Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = posterior capsular opacification (PCO)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3965 KiB  
Review
Oxidative Stress, Glutaredoxins, and Their Therapeutic Potential in Posterior Capsular Opacification
by Chenshuang Li, Weijia Yan and Hong Yan
Antioxidants 2024, 13(10), 1210; https://doi.org/10.3390/antiox13101210 - 8 Oct 2024
Cited by 2 | Viewed by 1477
Abstract
Posterior capsular opacification (PCO) is the most common long-term complication of cataract surgery. Traditionally, the pathogenesis of PCO involves the residual lens epithelial cells (LECs), which undergo transdifferentiation into a myofibroblast phenotype, hyperproliferation, matrix contraction, and matrix deposition. This process is driven by [...] Read more.
Posterior capsular opacification (PCO) is the most common long-term complication of cataract surgery. Traditionally, the pathogenesis of PCO involves the residual lens epithelial cells (LECs), which undergo transdifferentiation into a myofibroblast phenotype, hyperproliferation, matrix contraction, and matrix deposition. This process is driven by the marked upregulation of inflammatory and growth factors post-surgery. Recently, research on the role of redox environments has gained considerable attention. LECs, which are in direct contact with the aqueous humour after cataract surgery, are subjected to oxidative stress due to decreased levels of reduced glutathione and increased oxygen content compared to contact with the outer fibre layer of the lens before surgery. In this review, we examine the critical role of oxidative stress in PCO formation. We also focus on glutaredoxins (Grxs), which are antioxidative enzymes produced via deglutathionylation, their protective role against PCO formation, and their therapeutic potential. Furthermore, we discuss the latest advancements in PCO therapy, particularly the development of advanced antioxidative pharmacological agents, and emphasise the importance and approaches of anti-inflammatory and antioxidant treatments in PCO management. In conclusion, this review highlights the significant roles of oxidative stress in PCO, the protective effects of Grxs against PCO formation, and the potential of anti-inflammatory and antioxidant therapies in treating PCO. Full article
(This article belongs to the Special Issue Oxidative Stress in Cataracts: Mechanisms and Therapies)
Show Figures

Figure 1

16 pages, 3734 KiB  
Article
Human Primary Lens Epithelial Cultures on Basal Laminas Studied by Synchrotron-Based FTIR Microspectroscopy for Understanding Posterior Capsular Opacification
by Sofija Andjelic and Marko Hawlina
Int. J. Mol. Sci. 2024, 25(16), 8858; https://doi.org/10.3390/ijms25168858 - 14 Aug 2024
Viewed by 1013
Abstract
Human primary lens epithelial cultures serve as an in vitro model for posterior capsular opacification (PCO) formation. PCO occurs when residual lens epithelial cells (LECs) migrate and proliferate after cataract surgery, differentiating into fibroblastic and lens fiber-like cells. This study aims to show [...] Read more.
Human primary lens epithelial cultures serve as an in vitro model for posterior capsular opacification (PCO) formation. PCO occurs when residual lens epithelial cells (LECs) migrate and proliferate after cataract surgery, differentiating into fibroblastic and lens fiber-like cells. This study aims to show and compare the bio-macromolecular profiles of primary LEC cultures and postoperative lens epithelia LECs on basal laminas (bls), while also analyzing bls and cultured LECs separately. Using synchrotron radiation-based Fourier transform infrared (SR-FTIR) (Bruker, Karlsruhe, Germany) microspectroscopy at the Spanish synchrotron light source ALBA, we observed that the SR-FTIR measurements were predominantly influenced by the strong collagen absorbance of the bls. Cultured LECs on bls showed a higher collagen contribution, indicated by higher vas CH3, CH2 and CH3 wagging and deformation, and the C–N stretching of collagen. In contrast, postoperative LECs on bls showed a higher cell contribution, indicated by the vsym CH2 peak and the ratio between vas CH2 and vas CH3 peaks. The primary difference revealed using SR-FTIR is the greater LEC contribution in spectra recorded from postoperative lens epithelia compared to cultured LECs on bls. IR spectra for bl, cultured LECs and postoperative lens epithelia could be valuable for future research. Full article
(This article belongs to the Special Issue FTIR Miscrospectroscopy: Opportunities and Challenges)
Show Figures

