Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (91)

Search Parameters:
Keywords = positron lifetime spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2288 KiB  
Article
Defect Studies in Thin-Film SiO2 of a Metal-Oxide-Silicon Capacitor Using Drift-Assisted Positron Annihilation Lifetime Spectroscopy
by Ricardo Helm, Werner Egger, Catherine Corbel, Peter Sperr, Maik Butterling, Andreas Wagner, Maciej Oskar Liedke, Johannes Mitteneder, Michael Mayerhofer, Kangho Lee, Georg S. Duesberg, Günther Dollinger and Marcel Dickmann
Nanomaterials 2025, 15(15), 1142; https://doi.org/10.3390/nano15151142 - 23 Jul 2025
Viewed by 274
Abstract
This work investigates the impact of an internal electric field on the annihilation characteristics of positrons implanted in a 180(10)nm SiO2 layer of a Metal-Oxide-Silicon (MOS) capacitor, using Positron Annihilation Lifetime Spectroscopy (PALS). By varying the gate voltage, [...] Read more.
This work investigates the impact of an internal electric field on the annihilation characteristics of positrons implanted in a 180(10)nm SiO2 layer of a Metal-Oxide-Silicon (MOS) capacitor, using Positron Annihilation Lifetime Spectroscopy (PALS). By varying the gate voltage, electric fields up to 1.72MV/cm were applied. The measurements reveal a field-dependent suppression of positronium (Ps) formation by up to 64%, leading to an enhancement of free positron annihilation. The increase in free positrons suggests that vacancy clusters are the dominant defect type in the oxide layer. Additionally, drift towards the SiO2/Si interface reveals not only larger void-like defects but also a distinct population of smaller traps that are less prominent when drifting to the Al/SiO2 interface. In total, by combining positron drift with PALS, more detailed insights into the nature and spatial distribution of defects within the SiO2 network and in particular near the SiO2/Si interface are obtained. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

23 pages, 1856 KiB  
Article
Comparative Evaluation of Gelatin and HPMC Inhalation Capsule Shells Exposed to Simulated Humidity Conditions
by Sabrina Magramane, Nikolett Kállai-Szabó, Dóra Farkas, Károly Süvegh, Romána Zelkó and István Antal
Pharmaceutics 2025, 17(7), 877; https://doi.org/10.3390/pharmaceutics17070877 - 3 Jul 2025
Viewed by 630
Abstract
Background/Objectives: This study investigates the impact of high humidity (25 °C, 75% relative humidity) on gelatin and hydroxypropyl methylcellulose (HPMC) capsules used in dry powder inhalers (DPIs), focusing on moisture dynamics, structural responses, and mechanical performance, with an emphasis on understanding how [...] Read more.
Background/Objectives: This study investigates the impact of high humidity (25 °C, 75% relative humidity) on gelatin and hydroxypropyl methylcellulose (HPMC) capsules used in dry powder inhalers (DPIs), focusing on moisture dynamics, structural responses, and mechanical performance, with an emphasis on understanding how different capsule types respond to prolonged exposure to humid conditions. Methods: Capsules were exposed to controlled humidity conditions, and moisture uptake was measured via thermal analysis. Visual observations of silica bead color changes were performed to assess moisture absorption, while surface wettability was measured using the sessile drop method. Hardness testing, mechanical deformation, and puncture tests were performed to evaluate structural and mechanical changes. Positron annihilation lifetime spectroscopy (PALS) was used to analyze free volume expansion. Results: HPMC capsules exhibited rapid moisture uptake, attributed to their lower equilibrium moisture content and ability to rearrange dynamically, preventing brittleness. In contrast, gelatin capsules showed slower moisture absorption but reached higher equilibrium levels, resulting in plasticization and softening. Mechanical testing showed that HPMC capsules retained structural integrity with minimal deformation, while gelatin capsules became softer and exhibited reduced puncture resistance. Structural analysis revealed greater free volume expansion in HPMC capsules, consistent with their amorphous nature, compared with gelatin’s semi-crystalline matrix. Conclusions: HPMC capsules demonstrated superior humidity resilience, making them more suitable for protecting moisture-sensitive active pharmaceutical ingredients (APIs) in DPI formulations. These findings underline the importance of appropriate storage conditions, as outlined in the Summary of Product Characteristics, to ensure optimal capsule performance throughout patient use. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

