These dykes are also accompanied by significant copper mineralization (five samples, copper content 0.2%), suggesting a close relationship between the magmatism associated with these dykes and regional metallogenesis, indicating a high potential for mineral exploration. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Figure 1

21 pages, 8306 KiB  
Article
Magmatic–Hydrothermal Processes of the Pulang Giant Porphyry Cu (–Mo–Au) Deposit, Western Yunnan: A Perspective from Different Generations of Titanite
by Mengmeng Li, Xue Gao, Guohui Gu and Sheng Guan
Minerals 2025, 15(3), 263; https://doi.org/10.3390/min15030263 - 3 Mar 2025
Viewed by 772
Abstract
The Yidun island arc was formed in response to the Late Triassic westward subduction of the Ganzi–Litang oceanic plate, a branch of the Paleo-Tethys Ocean. The Zhongdian arc, located in the south of the Yidun island arc, has relatively large number of porphyry [...] Read more.
The Yidun island arc was formed in response to the Late Triassic westward subduction of the Ganzi–Litang oceanic plate, a branch of the Paleo-Tethys Ocean. The Zhongdian arc, located in the south of the Yidun island arc, has relatively large number of porphyry (skarn) type Cu–Mo ± Au polymetallic deposits, the largest of which is the Pulang Cu (–Mo–Au) deposit with proven Cu reserves of 5.11 Mt, Au reserves of 113 t, and 0.17 Mt of molybdenum. However, the relationship between mineralization and the potassic alteration zone, phyllic zone, and propylitic zone of the Pulang porphyry deposit is still controversial and needs further study. Titanite (CaTiSiO5) is a common accessory mineral in acidic, intermediate, and alkaline igneous rocks. It is widely developed in various types of metamorphic rocks, hydrothermally altered rocks, and a few sedimentary rocks. It is a dominant Mo-bearing phase in igneous rocks and contains abundant rare earth elements and high-field-strength elements. As an effective geochronometer, thermobarometer, oxybarometer, and metallogenic potential indicator mineral, titanite is ideal to reveal the magmatic–hydrothermal evolution and the mechanism of metal enrichment and precipitation. In this paper, major and trace element contents of the titanite grains from different alteration zones were obtained using electron probe microanalysis (EPMA) and laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to define the changes in physicochemical conditions and the behavior of these elements during the process of hydrothermal alteration at Pulang. Titanite in the potassic alteration zone is usually shaped like an envelope. It occurs discretely or is enclosed by feldspar, with lower contents of CaO, Al, Sr, Zr and Hf; a low Nb/Ta ratio; high ∑REE + Y, U, Th, Ta, Nb, and Ga content; and high FeO/Al2O3 and LREE/HREE ratios. This is consistent with the characteristics of magmatic titanite from fresh quartz monzonite porphyry in Pulang and other porphyry Cu deposits. Titanite in the potassium silicate alteration zone has more negative Eu anomaly and a higher U content and Th/U ratio, indicating that the oxygen fugacity decreased during the transformation to phyllic alteration and propylitic alteration in Pulang. High oxygen fugacity is favorable for the enrichment of copper, gold, and other metallogenic elements. Therefore, the enrichment of copper is more closely related to the potassium silicate alteration. The molybdenum content of titanite in the potassium silicate alteration zone is 102–104 times that of the phyllic alteration zone and propylitic alteration zone, while the copper content is indistinctive, indicating that molybdenum was dissolved into the fluid or deposited in the form of sulfide before the medium- to low-temperature hydrothermal alteration, which may lead to the further separation and deposition of copper and molybdenum. Full article
Show Figures