Figure 1

27 pages, 1831 KiB  
Review
Application of Silicone in Ophthalmology: A Review
by Tamara Mladenovic, Fatima Zivic, Nenad Petrovic, Sasa Njezic, Jelena Pavic, Nikola Kotorcevic, Strahinja Milenkovic and Nenad Grujovic
Materials 2024, 17(14), 3454; https://doi.org/10.3390/ma17143454 - 12 Jul 2024
Cited by 7 | Viewed by 4025
Abstract
This paper reviews the latest trends and applications of silicone in ophthalmology, especially related to intraocular lenses (IOLs). Silicone, or siloxane elastomer, as a synthetic polymer, has excellent biocompatibility, high chemical inertness, and hydrophobicity, enabling wide biomedical applications. The physicochemical properties of silicone [...] Read more.
This paper reviews the latest trends and applications of silicone in ophthalmology, especially related to intraocular lenses (IOLs). Silicone, or siloxane elastomer, as a synthetic polymer, has excellent biocompatibility, high chemical inertness, and hydrophobicity, enabling wide biomedical applications. The physicochemical properties of silicone are reviewed. A review of methods for mechanical and in vivo characterization of IOLs is presented as a prospective research area, since there are only a few available technologies, even though these properties are vital to ensure medical safety and suitability for clinical use, especially if long-term function is considered. IOLs represent permanent implants to replace the natural lens or for correcting vision, with the first commercial foldable lens made of silicone. Biological aspects of posterior capsular opacification have been reviewed, including the effects of the implanted silicone IOL. However, certain issues with silicone IOLs are still challenging and some conditions can prevent its application in all patients. The latest trends in nanotechnology solutions have been reviewed. Surface modifications of silicone IOLs are an efficient approach to further improve biocompatibility or to enable drug-eluting function. Different surface modifications, including coatings, can provide long-term treatments for various medical conditions or medical diagnoses through the incorporation of sensory functions. It is essential that IOL optical characteristics remain unchanged in case of drug incorporation and the application of nanoparticles can enable it. However, clinical trials related to these advanced technologies are still missing, thus preventing their clinical applications at this moment. Full article
Show Figures

Figure 1

10 pages, 727 KiB  
Article
Comparison of the Incidence of Nd:YAG Laser Capsulotomy Based on the Type of Intraocular Lens
by Yuri Lee, Jae Suk Kim, Bum Gi Kim, Je Hyung Hwang, Min Ji Kang and Jee Hye Lee
Medicina 2023, 59(12), 2173; https://doi.org/10.3390/medicina59122173 - 14 Dec 2023
Cited by 5 | Viewed by 2988
Abstract
Background and Objectives: Posterior capsular opacification (PCO) is the most common long-term complication of successful cataract surgery and can cause visual impairment. We aimed to investigate the effects of intraocular lens (IOL) characteristics on PCO by comparing the incidence of neodymium-doped yttrium [...] Read more.
Background and Objectives: Posterior capsular opacification (PCO) is the most common long-term complication of successful cataract surgery and can cause visual impairment. We aimed to investigate the effects of intraocular lens (IOL) characteristics on PCO by comparing the incidence of neodymium-doped yttrium aluminum garnet (Nd:YAG) laser capsulotomy for different types of intraocular lenses. Materials and Methods: A retrospective analysis was performed on 2866 eyes that underwent cataract surgery between January 2010 and December 2017, with at least 5 years of follow-up. The IOLs used for surgery were the hydrophobic lenses SN60WF (Alcon, Fort Worth, TX, USA), ZCB00 (Johnson & Johnson Vision, Santa Ana, CA, USA), and MX60 (Bausch & Lomb, Rochester, NY, USA), and the hydrophilic lens MI60 (Bausch & Lomb, Rochester, NY, USA). We analyzed the incidence of Nd:YAG laser capsulotomy according to the type of IOL used. Results: The incidence of Nd:YAG laser capsulotomy was significantly higher with MI60 lenses (31.70%, 175/552 eyes) compared to SN60WF (7.90%, 113/1431 eyes), ZCB00 (10.06%, 64/636 eyes), and MX60 (10.57%, 13/123 eyes; p < 0.001) lenses. The incidence of Nd:YAG laser capsulotomy was significantly lower with the hydrophobic IOLs (8.68%, 190/2190 eyes) than with the hydrophilic IOL (31.70%, 175/552 eyes; p < 0.001). Over time, the rate of increase in the cumulative number of Nd:YAG laser capsulotomy cases was the highest with MI60. The cumulative rate of Nd:YAG laser capsulotomy during the first 3 years was 4.90% with SN60WF (70/1431 eyes), 6.76% with ZCB00 (43/636 eyes), 8.94% with MX60 (11/123 eyes), and 26.10% with MI60 (144/552 eyes) lenses. Conclusions: The incidence of PCO is influenced by the material of the IOLs. The hydrophilic IOL was associated with a higher rate of Nd:YAG laser capsulotomy than the hydrophobic IOLs, with a shorter time to Nd:YAG laser capsulotomy. Full article
(This article belongs to the Collection Advances in Cornea, Cataract, and Refractive Surgery)
Show Figures