11 pages, 2750 KiB  
Article
Effect of Annealing on Vacancy-Type Defects and Heterogeneous Cu Precipitation Behavior in Fe60Cr12Mn8Cu15Mo3V2 Alloy
by Fengjiao Ye, Te Zhu, Peng Zhang, Peng Kuang, Haibiao Wu and Xingzhong Cao
Materials 2025, 18(11), 2613; https://doi.org/10.3390/ma18112613 - 3 Jun 2025
Viewed by 421
Abstract
This study systematically investigates the evolution of vacancy-type defects and heterogeneous Cu nanoprecipitates in an Fe60Cr12Mn8Cu15Mo3V2 (at%) multi-principal element alloy during thermal processing, utilizing Positron annihilation lifetime spectroscopy (PAS), coincidence Doppler broadening [...] Read more.
This study systematically investigates the evolution of vacancy-type defects and heterogeneous Cu nanoprecipitates in an Fe60Cr12Mn8Cu15Mo3V2 (at%) multi-principal element alloy during thermal processing, utilizing Positron annihilation lifetime spectroscopy (PAS), coincidence Doppler broadening (CDB) spectroscopy, and transmission electron microscopy (TEM). The results show that the alloy exhibited a dual-phase coexistence structure of Body-Centered Cubic (BCC) and Face-Centered Cubic (FCC). The CDB results show that the density of heterogeneous Cu precipitates gradually increases with annealing temperature. Compared to the as-cast alloy, the precipitates annealed at 773 K exhibit a significantly reduced size (approximately 33 nm) with higher density. The PAS results demonstrate that gradual migration and aggregation of monovacancies at 573 K form vacancy clusters, while contraction and dissociation of these clusters dominate at 673 K. Within the temperature range of 773–973 K, the dynamic equilibrium between the aggregation and decomposition of vacancy clusters maintains stable annihilation characteristics with minimal lifetime changes. Full article
Show Figures

Figure 1

18 pages, 9250 KiB  
Article
Defect-Engineered Z-Scheme Heterojunction of Fe-MOFs/Bi2WO6 for Solar-Driven CO2 Conversion: Synergistic Surface Catalysis and Interfacial Charge Dynamics
by Ting Liu, Yun Wu, Hao Wang, Jichang Lu and Yongming Luo
Nanomaterials 2025, 15(8), 618; https://doi.org/10.3390/nano15080618 - 17 Apr 2025
Viewed by 653
Abstract
The urgent need for sustainable CO2 conversion technologies has driven the development of advanced photocatalysts that harness solar energy. This study employs a CTAB-assisted solvothermal method to fabricate a Z-scheme heterojunction Fe-MOFs/VO-Bi2WO6 (FM/VO-BWO) for photocatalytic [...] Read more.
The urgent need for sustainable CO2 conversion technologies has driven the development of advanced photocatalysts that harness solar energy. This study employs a CTAB-assisted solvothermal method to fabricate a Z-scheme heterojunction Fe-MOFs/VO-Bi2WO6 (FM/VO-BWO) for photocatalytic CO2 reduction. Positron annihilation lifetime spectroscopy (PALS) was employed to confirm the existence of oxygen vacancies, while spherical aberration-corrected transmission electron microscope (STEM) characterization verified the successful construction of heterointerfaces. X-ray absorption fine structure (XAFS) spectra confirmed that the defect configuration and heterostructure changed the surface chemical valence state. The optimized 1.0FM/VO-BWO composite demonstrated exceptional photocatalytic performance, achieving CO and CH4 yields of 60.48 and 4.3 μmol/g, respectively, under visible-light 11.8- and 1.5-fold enhancements over pristine Bi2WO6. The enhanced performance is attributed to oxygen vacancy-induced active sites facilitating CO₂ adsorption/activation. In situ molecular spectroscopy confirmed the formation of critical CO2-derived intermediates (COOH* and CHO*) through surface interactions involving four-coordinated and two-coordinated hydrogen-bonded water molecules. Furthermore, the accelerated interfacial charge transfer efficiency mediated by the Z-scheme heterojunction has been conclusively demonstrated. This work establishes a paradigm for defect-mediated heterojunction design, offering a sustainable route for solar fuel production. Full article
Show Figures