Figure 1

21 pages, 6306 KiB  
Article
Enrichment of Trace Elements in the Early Carboniferous Coals from the Machala Mine in Eastern Qiangtang Basin, Eastern Tibet, SW China
by Junwei Qiao, Duo Wang, Fangpeng Du, Xinru Fu, Hafiz Zameer ul Hassan, Hui Zhang, Cheng Yang, Yi Jiang and Lingchen Li
Minerals 2025, 15(1), 34; https://doi.org/10.3390/min15010034 - 30 Dec 2024
Viewed by 931
Abstract
The Machala Mine, which is located in the Eastern Tibetan Plateau, was one of the highest coal mines in the world, with an elevation of 5200 m. The Machala coals are rich in a variety of critical and harmful elements. However, the occurrence [...] Read more.
The Machala Mine, which is located in the Eastern Tibetan Plateau, was one of the highest coal mines in the world, with an elevation of 5200 m. The Machala coals are rich in a variety of critical and harmful elements. However, the occurrence and enrichment mechanisms of these elements are not well understood, which hinders the assessment of their environmental impacts and recycling potential. Furthermore, the enrichment mechanism identified in the Machala coals is expected to extend our understanding of the simultaneous enrichment of multiple elements in coal. A total of 18 coal samples were collected from 14 coal (or carbonaceous mudstone) seams at the Machala open-pit mine for systematic analyses, including macerals, coal quality, minerals, trace, and major elements of coals. The results suggested that the coal seams in the Machala Mine were dominated by low-sulfur (mainly less than 1%), medium-to-low-ash (average: 18.15%), low-volatile (average: 16.01%), and medium-high-to-high-calorific (average: 27.23 MJ/kg) coals. The coal macerals were predominantly vitrinite, with the collodetrinite being the most abundant, followed by collotelinite and vitroderinite, while telinite was present in low amounts. The mineral compositions were mainly quartz and kaolinite, with average contents of 37.8% and 48.2%, respectively, which were followed by illite and smectite-mixed layers, with average contents of 4.7% and 3.3%, respectively. Other minerals, including plagioclase, pyrite, siderite, chlorite, and potassium feldspar, were present in low quantities. However, C3 coal seam was an exception, with a high pyrite content of 23.2% (low-temperature ash sample). The Machala coal seams were characterized by varying degrees of enrichment in Li, As, Pb, Hg, and Sn. Correlation analyses and energy spectrum analyses indicated that clays were their major host minerals. The enrichment of Li in the Machala Coal Mine was mainly attributed to volcanic ash during the sedimentation period, while As, Pb, Hg, and Sn were primarily sourced from hydrothermal fluids in the late stages. Full article
Show Figures