Figure 1

16 pages, 12332 KiB  
Article
Understanding the Role of Yes-Associated Protein (YAP) Signaling in the Transformation of Lens Epithelial Cells (EMT) and Fibrosis
by Aftab Taiyab, Yasmine Belahlou, Vanessa Wong, Saranya Pandi, Madhu Shekhar, Gowri Priya Chidambaranathan and Judith West-Mays
Biomolecules 2023, 13(12), 1767; https://doi.org/10.3390/biom13121767 - 9 Dec 2023
Cited by 7 | Viewed by 2670
Abstract
Fibrotic cataracts, posterior capsular opacification (PCO), and anterior subcapsular cataracts (ASC) are mainly attributed to the transforming growth factor-β (TGFβ)-induced epithelial-to-mesenchymal transition (EMT) of lens epithelial cells (LECs). Previous investigations from our laboratory have shown the novel role of non-canonical TGFβ signaling in [...] Read more.
Fibrotic cataracts, posterior capsular opacification (PCO), and anterior subcapsular cataracts (ASC) are mainly attributed to the transforming growth factor-β (TGFβ)-induced epithelial-to-mesenchymal transition (EMT) of lens epithelial cells (LECs). Previous investigations from our laboratory have shown the novel role of non-canonical TGFβ signaling in the progression of EMT in LECs. In this study, we have identified YAP as a critical signaling molecule involved in lens fibrosis. The observed increase in nuclear YAP in capsules of human ASC patients points toward the involvement of YAP in lens fibrosis. In addition, the immunohistochemical (IHC) analyses on ocular sections from mice that overexpress TGFβ in the lens (TGFβtg) showed a co-expression of YAP and α-SMA in the fibrotic plaques when compared to wild-type littermate lenses, which do not. The incubation of rat lens explants with verteporfin, a YAP inhibitor, prevented a TGFβ-induced fiber-like phenotype, α-SMA, and fibronectin expression, as well as delocalization of E-cadherin and β-catenin. Finally, LECs co-incubated with TGFβ and YAP inhibitor did not exhibit an induction in matrix metalloproteinase 2 compared to those LECs treated with TGFβ alone. In conclusion, these data demonstrate that YAP is required for TGFβ-mediated lens EMT and fibrosis. Full article
(This article belongs to the Special Issue Role of Mesenchymal Cells in Wound Healing and Fibrosis)
Show Figures

Figure 1

16 pages, 3431 KiB  
Article
Identification of Small Molecules for Prevention of Lens Epithelium-Derived Cataract Using Zebrafish
by Kineret Taler, Nour Zatari, Mohammad Iqbal Lone, Shahar Rotem-Bamberger and Adi Inbal
Cells 2023, 12(21), 2540; https://doi.org/10.3390/cells12212540 - 29 Oct 2023
Cited by 3 | Viewed by 1967
Abstract
Cataract is the leading cause of blindness worldwide. It can be treated by surgery, whereby the damaged crystalline lens is replaced by a synthetic lens. Although cataract surgery is highly effective, a relatively common complication named posterior capsular opacification (PCO) leads to secondary [...] Read more.
Cataract is the leading cause of blindness worldwide. It can be treated by surgery, whereby the damaged crystalline lens is replaced by a synthetic lens. Although cataract surgery is highly effective, a relatively common complication named posterior capsular opacification (PCO) leads to secondary loss of vision. PCO is caused by abnormal proliferation and migration of residual lens epithelial cells (LECs) that were not removed during the surgery, which results in interruption to the passage of light. Despite technical improvements to the surgery, this complication has not been eradicated. Efforts are being made to identify drugs that can be applied post-surgery, to inhibit PCO development. Towards the goal of identifying such drugs, we used zebrafish embryos homozygous for a mutation in plod3 that develop a lens phenotype with characteristics of PCO. Using both biased and unbiased approaches, we identified small molecules that can block the lens phenotype of the mutants. Our findings confirm the relevance of zebrafish plod3 mutants’ lens phenotype as a model for lens epithelium-derived cataract and add to our understanding of the molecular mechanisms that contribute to the development of this pathology. This understanding should help in the development of strategies for PCO prevention. Full article
(This article belongs to the Special Issue New Advances in Lens Biology and Pathology)
Show Figures