Figure 1

17 pages, 11183 KiB  
Article
Multiscale Analysis of Defect Structures in Single-Crystalline CMSX-4 Superalloys
by Robert Paszkowski, Sławomir Kołodziej, Mirosława Pawlyta and Beata Chrząszcz
Materials 2025, 18(8), 1819; https://doi.org/10.3390/ma18081819 - 16 Apr 2025
Viewed by 471
Abstract
An analysis of defects creation in the vicinity of the selector-root connection plane in single-crystalline turbine blades made of CMSX-4 Ni-base superalloy was performed using several experimental methods. A coupling of scanning electron microscopy and X-ray diffraction topography allowed the visualization of dendritic [...] Read more.
An analysis of defects creation in the vicinity of the selector-root connection plane in single-crystalline turbine blades made of CMSX-4 Ni-base superalloy was performed using several experimental methods. A coupling of scanning electron microscopy and X-ray diffraction topography allowed the visualization of dendritic arrays and surface defects in the root part of the blades. As a result, contrast inversions and areas where internal stresses occur were observed. The defects on a microscopic scale were characterized using positron annihilation lifetime spectroscopy and transmission electron microscopy. The registered positron lifetimes, above 0.5 ns, beyond the range characteristic for defects generally reported in metals and their alloys suggest the presence extremely large void type defects. Herein, we have identified large defects, ca. 2–5 nm in diameter, formed due to the contraction of fluid metal, captured in inter-dendritic regions during the liquid-to-solid transition. This work is a precursor to the almost untouched area of the discussion of lifetimes characteristic for positron bound states, called positronium (>0.5 ns) in relation to the morphology of void-type defects in single-crystalline superalloys. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

15 pages, 3265 KiB  
Article
Effect of Silane Coupling Agents on Structure and Properties of Carbon Fiber/Silicon Rubber Composites Investigated by Positron Annihilation Spectroscopy
by Jie Gao, Jiaming Mei, Houhua Xiong and Xiaobing Han
Molecules 2025, 30(8), 1658; https://doi.org/10.3390/molecules30081658 - 8 Apr 2025
Viewed by 679
Abstract
The type of silane coupling agent (SCA) has an important influence on carbon fiber (CF) modification efficiency and the properties of the obtained CF-based polymer composites. To quantitatively reveal the effects of SCA type, three kinds of SCA (γ-aminopropyl triethoxylsilane, γ-glycidoxypropyl trimethoxylsilane, and [...] Read more.
The type of silane coupling agent (SCA) has an important influence on carbon fiber (CF) modification efficiency and the properties of the obtained CF-based polymer composites. To quantitatively reveal the effects of SCA type, three kinds of SCA (γ-aminopropyl triethoxylsilane, γ-glycidoxypropyl trimethoxylsilane, and γ-methacryloxy propyl trimethoxylsilane)-modified CF-incorporated silicon rubber (SR) composites were prepared. The microstructure (free volume characteristic and interfacial interaction) of the obtained CF/SR composites was revealed by positron annihilation lifetime spectroscopy (PALS). Based on the results of mechanical, electrical, and thermal properties, the relationship between microstructure and performance was established. This investigation provides a powerful approach to the quantitative description of polymer composite microstructures, which will benefit the construction of structure–property relationships and high-performance polymer composites. Full article
Show Figures

Graphical abstract

16 pages, 4499 KiB  
Article
Change in Thermodynamic Entropy and Free Volume of Epoxy Resin During Tensile Deformation
by Takuma Inoue, Yutaka Oya, Jun Koyanagi and Takenobu Sakai
Polymers 2025, 17(4), 477; https://doi.org/10.3390/polym17040477 - 12 Feb 2025
Viewed by 889
Abstract
The relationship between thermodynamic entropy generation and free volume changes during the tensile deformation of epoxy resin was investigated. Thermodynamic entropy generation was evaluated using differential scanning calorimetry (DSC) for samples at various strain levels, while free volume changes were measured with positron [...] Read more.
The relationship between thermodynamic entropy generation and free volume changes during the tensile deformation of epoxy resin was investigated. Thermodynamic entropy generation was evaluated using differential scanning calorimetry (DSC) for samples at various strain levels, while free volume changes were measured with positron annihilation lifetime spectroscopy (PALS). Volumetric strain was assessed through the digital image correlation (DIC) method. The results showed that both thermodynamic entropy and free volume increase during tensile deformation, and the average free volume radius becomes more uniform. It was observed that thermodynamic entropy generation and free volume each exhibit a linear relationship with volumetric strain. Additionally, thermodynamic entropy generation increased linearly with free volume. These findings suggest that the increase in thermodynamic entropy during tensile deformation is attributed to irreversible changes, such as the expansion of free volume within the material. Full article
Show Figures

