Molecular Network Polyamorphism in Mechanically Activated Arsenic Selenides Under Deviation from As2Se3 Stoichiometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nanostructurization-Driven Medium-Range Structural Changes in Glassy Arsenoselenides Under Minor Deviation from As2Se3 Stoichiometry
2.2. Thermophysical Heat Transfer and Micro-RS Response in Glassy Arsenoselenides Under Minor Deviation from As2Se3 Stoichiometry
2.3. Atomic-Deficient Microstructure of the Examined Glassy Arsenoselenides
2.4. Network- vs. Molecular-Forming Clustering in Nanostructured Glassy Arsenoselenides Under Small Deviation from As2Se3 Stoichiometry
3. Materials and Methods
3.1. Preparation of Glassy Arsenoselenides and Their Mechanical Activation
3.2. Medium-Range Structural Changes in Molecular Network Arsenoselenides
3.3. Atomic-Specific Microstructure Response on Polyamorphism in Glassy Arsenoselenides
3.4. Atomic-Deficient Probing of Molecular Network Disproportionality in Glassy Arsenoselenides
3.5. Cluster Modeling of Molecular and Network Structural Conformations in Arsenoselenides
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feltz, A.; Aust, H.; Blayer, A. Glass formation and properties of chalcogenide systems XXVI: Permittivity and the structure of glasses AsxSe1-x and GexSe1-x. J. Non-Cryst. Solids 1983, 55, 179–190. [Google Scholar] [CrossRef]
- Feltz, A. Amorphous Inorganic Materials and Glasses; VCH: Weinheim, Germany, 1993; pp. 1–446. [Google Scholar]
- Yang, G.; Bureau, B.; Rouxel, T.; Gueguen, Y.; Gulbiten, O.; Roiland, C.; Soignard, E.; Yarger, J.L.; Troles, J.; Sangleboeuf, J.-C.; et al. Correlation between structure and physical properties of chalcogenide glasses in the AsxSe1−x system. Phys. Rev. B 2010, 82, 195206. [Google Scholar] [CrossRef]
- Adam, J.-L.; Zhang, X. Chalcogenide Glasses: Preparation, Properties and Application; Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing: Philadelphia, PA, USA; New Delhi, India, 2013; pp. 1–717. [Google Scholar]
- Shpotyuk, Y.; Boussard-Pledel, C.; Bureau, B.; Demchenko, P.; Szlezak, J.; Cebulski, J.; Bujňáková, Z.; Baláž, P.; Shpotyuk, O. Effect of high-energy mechanical milling on the FSDP-related XRPD correlations in Se-rich glassy arsenic selenides. J. Phys. Chem. Sol. 2019, 124, 318–326. [Google Scholar] [CrossRef]
- Shpotyuk, Y.; Demchenko, P.; Bujňáková, Z.; Baláž, P.; Boussard-Pledel, C.; Bureau, B.; Shpotyuk, O. Effect of high-energy mechanical milling on the medium-range ordering in glassy As-Se. J. Am. Ceram. Soc. 2020, 103, 1631–1646. [Google Scholar] [CrossRef]
- Shpotyuk, Y.; Demchenko, P.; Shpotyuk, O.; Balitska, V.; Boussard-Pledel, C.; Bureau, B.; Lukáčová Bujňáková, Z.; Baláž, P. High-energy mechanical milling-driven reamorphization in glassy arsenic monoselenide g-AsSe: On the path tailoring special molecular-network glasses. Materials 2021, 14, 4478. [Google Scholar] [CrossRef]
- Shpotyuk, O.; Hyla, M.; Shpotyuk, Y.; Lukáčová Bujňáková, Z.; Baláž, P.; Demchenko, P.; Kozdras, A.; Boyko, V.; Kovalskiy, A. Molecular-Network Transformations in Tetra-Arsenic Triselenide Glassy Alloys Tuned within Nanomilling Platform. Molecules 2024, 29, 3245. [Google Scholar] [CrossRef]
- Bonazzi, P.; Bindi, L. A crystallographic review of arsenic sulfides: Effects of chemical variations and changes induced by exposure to light. Z. Kristallogr. 2008, 223, 132–147. [Google Scholar] [CrossRef]