Figure 1

23 pages, 8019 KiB  
Article
Classification and Controlling Factors of Different Types of Pore Throat in Tight Sandstone Reservoirs Based on Fractal Features—A Case Study of Xujiahe Formation in Western Sichuan Depression
by Xiaodie Guan, Dianshi Xiao, Hui Jin, Junfeng Cui, Min Wang, Haoming Shao, Lehua Zheng and Rui Wang
Minerals 2025, 15(1), 18; https://doi.org/10.3390/min15010018 - 27 Dec 2024
Cited by 1 | Viewed by 1465
Abstract
The effects of high debris content on pore structure in tight sandstone reservoirs tight sandstone reservoirs are multifaceted. Pore structure is an important factor controlling reservoir quality. Clarifying the effects of different types of rock debris on reservoirs is necessary to study the [...] Read more.
The effects of high debris content on pore structure in tight sandstone reservoirs tight sandstone reservoirs are multifaceted. Pore structure is an important factor controlling reservoir quality. Clarifying the effects of different types of rock debris on reservoirs is necessary to study the pore structure and their control factors of tight sandstones. The Western Sichuan Depression with complex rock components, containing multiple types of rock debris, leads to strong heterogeneity of pore throats, so it is necessary to study the factors controlling the development of different types of pore throats in tight reservoirs. In this paper, the Fourth member of Xujiahe Formation (T3x4) is taken as the research object. Based on high-pressure mercury intrusion experiments and the fractal theory, the types of pore throats and their heterogeneity in tight reservoirs were studied, the relationship of fractal dimensions with reservoir physical properties, pore structure, and rock compositions were investigated, and then the controlling factors for the development of different types of pore throats are clarified. The studies show that there are four types of pore throats developed in the T3x4 of the western Sichuan depression, including primary intergranular pore-throats (>350 nm), residual intergranular pore-throats (75–350 nm), dissolution pore-throats (16–75 nm), and intercrystalline pore-throats (<16 nm), among which the homogeneity of dissolution pore-throats are the best, followed by residual intergranular pore-throats and intercrystalline pore-throats, and the primary intergranular pore-throats the most heterogeneous. The permeability has a better relationship with the proportion and fractal dimension of primary intergranular pore-throats and residual intergranular pore-throats of tight reservoir of the Xujiahe Formation. The relation-ship between porosity and the proportion and fractal dimension of primary intergranular pore-throats and dissolution pore-throats is better. Brittle minerals such as quartz and metamorphic debris, as well as early developed films of chlorite and illite mainly control the development of intergranular pore-throats. Potassium feldspar mainly controls the development of dissolution pore-throats, while sedimentary rock debris, volcanic debris, and kaolinite play a destructive role for all types of pore-throats. The high-quality reservoirs in the T3x4 are controlled by the development of primary intergranular pore throats and dissolution pore throats, and they are mainly developed in environments with strong hydrodynamic conditions, large rock grain sizes, high content of brittle minerals such as quartz and metamorphic debris, extensive development of chlorite and illite films, and low content of sedimentary rock debris, matrix, and cemented materials. This study is of guiding significance in clarifying the causes of heterogeneity in different types of pore-throat systems in tight sandstones and the formation mechanism of high-quality reservoirs in tight sandstones with high content of debris. Full article
Show Figures

Figure 1

18 pages, 8713 KiB  
Article
Hydrogeochemical Characteristics and Sulfate Source of Groundwater in Sangu Spring Basin, China
by Zhanxue Bai, Xinwei Hou, Xiangquan Li, Zhenxing Wang, Chunchao Zhang, Chunlei Gui and Xuefeng Zuo
Water 2024, 16(20), 2884; https://doi.org/10.3390/w16202884 - 11 Oct 2024
Cited by 1 | Viewed by 1113
Abstract
The Sangu Spring Basin is located in an important economic area, and groundwater is the main source of water for local life and industry. Understanding the sources of chemical components in groundwater is important for the development and utilization of groundwater. In this [...] Read more.
The Sangu Spring Basin is located in an important economic area, and groundwater is the main source of water for local life and industry. Understanding the sources of chemical components in groundwater is important for the development and utilization of groundwater. In this paper, we analyzed the origin of the chemical components of groundwater and their evolution in the Sangu Spring Basin using statistical analysis, Piper diagrams, Gibbs diagrams, ion ratios, and combined hydrochemistry–isotope analyses. The results show that the groundwater in the Sangu Spring Basin is mainly derived from atmospheric precipitation, that the groundwater in stagnant and confined environment zones was formed under colder climatic conditions, and that the surface water (SW) has a close hydraulic relation with the groundwater. Water–rock interaction is the main factor controlling the composition of groundwater. The compositions of groundwater are mainly derived from carbonate weathering, silicate weathering, and dissolution of gypsum. Na+ and K+ in groundwater mainly come from the dissolution of albite and potassium feldspar, rather than rock salt. Ion exchange occurs in karst groundwater (KGW) and fissure groundwater (FGW), and ion exchange is dominated by the exchange of Mg2+ and Ca2+ in the groundwater with Na+ and K+ in the rock or soil. Sulfate in groundwater is derived from dissolution of gypsum, infiltration of atmospheric precipitation, and leakage of SW. Groundwaters with the highest sulfate content are located in the vicinity of SW, as a result of receiving recharge from SW seepage. Groundwaters with higher sulfate contents are located in the stagnant and deeply buried zones, where sulfate is mainly derived from the dissolution of gypsum. SW seepage recharges groundwater, resulting in increased levels of Cl, NO3 and SO42− in groundwater. These insights can provide assistance in the protection and effective management of groundwater. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