Figure 1

28 pages, 5162 KiB  
Article
Post Neutron Irradiation Recovery and Recrystallization of ITER Grade Forged Tungsten Bar
by Dimitrios Papadakis, Efthimios Manios and Konstantina Mergia
Metals 2025, 15(2), 172; https://doi.org/10.3390/met15020172 - 8 Feb 2025
Viewed by 1027
Abstract
Defect recovery and recrystallization studies of neutron-irradiated tungsten (W) addressing the microstructural evolution in relation to the mechanical properties, provide valuable insight into defect interactions and annihilation processes. Understanding these mechanisms can aid in the development of effective healing processes, potentially extending the [...] Read more.
Defect recovery and recrystallization studies of neutron-irradiated tungsten (W) addressing the microstructural evolution in relation to the mechanical properties, provide valuable insight into defect interactions and annihilation processes. Understanding these mechanisms can aid in the development of effective healing processes, potentially extending the lifespan of fusion reactor components. Additionally, this research helps to elucidate how neutron exposure alters the behaviour of materials used in fusion reactor components, contributing to improved design and durability. Within this framework, an ITER grade forged W bar was neutron irradiated to a damage of 0.21 displacements per atom at 600 °C and subsequently isochronally annealed from 700 up to 1550 °C in 50 °C steps. Irradiation causes the formation of dislocation loops and vacancy clusters as well as the formation of Re and Os transmutation products, leading to a 35% increase in hardness and a 23% increase in resistivity. The evolution of the microstructure after isochronal annealing is investigated through positron annihilation lifetime spectroscopy, X-ray diffraction, resistivity, and Vickers hardness measurements. The total dislocation line density as well as the number density and size of voids are determined as a function of annealing temperature. Specifically, the critical resolved stresses of dislocations and voids are correlated with their densities and distinct recovery stages are identified. The kinetics of defect annihilation are discussed in relation to the annealing temperature. Nearly complete dislocation annihilation occurs after annealing at 1300 °C, followed by complete void dissolution and recrystallization at 1450 °C. Full article
(This article belongs to the Special Issue Radiation Damage in Metallic Systems for Fusion Energy Applications)
Show Figures