Figure 1

24 pages, 2916 KiB  
Review
Clinical Translation of Long-Acting Drug Delivery Systems for Posterior Capsule Opacification Prophylaxis
by Xinyang Li, Chen Liang, Yexuan Guo, Jing Su, Xi Chen, Robert B. Macgregor, Rui Xue Zhang and Hong Yan
Pharmaceutics 2023, 15(4), 1235; https://doi.org/10.3390/pharmaceutics15041235 - 13 Apr 2023
Cited by 13 | Viewed by 3360
Abstract
Posterior capsule opacification (PCO) remains the most common cause of vision loss post cataract surgery. The clinical management of PCO formation is limited to either physical impedance of residual lens epithelial cells (LECs) by implantation of specially designed intraocular lenses (IOL) or laser [...] Read more.
Posterior capsule opacification (PCO) remains the most common cause of vision loss post cataract surgery. The clinical management of PCO formation is limited to either physical impedance of residual lens epithelial cells (LECs) by implantation of specially designed intraocular lenses (IOL) or laser ablation of the opaque posterior capsular tissues; however, these strategies cannot fully eradicate PCO and are associated with other ocular complications. In this review, we critically appraise recent advances in conventional and nanotechnology-based drug delivery approaches to PCO prophylaxis. We focus on long-acting dosage forms, including drug-eluting IOL, injectable hydrogels, nanoparticles and implants, highlighting analysis of their controlled drug-release properties (e.g., release duration, maximum drug release, drug-release half-life). The rational design of drug delivery systems by considering the intraocular environment, issues of initial burst release, drug loading content, delivery of drug combination and long-term ocular safety holds promise for the development of safe and effective pharmacological applications in anti-PCO therapies. Full article
(This article belongs to the Special Issue Nano Drug Delivery System)
Show Figures

Graphical abstract

20 pages, 3173 KiB  
Article
FGF-2 Differentially Regulates Lens Epithelial Cell Behaviour during TGF-β-Induced EMT
by Mary Flokis and Frank J. Lovicu
Cells 2023, 12(6), 827; https://doi.org/10.3390/cells12060827 - 7 Mar 2023
Cited by 11 | Viewed by 3088
Abstract
Fibroblast growth factor (FGF) and transforming growth factor-beta (TGF-β) can regulate and/or dysregulate lens epithelial cell (LEC) behaviour, including proliferation, fibre differentiation, and epithelial–mesenchymal transition (EMT). Earlier studies have investigated the crosstalk between FGF and TGF-β in dictating lens cell fate, that appears [...] Read more.
Fibroblast growth factor (FGF) and transforming growth factor-beta (TGF-β) can regulate and/or dysregulate lens epithelial cell (LEC) behaviour, including proliferation, fibre differentiation, and epithelial–mesenchymal transition (EMT). Earlier studies have investigated the crosstalk between FGF and TGF-β in dictating lens cell fate, that appears to be dose dependent. Here, we tested the hypothesis that a fibre-differentiating dose of FGF differentially regulates the behaviour of lens epithelial cells undergoing TGF-β-induced EMT. Postnatal 21-day-old rat lens epithelial explants were treated with a fibre-differentiating dose of FGF-2 (200 ng/mL) and/or TGF-β2 (50 pg/mL) over a 7-day culture period. We compared central LECs (CLECs) and peripheral LECs (PLECs) using immunolabelling for changes in markers for EMT (α-SMA), lens fibre differentiation (β-crystallin), epithelial cell adhesion (β-catenin), and the cytoskeleton (alpha-tropomyosin), as well as Smad2/3- and MAPK/ERK1/2-signalling. Lens epithelial explants cotreated with FGF-2 and TGF-β2 exhibited a differential response, with CLECs undergoing EMT while PLECs favoured more of a lens fibre differentiation response, compared to the TGF-β-only-treated explants where all cells in the explants underwent EMT. The CLECs cotreated with FGF and TGF-β immunolabelled for α-SMA, with minimal β-crystallin, whereas the PLECs demonstrated strong β-crystallin reactivity and little α-SMA. Interestingly, compared to the TGF-β-only-treated explants, α-SMA was significantly decreased in the CLECs cotreated with FGF/TGF-β. Smad-dependent and independent signalling was increased in the FGF-2/TGF-β2 co-treated CLECs, that had a heightened number of cells with nuclear localisation of Smad2/3 compared to the PLECs, that in contrast had more pronounced ERK1/2-signalling over Smad2/3 activation. The current study has confirmed that FGF-2 is influential in differentially regulating the behaviour of LECs during TGF-β-induced EMT, leading to a heterogenous cell population, typical of that observed in the development of post-surgical, posterior capsular opacification (PCO). This highlights the cooperative relationship between FGF and TGF-β leading to lens pathology, providing a different perspective when considering preventative measures for controlling PCO. Full article
(This article belongs to the Special Issue New Advances in Lens Biology and Pathology)
Show Figures