- Gibbs, G.V.; Wallace, A.F.; Downs, R.T.; Ross, N.L.; Cox, D.F.; Rosso, K.M. Thioarsenides: A case for long-range Lewis acid–base-directed van der Waals interactions. Phys. Chem. Miner. 2010, 38, 267–291. [Google Scholar] [CrossRef]
- Okamoto, H. As-Se (Arsenic-Selenium). J. Phase Equilibria 1998, 19, 488. [Google Scholar] [CrossRef]
- Blachnik, R.; Wickel, U. Thermal behaviour of A4B3 cage molecules (A = P, As; B = S, Se). Thermochim. Acta 1984, 81, 185–196. [Google Scholar] [CrossRef]
- Sen, S.; Gaudio, S.; Aitken, B.G.; Lesher, C.E. Observation of a pressure-induced first-order polyamorphic transition in a chalcogenide glass at ambient temperature. Phys. Rev. Lett. 2006, 97, 025504. [Google Scholar] [CrossRef] [PubMed]
- Properzi, L.; Santoro, M.; Minicucci, M.; Iesari, F.; Ciambezi, M.; Nataf, L.; Le Godec, Y.; Irifune, T.; Baudelet, F.; Di Cicco, A. Structural evolution mechanisms of amorphous and liquid As2Se3 at high pressures. Phys. Rev. B 2016, 93, 214205. [Google Scholar] [CrossRef]
- Shpotyuk, O.; Ingram, A.; Boussard-Pledel, C.; Bureau, B.; Lukáčová Bujňáková, Z.; Baláž, P.; Mahlovanyi, B.; Shpotyuk, Y. The art of Positronics in contemporary nanomaterials science: A case study of sub-nanometer scaled glassy arsenoselenides. Materials 2022, 15, 302. [Google Scholar] [CrossRef] [PubMed]
- Shpotyuk, O.; Hyla, M.; Boyko, V. Compositionally-dependent structural variations in glassy chalcogenides: The case of binary As-Se system. Comput. Mater. Sci. 2015, 110, 144–151. [Google Scholar] [CrossRef]
- Cherin, P.; Unger, P. The Crystal Structure of Trigonal Selenium. Inorg. Chem. 1967, 6, 1589–1591. [Google Scholar] [CrossRef]
- Stergiou, A.C.; Rentzeperis, P.J. The crystal structure of arsenic selenide, As2Se3. Zeitsch. Krist. 1985, 173, 185–191. [Google Scholar] [CrossRef]
- Renninger, A.L.; Averbach, B.L. Crystalline structures of As2Se3 and As4Se4. Acta Cryst. B 1973, 29, 1583–1589. [Google Scholar] [CrossRef]
- Bastow, T.J.; Whitfield, H.J.J. Crystal structure of tetra-arsenic tetraselenide. Chem. Soc. Dalton Trans. 1973, 17, 1739–1740. [Google Scholar] [CrossRef]
- Smail, E.J.; Sheldrick, G.M. Tetra-arsenic tetraselenide. Acta Cryst. B 1973, 29, 2014–2016. [Google Scholar] [CrossRef]
- Bastow, T.J.; Whitfied, H.J. Crystal data and nuclear quadrupole resonance spectra of tetra-arsenic triselenide. J. Chem. Soc. Dalton Trans. 1977, 10, 959–961. [Google Scholar] [CrossRef]
- Greaves, G.N.; Elliott, S.R.; Davis, E.A. Amorphous arsenic. Adv. Phys. 1979, 28, 49–141. [Google Scholar] [CrossRef]
- Hu, Y.; Liang, J.; Xia, Y.; Zhao, C.; Jiang, M.; Ma, J.; Tie, Z.; Jin, Z. 2D Arsenene and Arsenic Materials: Fundamental Properties, Preparation, and Applications. Small 2021, 18, 2104556. [Google Scholar] [CrossRef] [PubMed]
- Zeidler, A.; Salmon, P.S. Pressure-driven transformation of the ordering in amorphous network-forming materials. Phys. Rev. B 2016, 93, 214204. [Google Scholar] [CrossRef]
- Salmon, P.S. Real space manifestation of the first sharp diffraction peak in the structure factor of liquid and glassy materials. Proc. R. Soc. Lond. A 1994, 445, 351–365. [Google Scholar]