Figure 1

18 pages, 4538 KiB  
Article
Molecular Network Polyamorphism in Mechanically Activated Arsenic Selenides Under Deviation from As2Se3 Stoichiometry
by Oleh Shpotyuk, Zdenka Lukáčová Bujňáková, Peter Baláž, Yaroslav Shpotyuk, Malgorzata Hyla, Andrzej Kozdras, Adam Ingram, Vitaliy Boyko, Pavlo Demchenko and Andriy Kovalskiy
Molecules 2025, 30(3), 642; https://doi.org/10.3390/molecules30030642 - 31 Jan 2025
Cited by 2 | Viewed by 897
Abstract
Polyamorphic transitions driven by high-energy mechanical milling (nanomilling) are studied in thioarsenide As4Sen-type glassy alloys obtained by melt quenching deviated from arsenic triselenide As2Se3 stoichiometry towards tetraarsenic pentaselenide (g-As4Se5) and tetraarsenic tetraselenide [...] Read more.
Polyamorphic transitions driven by high-energy mechanical milling (nanomilling) are studied in thioarsenide As4Sen-type glassy alloys obtained by melt quenching deviated from arsenic triselenide As2Se3 stoichiometry towards tetraarsenic pentaselenide (g-As4Se5) and tetraarsenic tetraselenide (g-As4Se4). This employs a multiexperimental approach based on powder X-ray diffraction (XRD) analysis complemented by thermophysical heat transfer, micro-Raman scattering (micro-RS) spectroscopy, and revised positron annihilation lifetime (PAL) analysis. Microstructure scenarios of these nanomilling-driven transformations in arsenoselenides are identified by quantum-chemical modeling using the authorized modeling code CINCA (the Cation Interlinked Network Cluster Approach). A straightforward interpretation of a medium-range structure response of a nanomilling-driven polyamorphism in the arsenoselenides is developed within the modified microcrystalline model. Within this model, the diffuse peak-halos arrangement in the XRD patterning is treated as a superposition of the Bragg-diffraction contribution from inter-planar correlations supplemented by the Ehrenfest-diffraction contribution from inter-atomic (inter-molecular) correlations related to derivatives of network As2Se3-type and molecular As4Se4-type conformations. Changes in the medium-range structure of examined glassy arsenoselenides subjected to nanomilling occur as an interplay between disrupted intermediate-range ordering and enhanced extended-range ordering. The domination of network-forming conformations in arsenoselenides deviated from As2Se3 stoichiometry (such as g-As4Se5) results in rather slight changes in their calorimetric heat-transfer and micro-RS responses. At the atomic-deficient level probed by PAL spectroscopy, these changes are accompanied by reduced positron trapping rate of agglomerated multiatomic vacancies and vacancy-type clusters in an amorphous As-Se network. Under an increase in As content beyond the g-As4Se5 composition approaching g-As4Se4, nanomilling-driven polyamorphic transitions, which can be classified as reamorphization (amorphous I-to-amorphous II) phase transitions, are essentially enhanced due to the higher molecularity of these glassy alloys enriched in thioarsenide-type As4Se4 cage-like molecular entities and their low-order network-forming derivatives. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 2nd Edition)
Show Figures

Figure 1

54 pages, 16154 KiB  
Article
Effect of rPET Content and Preform Heating/Cooling Conditions in the Stretch Blow Molding Process on Microcavitation and Solid-State Post-Condensation of vPET-rPET Blend: Part II—Statistical Analysis and Interpretation of Tests
by Paweł Wawrzyniak, Waldemar Karaszewski, Marta Safandowska and Rafał Idczak
Materials 2025, 18(1), 36; https://doi.org/10.3390/ma18010036 - 25 Dec 2024
Viewed by 792
Abstract
This research explores how varying proportions of virgin polyethylene terephthalate (vPET) and recycled polyethylene terephthalate (rPET) in vPET-rPET blends, combined with preform thermal conditions during the stretch blow molding (SBM) process, influence PET bottles’ microscopic characteristics. Key metrics such as viscosity, density, crystallinity, [...] Read more.
This research explores how varying proportions of virgin polyethylene terephthalate (vPET) and recycled polyethylene terephthalate (rPET) in vPET-rPET blends, combined with preform thermal conditions during the stretch blow molding (SBM) process, influence PET bottles’ microscopic characteristics. Key metrics such as viscosity, density, crystallinity, amorphous phase relaxation, and microcavitation were assessed using response surface methodology (RSM). Statistical analysis, including Analysis of variance (ANOVA) and its power, supported the interpretation of results. The first part of the work details the experimental design and statistical methods. Positron annihilation lifetime spectroscopy (PALS) and amorphous phase density analysis revealed reduced free volume size, a substantial increase in free volume quantity, and a transformation toward ellipsoidal geometries, highlighting significant structural changes in the material. At the same time, the intrinsic viscosity (IV) and PALS studies indicate that the solid-state post-condensation effect (SSPC) is linked with microcavitation through post-condensation product diffusion. The conclusions, which resulted from the microstructure analysis, affected the material’s mechanical strength and were validated by pressure resistance tests of the bottles. Full article
Show Figures