21 pages, 9535 KiB  
Article
Petrogenesis of Eocene A-Type Granite Associated with the Yingpanshan–Damanbie Regolith-Hosted Ion-Adsorption Rare Earth Element Deposit in the Tengchong Block, Southwest China
by Zhong Tang, Zewei Pan, Tianxue Ming, Rong Li, Xiaohu He, Hanjie Wen and Wenxiu Yu
Minerals 2024, 14(9), 933; https://doi.org/10.3390/min14090933 - 12 Sep 2024
Viewed by 1015
Abstract
The ion-adsorption-type rare earth element (iREE) deposits dominantly supply global resources of the heavy rare earth elements (HREEs), which have a critical role in a variety of advanced technological applications. The initial enrichment of REEs in the parent granites controls the formation of [...] Read more.
The ion-adsorption-type rare earth element (iREE) deposits dominantly supply global resources of the heavy rare earth elements (HREEs), which have a critical role in a variety of advanced technological applications. The initial enrichment of REEs in the parent granites controls the formation of iREE deposits. Many Mesozoic and Cenozoic granites are associated with iREE mineralization in the Tengchong block, Southwest China. However, it is unclear how vital the mineralogical and geochemical characteristics of these granites are to the formation of iREE mineralization. We conducted geochronology, geochemistry, and Hf isotope analyses of the Yingpanshan–Damanbie granitoids associated with the iREE deposit in the Tengchong block with the aims to discuss their petrogenesis and illustrate the process of the initial REE enrichment in the granites. The results showed that the Yingpanshan–Damanbie pluton consists of syenogranite and monzogranite, containing REE-bearing accessory minerals such as monazite, xenotime, apatite, zircon, allanite, and titanite, with a high REE concentration (210–626 ppm, mean value is 402 ppm). The parent granites have Zr + Nb + Ce + Y (333–747 ppm) contents and a high FeOT/MgO ratio (5.89–11.4), and are enriched in Th (mean value of 43.6 ppm), U (mean value of 4.57 ppm), Zr (mean value of 305 ppm), Hf (mean value of 7.94 ppm), Rb (mean value of 198 ppm), K (mean value of 48,902 ppm), and have depletions of Sr (mean value of 188 ppm), Ba (mean value of 699 ppm), P (mean value of 586 ppm), Ti (mean value of 2757 ppm). The granites plot in the A-type area in FeOT/MgO vs. Zr + Nb + Ce + Y and Zr vs. 10,000 Ga/Al diagrams, suggesting that they are A2-type granites. These granites are believed to have formed through the partial melting of amphibolites at a post-collisional extension setting when the Tethys Ocean closed. REE-bearing minerals (e.g., apatite, titanite, allanite, and fluorite) and rock-forming minerals (e.g., potassium feldspar, plagioclase, biotite, muscovite) supply rare earth elements in weathering regolith for the Yingpanshan–Damanbie iREE deposit. Full article
Show Figures