- Elliott, S.R. Extended-range order, interstitial voids and the first sharp diffraction peak of network glasses. J. Non-Cryst. Solids 1995, 182, 40–48. [Google Scholar] [CrossRef]
- Elliott, S.R. Second sharp diffraction peak in the structure factor of binary covalent network glasses. Phys. Rev. B 1995, 51, 8599–8601. [Google Scholar] [CrossRef]
- Schawe, J.E.K.; Hutter, T.; Heitz, C.; Alig, I.; Lellinger, D. Stochastic temperature modulation: A new technique in temperature-modulated DSC. Thermochim. Acta 2006, 446, 147–155. [Google Scholar] [CrossRef]
- Fraga, I.; Montserrat, S.; Hutchinson, J. TOPEM, a new temperature modulated DSC technique. Application to the glass transition of polymers. J. Therm. Anal. Calorim. 2007, 87, 119–124. [Google Scholar] [CrossRef]
- Pielichowska, K.; Krol, P.; Krol, B.; Pagacz, J. TOPEM DSC study of glass transition region of polyurethane cationomers. Thermochim. Acta 2016, 545, 187–193. [Google Scholar] [CrossRef]
- Kozdras, A.; Shpotyuk, O.; Mahlovanyi, B.; Shpotyuk, Y.; Kovalskiy, A. Thermodynamic heat-transfer phenomena in nanostructured glassy substances: A comparative study on g-As5Se95 and g-As55Se45. J. Therm. Anal. Calorim. 2023, 148, 2265–2271. [Google Scholar] [CrossRef]
- Thornburg, D.D.; Johnson, R.J. Thermal analysis of bulk amorphous arsenic triselenide. J. Non-Cryst. Solids. 1975, 17, 2–8. [Google Scholar] [CrossRef]
- Kut’in, A.M.; Shiryaev, V.S.; Plekhovich, A.D.; Plekhovich, S.D. Calorimetric and volumetric functions of AsxSe1-x (x=0.3-0.5) glasses and their model representation. J. Therm. Anal. Calorim. 2019, 139, 1443–1452. [Google Scholar] [CrossRef]
- Lucovsky, G. Optic modes in amorphous As2S3 and As2Se3. Phys. Rev. B 1972, 6, 1480–1489. [Google Scholar] [CrossRef]
- Kovanda, V.; Vlcek, M.; Jain, H. Structure of As-Se and As-P-Se glasses studied by Raman spectroscopy. J. Non-Cryst. Solids 2003, 326–327, 88–92. [Google Scholar] [CrossRef]
- Shpotyuk, O.; Golovchak, R.; Ingram, A.; Boyko, V.; Shpotyuk, L. Comparative study of extended free-volume defects in As- and Ge-based glassy semiconductors: Theoretical prediction and experimental probing with PAL technique. Phys. Stat. Solidi C 2013, 10, 117–120. [Google Scholar] [CrossRef]
- Shpotyuk, O.; Hyla, M.; Boyko, V.; Shpotyuk, Y.; Balitska, V. Cluster modeling of nanostructurization-driven reamorphization pathways in glassy arsenoselenides: A case study of arsenic monoselenide g-AsSe. J. Nanoparticle Res. 2022, 24, 64. [Google Scholar] [CrossRef]
- Roisnel, T.; Rodriguez-Carvajal, J. WinPLOTR: A Windows tool for powder diffraction pattern analysis. Mater. Sci. Forum 2001, 118, 378–381. [Google Scholar] [CrossRef]
- Kraus, W.; Nolze, G. POWDER CELL—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Cryst. 1996, 29, 301–303. [Google Scholar] [CrossRef]
- Feng, R.; Stachurski, Z.H.; Rodrigues, M.D.; Kluth, P.; Araujo, L.L.; Bulla, D.; Ridway, M.C. X-ray scattering from amorphous solids. J. Non-Cryst. Solids 2013, 383, 21–27. [Google Scholar] [CrossRef]
- Ehrenfest, P. On interference phenomena to be expected when Roentgen rays pass through a diatomic gas. Proc. KNAW 1915, 17, 1184–1190. [Google Scholar]
- Kansy, J. Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl. Instrum. Methods Phys. Res. Sect. A 1996, 374, 235–244. [Google Scholar] [CrossRef]
- Krause-Rehberg, R.; Leipner, H. Positron Annihilation in Semiconductors: Defect Studies; Springer: Berlin/Heidelberg, Germany, 1999; pp. 1–350. [Google Scholar]