Figure 1

28 pages, 4781 KiB  
Article
The Immediate Early Response of Lens Epithelial Cells to Lens Injury
by Samuel G. Novo, Adam P. Faranda, Mahbubul H. Shihan, Yan Wang, Ananya Garg and Melinda K. Duncan
Cells 2022, 11(21), 3456; https://doi.org/10.3390/cells11213456 - 1 Nov 2022
Cited by 12 | Viewed by 3309
Abstract
Cataracts are treated by lens fiber cell removal followed by intraocular lens (IOL) implantation into the lens capsule. While effective, this procedure leaves behind numerous lens epithelial cells (LECs) which undergo a wound healing response that frequently leads to posterior capsular opacification (PCO). [...] Read more.
Cataracts are treated by lens fiber cell removal followed by intraocular lens (IOL) implantation into the lens capsule. While effective, this procedure leaves behind numerous lens epithelial cells (LECs) which undergo a wound healing response that frequently leads to posterior capsular opacification (PCO). In order to elucidate the acute response of LECs to lens fiber cell removal which models cataract surgery (post cataract surgery, PCS), RNA-seq was conducted on LECs derived from wild type mice at 0 and 6 h PCS. This analysis found that LECs upregulate the expression of numerous proinflammatory cytokines and profibrotic regulators by 6 h PCS suggesting rapid priming of pathways leading to inflammation and fibrosis PCS. LECs also highly upregulate the expression of numerous immediate early transcription factors (IETFs) by 6 h PCS and immunolocalization found elevated levels of these proteins by 3 h PCS, and this was preceded by the phosphorylation of ERK1/2 in injured LECs. Egr1 and FosB were among the highest expressed of these factors and qRT-PCR revealed that they also upregulate in explanted mouse lens epithelia suggesting potential roles in the LEC injury response. Analysis of lenses lacking either Egr1 or FosB revealed that both genes may regulate a portion of the acute LEC injury response, although neither gene was essential for expression of either proinflammatory or fibrotic markers at later times PCS suggesting that IETFs may work in concert to mediate the LEC injury response following cataract surgery. Full article
(This article belongs to the Special Issue New Advances in Lens Biology and Pathology)
Show Figures