Figure 1

21 pages, 11114 KiB  
Article
Hydrogeochemical Characteristics and Health Risk Assessment of Groundwater in Grassland Watersheds of Cold and Arid Regions in Xilinhot, China
by Yubo Xia, Guangfang Chen, Futian Liu, Jing Zhang and Hang Ning
Water 2024, 16(17), 2488; https://doi.org/10.3390/w16172488 - 2 Sep 2024
Cited by 2 | Viewed by 1436
Abstract
Xilinhot City is a significant pastoral city in China where groundwater serves as the primary water source for the cold and arid pastoral regions. The formation and evolution of material components in groundwater, as well as groundwater quality, are directly linked to the [...] Read more.
Xilinhot City is a significant pastoral city in China where groundwater serves as the primary water source for the cold and arid pastoral regions. The formation and evolution of material components in groundwater, as well as groundwater quality, are directly linked to the health of pastoral residents. This study is based on the physical and chemical test results of 22 groundwater samples collected from the Xilinhot River Basin in Inner Mongolia. Various statistical analyses, including Piper and Chadha diagrams, as well as hydrogeochemical simulation methods, were employed to assess the hydrogeochemical characteristics and material composition sources of groundwater, evaluate groundwater quality and non-carcinogenic risks, and comprehensively discuss the impact of macro- and microelements on human health. The findings indicate that igneous rocks containing minerals such as potassium feldspar, plagioclase, and pyroxene contribute Na+, Cl, and K+ to the groundwater, while sedimentary rocks containing minerals like dolomite and calcite supply ions such as Ca2+, Mg2+, and HCO3. The groundwater quality is primarily classified as Class II–V, with F and NO3 exhibiting varying hazard quotients for children and adults in the study area, though they do not pose a non-carcinogenic risk. Additionally, the enrichment of hardness, Ca2+, Mg2+, Na+, SO42−, and other indicators in localized areas exceeds the recommended values for drinking water, potentially impacting the digestive and urinary systems of the human body. There is a risk of excessive fluoride in areas where F levels exceed 1 mg/L. Furthermore, the content of beneficial micronutrients such as selenium (Se), zinc (Zn), boron (B), and germanium (Ge) is relatively low. Based on the elemental abundance characteristics and a comparative analysis of the chemical properties of groundwater across five regions of China, this comparison facilitates a discussion on the definition of healthy groundwater, particularly in relation to safe consumption in cold and arid regions. This study aims to highlight the health issues associated with drinking groundwater in the cold and arid regions of Mongolia. The findings serve as a valuable reference for efforts aimed at reducing the incidence of endemic diseases and enhancing human lifespan. Full article
(This article belongs to the Special Issue Soil and Groundwater Quality and Resources Assessment)
Show Figures

Figure 1

26 pages, 20829 KiB  
Article
Elemental Geochemistry and Pb Isotopic Compositions of the Thick No. 7 Coal Seam in the Datun Mining Area, China
by Na Meng, Qianlong Xiao and Wu Li
Minerals 2024, 14(8), 848; https://doi.org/10.3390/min14080848 - 22 Aug 2024
Cited by 1 | Viewed by 1181
Abstract
Thick coal seams recorded abundant petrological, geochemical, and mineralogical information regarding their formation, which in turn can reflect the characteristics of the coal-forming environments, provenance attributes, paleoclimate, and so on. In order to explore the geochemical and lead isotope characteristics of thick coal [...] Read more.
Thick coal seams recorded abundant petrological, geochemical, and mineralogical information regarding their formation, which in turn can reflect the characteristics of the coal-forming environments, provenance attributes, paleoclimate, and so on. In order to explore the geochemical and lead isotope characteristics of thick coal seams, the No. 7 coal seam in the Datun mining area, Jiangsu Province of China, was selected as the research object. In this work, 29 samples (including coal, roof, and floor rock samples) were collected from three coal mines in the Datun mining area. Through an analysis of the mineral composition and element geochemical characteristics in the coal samples, the enrichment degree of trace elements and modes of rare earth elements were determined. The genetic mechanism of abnormal enrichment of enriched elements is discussed, especially the modes of occurrence and isotope characteristics of Pb. The results showed the following: (1) The main minerals in the coal samples include quartz, potassium feldspar, plagioclase, calcite, dolomite, pyrite, gypsum, and clay minerals, with clay minerals, calcite, quartz, and dolomite being the most common. (2) The major element oxides in coal mainly include SiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O, TiO2, P2O5, and FeO. In the vertical direction, the variation of SiO2, Al2O3, Fe2O3, MgO, K2O, and FeO in coal samples from the three coal mines is consistent. The average value of Al2O3/TiO2 in the samples of Kongzhuang, Longdong, and Yaoqiao coal mines is 28.09–50.52, which basically locates the samples in the felsic source area, such that the sediment source is considered to be felsic source rock. (3) Elements U, La, Pb, and other elements are more enriched in Kongzhuang coal mine samples; elements Th, U, La, Pb, and other elements are more enriched in the Longdong coal mine samples; and elements Th, U, La, Pb, and other elements are more enriched in the Yaoqiao coal mine samples. Furthermore, W is enriched in Yaoqiao mine samples and is highly enriched in Longdong mine samples. The mining area is generally rich in the elements U, La, and Pb. The distribution curves of rare earth elements in the three mines are inclined to the right, with negative Eu anomalies. The enrichment is of the light rare earth enrichment type. (4) Pb isotope data show that the samples from the three mines are mainly distributed in the orogenic belt and the subduction zone lead source areas, where the upper crust and the mantle are mixed, with individual sample points distributed in the mantle and upper crust lead source areas. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