Graphical abstract

22 pages, 6284 KiB  
Review
Current Positron Studies on the Modifications of the Molecular Packing in Green-Based Polymers Through Changes in the Synthesis Procedures or Environmental Conditions
by Giovanni Consolati, Carlos Macchi and Alberto Somoza
Polymers 2024, 16(24), 3611; https://doi.org/10.3390/polym16243611 - 23 Dec 2024
Viewed by 972
Abstract
The sensitivity of positron annihilation characteristics to changes in the molecular packing in network-forming polymers has been demonstrated since the early 1980s. Positron annihilation lifetime spectroscopy (PALS) is a unique technique that can provide direct information on the free volume in polymers through [...] Read more.
The sensitivity of positron annihilation characteristics to changes in the molecular packing in network-forming polymers has been demonstrated since the early 1980s. Positron annihilation lifetime spectroscopy (PALS) is a unique technique that can provide direct information on the free volume in polymers through the experimental parameters of the free volume hole distribution, their mean value, and volume fraction. This knowledge is currently applied for PALS investigations on the main processes that govern the molecular organization in some green polymers when subjected to different synthesis procedures or environmental conditions (humidity, physical aging, temperature). In this article, which includes a wide repertoire of works published in the last two decades, results of PALS studies on eco-sustainable polymer systems based on starch, chitosan, or vegetable oils, are analyzed and discussed. Many examples are taken from the direct experience of the authors. Full article
Show Figures

Figure 1

19 pages, 4522 KiB  
Article
Study of Water Resistance of Polyurethane Coatings Based on Microanalytical Methods
by Chao Xie, Yufeng Shi, Zhuozhuo Si, Ping Wu, Binqiang Sun and Wenzhe Ma
Polymers 2024, 16(24), 3529; https://doi.org/10.3390/polym16243529 - 18 Dec 2024
Viewed by 1823
Abstract
This study investigates the effect of microstructural changes in polyurethane coatings on their water resistance properties. Polyurethane coatings with varying diluent contents were prepared and tested for water penetration resistance and mechanical property retention. The time-dependent behavior of water within the coatings at [...] Read more.
This study investigates the effect of microstructural changes in polyurethane coatings on their water resistance properties. Polyurethane coatings with varying diluent contents were prepared and tested for water penetration resistance and mechanical property retention. The time-dependent behavior of water within the coatings at different immersion durations was analyzed using low-field nuclear magnetic resonance (NMR). Furthermore, the free volume and characteristic molecular groups of each coating were analyzed using microscopic techniques, including positron annihilation lifetime spectroscopy (PALS) and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR−FTIR). Results indicate that diluent content significantly alters the microstructure of the coatings. With increasing diluent content, both the average pore volume and free volume fraction initially decrease and then increase, while characteristic molecular groups, including hydrophilic groups, gradually decline. The water resistance performance of the coatings was significantly influenced by the combined effects of free volume and characteristic molecular groups. Among the five tested coating formulations, coatings with diluent contents of 20% and 25% showed a superior water penetration resistance, higher retention of mechanical properties after immersion, and relatively low total content of bound and free water at all immersion ages. The entropy weight method and the equal weight method were used to assess the overall water resistance, with the following ranking of scores: f20 > f25 > f30 > f15 > f10. This study offers theoretical support to guide the design and practical application of polyurethane coatings in real-world engineering projects. Full article
Show Figures

Graphical abstract

21 pages, 7965 KiB  
Article
Investigation of the Impact of an Electric Field on Polymer Electrolyte Membranes for Fuel Cell Applications
by Hamdy F. M. Mohamed, Esam E. Abdel-Hady, Mohamed H. M. Hassanien and Wael M. Mohammed
Physics 2024, 6(4), 1345-1365; https://doi.org/10.3390/physics6040083 - 17 Dec 2024
Viewed by 1442
Abstract
A systematic study was carried out on Nafion® 112 membranes to evaluate the effects of different electric field strengths on the structural and electrical properties of the membranes. The membranes were subjected to different electric field strengths (0, 40, 80, and 140 [...] Read more.
A systematic study was carried out on Nafion® 112 membranes to evaluate the effects of different electric field strengths on the structural and electrical properties of the membranes. The membranes were subjected to different electric field strengths (0, 40, 80, and 140 MV/m) at a temperature of 90 °C. Proton conductivity was measured using an LCR meter, revealing that conductivity values varied with the electric field strengths, with the optimal conductivity observed at 40 MV/m. Positron annihilation lifetime (PAL) spectroscopy provided insights into the free volume structure of the membranes, showing an exponential increase in the hole volume size as the electric field strength increased. It was also found that the positronium intensity of the Nafion® 112 membranes was influenced by their degree of crystallinity, which decreased with higher electric field strengths. This indicates complex interactions between structural changes and the effects of the electric field. Dielectric studies of the membranes were characterized over a frequency range of 50 Hz to 5 MHz, demonstrating adherence to Jonscher’s law. The Jonscher’s power law’s s-parameter values increased with the electric field strength, suggesting a transition from a hopping conduction mechanism to more organized ionic transport. Overall, the study emphasizes the relationship between the free volume, crystallinity, and macroscopic characteristics, such as ionic conductivity. The study highlights the potential to adjust membrane performance by varying the electric field. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