Figure 1

22 pages, 4089 KiB  
Review
Research Progress Concerning a Novel Intraocular Lens for the Prevention of Posterior Capsular Opacification
by Yidong Zhang, Chengshou Zhang, Silong Chen, Jianghua Hu, Lifang Shen and Yibo Yu
Pharmaceutics 2022, 14(7), 1343; https://doi.org/10.3390/pharmaceutics14071343 - 25 Jun 2022
Cited by 21 | Viewed by 6720
Abstract
Posterior capsular opacification (PCO) is the most common complication resulting from cataract surgery and limits the long-term postoperative visual outcome. Using Nd:YAG laser-assisted posterior capsulotomy for the clinical treatment of symptomatic PCO increases the risks of complications, such as glaucoma, retinal diseases, uveitis, [...] Read more.
Posterior capsular opacification (PCO) is the most common complication resulting from cataract surgery and limits the long-term postoperative visual outcome. Using Nd:YAG laser-assisted posterior capsulotomy for the clinical treatment of symptomatic PCO increases the risks of complications, such as glaucoma, retinal diseases, uveitis, and intraocular lens (IOL) pitting. Therefore, finding how to prevent PCO development is the subject of active investigations. As a replacement organ, the IOL is implanted into the lens capsule after cataract surgery, but it is also associated with the occurrence of PCO. Using IOL as a medium for PCO prophylaxis is a more facile and efficient method that has demonstrated various clinical application prospects. Thus, scientists have conducted a lot of research on new intraocular lens fabrication methods, such as optimizing IOL materials and design, and IOL surface modification (including plasma/ultraviolet/ozone treatment, chemical grafting, drug loading, coating modification, and layer-by-layer self-assembly methods). This paper summarizes the research progress for different types of intraocular lenses prepared by different surface modifications, including anti-biofouling IOLs, enhanced-adhesion IOLs, micro-patterned IOLs, photothermal IOLs, photodynamic IOLs, and drug-loading IOLs. These modified intraocular lenses inhibit PCO development by reducing the residual intraoperative lens epithelial cells or by regulating the cellular behavior of lens epithelial cells. In the future, more works are needed to improve the biosecurity and therapeutic efficacy of these modified IOLs. Full article
(This article belongs to the Special Issue Ophthalmic Drug Delivery, 2nd Edition)
Show Figures

Figure 1

9 pages, 251 KiB  
Article
Refractive Changes Following Premature Posterior Capsulotomy Using Neodymium:Yttrium–Aluminum–Garnet Laser
by Chia-Yi Lee, Tsai-Te Lu, Yaa-Jyuhn James Meir, Kuan-Jen Chen, Chun-Fu Liu, Chao-Min Cheng and Hung-Chi Chen
J. Pers. Med. 2022, 12(2), 272; https://doi.org/10.3390/jpm12020272 - 13 Feb 2022
Cited by 9 | Viewed by 2769
Abstract
We aimed to determine the timing of neodymium:yttrium–aluminum–garnet (Nd:YAG) laser capsulotomy on corrected-distance visual acuity (CDVA), intraocular pressure (IOP), and spherical equivalent (SE) in patients with posterior capsular opacification (PCO). There were 59 patients with unilateral PCO and a history of Nd:YAG laser [...] Read more.
We aimed to determine the timing of neodymium:yttrium–aluminum–garnet (Nd:YAG) laser capsulotomy on corrected-distance visual acuity (CDVA), intraocular pressure (IOP), and spherical equivalent (SE) in patients with posterior capsular opacification (PCO). There were 59 patients with unilateral PCO and a history of Nd:YAG laser capsulotomy enrolled and further divided into the early Nd:YAG group (timing < 12 months, n = 25) and late Nd:YAG group (timing > 12 months, n = 34) depending on the elapsed months from phacoemulsification to Nd:YAG laser capsulotomy. The primary outcomes were CDVA, IOP, and SE before (immediately before Nd:YAG laser capsulotomy) and after (weeks one and four after the laser treatment). The independent t test was applied to analyze the difference in CDVA, IOP, and SE between the two groups, while the generalized estimating equation with Bonferroni adjustment was conducted to evaluate the effect of all the parameters on the change in SE with adjusted odds ratio (aOR) and 95% confidence interval (CI). The CDVA showed significant improvement in both the early Nd:YAG group (p = 0.005) and the late Nd:YAG group (p = 0.001), and hyperopic change occurred in both the early Nd:YAG group (p = 0.003) and the late Nd:YAG group (p = 0.017). The early Nd:YAG group revealed more significant hyperopic change compared with the late Nd:YAG group four weeks after Nd:YAG treatment (p < 0.001), which was still significant after multivariable analysis (aOR: 0.899, 95% CI: 0.868–0.930, p = 0.011). In addition, a deeper ACD (aOR: 0.764, 95% CI: 0.671–0.869, p = 0.019) was significantly correlated with hyperopic change. In conclusion, Nd:YAG laser capsulotomy performed within one year after cataract surgery may lead to significant hyperopic change, in which the ACD alteration affects the hyperopic shift significantly. Full article
(This article belongs to the Section Clinical Medicine, Cell, and Organism Physiology)
12 pages, 1312 KiB  
Article
Nanogel-Facilitated In-Situ Delivery of a Cataract Inhibitor
by Dixa Gautam, Michelle G. Pedler, Devatha P. Nair and Jonathan Mark Petrash
Biomolecules 2021, 11(8), 1150; https://doi.org/10.3390/biom11081150 - 4 Aug 2021
Cited by 9 | Viewed by 2682
Abstract
Cataracts are a leading cause of blindness worldwide. Surgical removal of cataracts is a safe and effective procedure to restore vision. However, a large number of patients later develop vision loss due to regrowth of lens cells and subsequent degradation of the visual [...] Read more.
Cataracts are a leading cause of blindness worldwide. Surgical removal of cataracts is a safe and effective procedure to restore vision. However, a large number of patients later develop vision loss due to regrowth of lens cells and subsequent degradation of the visual axis leading to visual disability. This postsurgical complication, known as posterior capsular opacification (PCO), occurs in up to 30% of cataract patients and has no clinically proven pharmacological means of prevention. Despite the availability of many compounds capable of preventing early steps in PCO development, there is currently no effective means to deliver such therapies into the eye for a suitable duration. To model a solution to this unmet medical need, we fabricated acrylic substrates as intraocular lens (IOL) mimics scaled to place into the capsular bag of the mouse lens following a mock-cataract surgery. Substrates were coated with a hydrophilic crosslinked acrylate nanogel designed to elute Sorbinil, an aldose reductase inhibitor previously shown to suppress PCO. Insertion of the Sorbinil-eluting device into the lens capsule at the time of cataract surgery resulted in substantial prevention of cellular changes associated with PCO development. This model demonstrates that a cataract inhibitor can be delivered into the postsurgical lens capsule at therapeutic levels. Full article
(This article belongs to the Special Issue Aldose Reductase: Functions, Inhibitors and Molecular Mechanisms)
Show Figures