20 pages, 31392 KiB  
Article
Involvement of the Northeastern Margin of South China Block in Rodinia Supercontinent Evolution: A Case Study of Neoproterozoic Granitic Gneiss in Rizhao Area, Shandong Province
by Xiaolong He, Zeyu Yang, Kai Liu, Wei Zhu, Honglei Zhan, Peng Yang, Tongzheng Wei, Shuxun Wang and Yaoyao Zhang
Minerals 2024, 14(8), 807; https://doi.org/10.3390/min14080807 - 9 Aug 2024
Cited by 1 | Viewed by 1261
Abstract
The South China Plate is an important part of the Rodinia supercontinent in the Neoproterozoic. The Rizhao area, located on the northeastern margin of the South China Plate, records multiple periods of magmatism, among which Neoproterozoic granitic gneiss is of great significance to [...] Read more.
The South China Plate is an important part of the Rodinia supercontinent in the Neoproterozoic. The Rizhao area, located on the northeastern margin of the South China Plate, records multiple periods of magmatism, among which Neoproterozoic granitic gneiss is of great significance to the tectonic evolution of the South China Block. In this study, systematic petrology, geochemistry, isotopic chronology, and zircon Hf isotopic analyses were carried out on gneisses samples of biotite alkali feldspar granitic and biotite monzogranitic compositions in the Rizhao area. Geochemical analyses suggest that these granitic rocks belong to the sub-alkaline series and have high potassium contents. They are enriched in large-ion lithophile elements K, Rb, and Ba; depleted in high field strength elements P, Nb, and Ti; enriched in light rare earth elements and moderately depleted in heavy rare earth elements; and have weak to moderate negative Eu anomalies and weak negative Ce anomalies. These rocks are post-orogenic A-type granites. LA-MC-ICP-MS U-Pb dating of zircons from two biotite alkali-feldspar granitic gneiss samples yielded weighted mean ages of 785 ± 8 Ma (MSWD = 3.0) and 784 ± 6Ma (MSWD = 1.5), respectively, and a biotite monzogranitic gneiss sample yielded a weighted mean age of 789 ± 6 Ma (MSWD = 2.3). Lu-Hf isotopic analyses on zircon grains from the two types of Neoproterozoic-aged gneisses yielded negative εHf(t) values ranging from −19.3 to −8.8 and from −18.3 to −10.4, respectively, and the corresponding two-stage Hf model age ranges are 2848–3776 Ma and 2983–3682 Ma, respectively. These granites are the product of Neoproterozoic magmatic activity and are mainly derived from the partial melting of Archean continental crust. Combining the geochemical characteristics and zircon U-Pb-Lu-Hf isotopic analyses, these A-type granitic gneisses appear to have formed in an intracontinental rift extension environment during the initial break-up of the Rodinia supercontinent, as part of the supercontinent break-up process at the northeastern margin of the South China Block. Full article
Show Figures

Figure 1

Back to TopTop