24 pages, 2964 KiB  
Review
Cavitation and Solid-State Post-Condensation of Polyethylene Terephthalate: Literature Review
by Paweł Wawrzyniak, Waldemar Karaszewski and Artur Różański
Materials 2024, 17(22), 5637; https://doi.org/10.3390/ma17225637 - 18 Nov 2024
Cited by 3 | Viewed by 1333
Abstract
Polyethylene terephthalate (PET) is widely used in bottle production by stretch blow molding processes (SBM processes) due to its cost-effectiveness and low environmental impact. The presented literature review focuses on microcavitation and solid-state post-condensation effects that occur during the deformation of PET in [...] Read more.
Polyethylene terephthalate (PET) is widely used in bottle production by stretch blow molding processes (SBM processes) due to its cost-effectiveness and low environmental impact. The presented literature review focuses on microcavitation and solid-state post-condensation effects that occur during the deformation of PET in the SBM process. The literature review describes cavitation and microcavitation effects in PET material and solid-state post-condensation of PET on the basis of a three-phase model of the PET microstructure. A three-phase model of PET microstructure (representing the amorphous phase in two ways, depending on the ratio of the trans-to-gauche conformation of the PET macromolecule and the amount of free volume) with a nucleation process, a crystallization process, and the use of positron annihilation lifetime spectroscopy (PALS) to analyze PET microstructure are discussed in detail. The conceptual model developed based on the literature combines solid-state post-condensation with microcavitation via the diffusion of the post-condensation product. This review identifies the shortcomings of the developed conceptual model and presents them with five hypotheses, which will be the basis for further research. Full article
Show Figures

Figure 1

17 pages, 9346 KiB  
Article
Serrated Flow Behavior in Commercial 5019 Aluminum Alloy
by Ewa Dryzek, Mirosław Wróbel, Stanisław Dymek, Mateusz Kopyściański, Piotr Uliasz and Piotr Wokurka
Coatings 2024, 14(11), 1402; https://doi.org/10.3390/coatings14111402 - 4 Nov 2024
Cited by 1 | Viewed by 1211
Abstract
Serrated flow effects are visible on a metal surface even after coating. Thus, they are undesirable to manufacturers and product users. To meet the expectations of the industry, research on the conditions for serrated flow occurrence in 5019 aluminum alloy was carried out [...] Read more.
Serrated flow effects are visible on a metal surface even after coating. Thus, they are undesirable to manufacturers and product users. To meet the expectations of the industry, research on the conditions for serrated flow occurrence in 5019 aluminum alloy was carried out and the results were collected in the current paper. Thus, the influence of the alloy initial microstructure due to different tempers as well as plastic deformation conditions, i.e., strain rate and temperature, on the alloy stress–strain behavior was determined. Two tempers were considered: the as-fabricated F-temper and the W-temper (i.e., quenched in water after annealing at 500 °C). The synergic influence of these tempers and their tensile test conditions on the serration behavior of the stress–strain curves, i.e., the stress drop and reloading time, were also determined and categorized. Structural and X-ray diffraction studies rationalized the stress–strain characteristics according to dynamic strain aging models with positron annihilation lifetime spectroscopy providing insight into the role of lattice defects (i.e., dislocations and vacancies). The map of the serrated flow domain allowed us to obtain the activation energy of the onset of the Portevin–Le Chatelier effect equal to 56 kJ/mol. It is close to the activation energy for the pipe diffusion mechanism, obtained by applying the model formulated originally for Type B stress serration. Full article
Show Figures

Figure 1

Back to TopTop