Figure 1

22 pages, 15722 KiB  
Review
Factors Affecting Posterior Capsule Opacification in the Development of Intraocular Lens Materials
by Grace Cooksley, Joseph Lacey, Marcus K. Dymond and Susan Sandeman
Pharmaceutics 2021, 13(6), 860; https://doi.org/10.3390/pharmaceutics13060860 - 10 Jun 2021
Cited by 34 | Viewed by 11073
Abstract
Posterior capsule opacification (PCO) is the most common complication arising from the corrective surgery used to treat cataract patients. PCO arises when lens epithelial cells (LEC) residing in the capsular bag post-surgery undergo hyper-proliferation and transdifferentiation into myofibroblasts, migrating from the posterior capsule [...] Read more.
Posterior capsule opacification (PCO) is the most common complication arising from the corrective surgery used to treat cataract patients. PCO arises when lens epithelial cells (LEC) residing in the capsular bag post-surgery undergo hyper-proliferation and transdifferentiation into myofibroblasts, migrating from the posterior capsule over the visual axis of the newly implanted intraocular lens (IOL). The developmental pathways underlying PCO are yet to be fully understood and the current literature is contradictory regarding the impact of the recognised risk factors of PCO. The aim of this review is firstly to collate the known biochemical pathways that lead to PCO development, providing an up-to-date chronological overview from surgery to established PCO formation. Secondly, the risk factors of PCO are evaluated, focussing on the impact of IOLs’ properties. Finally, the latest experimental model designs used in PCO research are discussed to demonstrate the ongoing development of clinical PCO models, the efficacy of newly developed IOL technology, and potential therapeutic interventions. This review will contribute to current PCO literature by presenting an updated overview of the known developmental pathways of PCO, an evaluation of the impact of the risk factors underlying its development, and the latest experimental models used to investigate PCO. Furthermore, the review should provide developmental routes for research into the investigation of potential therapeutic interventions and improvements in IOL design in the aid of preventing PCO for new and existing patients. Full article
(This article belongs to the Special Issue Ophthalmic Drug Delivery, 2nd Edition)
Show Figures

Figure 1

14 pages, 6873 KiB  
Article
β-Catenin/Smad3 Interaction Regulates Transforming Growth Factor-β-Induced Epithelial to Mesenchymal Transition in the Lens
by Aftab Taiyab, Julie Holms and Judith A. West-Mays
Int. J. Mol. Sci. 2019, 20(9), 2078; https://doi.org/10.3390/ijms20092078 - 27 Apr 2019
Cited by 47 | Viewed by 11063
Abstract
Cataracts are the leading cause of blindness worldwide. Although surgery is a successful method to restore vision loss due to cataracts, post-surgical complications can occur, such as secondary cataracts, also known as posterior capsular opacification (PCO). PCO arises when lens epithelial cells (LEC) [...] Read more.
Cataracts are the leading cause of blindness worldwide. Although surgery is a successful method to restore vision loss due to cataracts, post-surgical complications can occur, such as secondary cataracts, also known as posterior capsular opacification (PCO). PCO arises when lens epithelial cells (LEC) are left behind in the capsular bag following surgery and are induced to undergo epithelial to mesenchymal transition (EMT). Following EMT, LEC morphology and phenotype are altered leading to a loss of transparency and vision. Transforming growth factor (TGF)-β-induced signaling through both canonical, TGF-β/Smad, and non-canonical, β-catenin/Wnt and Rho/ROCK/MRTF-A, pathways have been shown to be involved in lens EMT, and thus PCO. However, the interactions between these signaling pathways in the lens have not been thoroughly explored. In the current study we use rat LEC explants as an ex vivo model, to examine the interplay between three TGF-β-mediated pathways using α-smooth muscle actin (α-SMA) as a molecular marker for EMT. We show that Smad3 inhibition via SIS3 prevents nuclear translocation of β-catenin and MRTF-A, and α-SMA expression, suggesting a key role of Smad3 in regulation of MRTF-A and β-catenin nuclear transport in LECs. Further, we demonstrate that inhibition of β-catenin/CBP interaction by ICG-001 decreased the amount of phosphorylated Smad3 upon TGF-β stimulation in addition to significantly decreasing the expression levels of TGF-β receptors, TBRII and TBRI. Overall, our findings demonstrate interdependence between the canonical and non-canonical TGF-β-mediated signaling pathways controlling EMT in the lens. Full article
(This article belongs to the Special Issue Epithelial-Mesenchymal Transition (EMT))
Show Figures

Graphical abstract

10 pages, 1870 KiB  
Article
Collective Migration of Lens Epithelial Cell Induced by Differential Microscale Groove Patterns
by Chunga Kwon, Youngjun Kim and Hojeong Jeon
J. Funct. Biomater. 2017, 8(3), 34; https://doi.org/10.3390/jfb8030034 - 9 Aug 2017
Cited by 11 | Viewed by 6775
Abstract
Herein, a micro-patterned cell adhesive surface is prepared for the future design of medical devices. One-dimensional polydimethylsiloxane (PDMS) micro patterns were prepared by a photolithography process. We investigated the effect of microscale topographical patterned surfaces on decreasing the collective cell migration rate. PDMS [...] Read more.
Herein, a micro-patterned cell adhesive surface is prepared for the future design of medical devices. One-dimensional polydimethylsiloxane (PDMS) micro patterns were prepared by a photolithography process. We investigated the effect of microscale topographical patterned surfaces on decreasing the collective cell migration rate. PDMS substrates were prepared through soft lithography using Si molds fabricated by photolithography. Afterwards, we observed the collective cell migration of human lens epithelial cells (B-3) on various groove/ridge patterns and evaluated the migration rate to determine the pattern most effective in slowing down the cell sheet spreading speed. Microgroove patterns were variable, with widths of 3, 5, and 10 µm. After the seeding, time-lapse images were taken under controlled cell culturing conditions. Cell sheet borders were drawn in order to assess collective migration rate. Our experiments revealed that the topographical patterned surfaces could be applied to intraocular lenses to prevent or slow the development of posterior capsular opacification (PCO) by delaying the growth and spread of human lens epithelial cells. Full article
(This article belongs to the Special Issue Journal of Functional Biomaterials: Feature Papers 2016)
Show Figures

Figure 1

Back to TopTop