- Tuomisto, F.; Makkonen, I. Defect identification in semiconductors with positron annihilation: Experiment and theory. Rev. Mod. Phys. 2013, 85, 1583–1631. [Google Scholar] [CrossRef]
- Jean, Y.C.; Mallon, P.E.; Schrader, D.M. Principles and Application of Positron and Positronium Chemistry; World Scientific Publishing Co Pte Ltd.: Hackensack, NJ, USA; London, UK; Singapore; Hong Kong, China, 2003; pp. 1–406. [Google Scholar]
- Hehre, W.J.; Stewart, R.F.; Pople, J.A. Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of slater-type atomic orbitals. J. Chem. Phys. 1969, 51, 2657–2665. [Google Scholar] [CrossRef]
- McLean, A.D.; Chandler, G.S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J. Chem. Phys. 1980, 72, 5639–5648. [Google Scholar] [CrossRef]
- Jackson, K. Electric fields in electronic structure calculations: Electric polarizabilities and IR and Raman spectra from first principles. Phys. Stat. Solidi B 2000, 217, 293–310. [Google Scholar] [CrossRef]
- Holomb, R.; Veres, M.; Mitsa, V. Ring-, branchy-, and cage-like AsnSm nanoclusters in the structure of amorphous semiconductors: Ab initio and Raman study. J. Optoelectron. Adv. Mater. 2009, 11, 917–923. Available online: https://dspace.uzhnu.edu.ua/jspui/bitstream/lib/4320/1/14_OptAdvMat-2009.pdf (accessed on 24 January 2025).
- Phillips, J.C. Topology of covalent non-crystalline solids. I: Short-range order in chalcogenide alloys. J. Non-Cryst. Solids 1979, 34, 153–181. [Google Scholar] [CrossRef]
- Thorpe, M.F. Continuous deformations in random networks. J. Non-Cryst. Solids 1983, 57, 355–370. [Google Scholar] [CrossRef]
- Thorpe, M.F. Bulk and surface floppy modes. J. Non-Cryst. Solids 1995, 182, 135–142. [Google Scholar] [CrossRef]
Glassy Arsenoselenides | The FSDP Position | The FSDP Width | Characteristic Distance | Correlation Length | Interatomic Distance | |||
---|---|---|---|---|---|---|---|---|
Composi-tion, ref. | state | θ, °2θ | Q1, Å−1 | Δθ, °2θ | ΔQ1, Å−1 | R, Å | L, Å | ds, Å |
g-As2Se3, [6] | unmilled | 18.014(13) | 1.28 | 6.02(4) | 0.43 | 4.92 | 14.67 | 6.05 |
milled | 17.862(11) | 1.27 | 6.02(3) | 0.43 | 4.96 | 14.65 | 6.10 | |
g-As4Se5, this work | unmilled | 16.771(10) | 1.19 | 4.20(3) | 0.30 | 5.28 | 21.02 | 6.50 |
milled | 17.104(16) | 1.21 | 5.41(5) | 0.38 | 5.18 | 16.33 | 6.37 | |
g-As4Se4, [7] | unmilled | 16.130(8) | 1.14 | 3.21(2) | 0.23 | 5.49 | 27.52 | 6.75 |
milled | 16.608(13) | 1.19 | 4.55(4) | 0.32 | 5.33 | 19.42 | 6.56 |
Glassy Arsenoselenide AsxSe100-x Sample | Derived from HFrev | Derived from HFnrev | |||
---|---|---|---|---|---|
Glass-Transition Temperature | Heat Capacity Variation | Specific Enthalpies Difference | |||
composition | state | Tgonset, oC | Tgmid, oC | ΔCp, J·g−1K−1 | ΔH, J·g−1 |
g-As2Se3 | unmilled | 179.0 | 187.4 | 0.20 | 6.7 |
milled | 178.3 | 185.9 | 0.20 | −10.9 | |
g-As4Se5 | unmilled | 183.9 | 190.0 | 0.17 | 3.8 |
milled | 182.0 | 188.7 | 0.17 | −9.6 |
Glassy Arsenoselenides: Composition, State (Sample) | [FIT-1] | τ1, ns | τ2, ns | τ3, ns | I2, a.u. | I3, a.u. | τav., ns |
---|---|---|---|---|---|---|---|
g-As2Se3, unmilled (bulky discs) | 0.01 | 0.193 | 0.358 | 2.091 | 0.62 | 0.007 | 0.310 |
g-As2Se3, nanomilled (pellets) | 0.05 | 0.202 | 0.371 | 2.087 | 0.54 | 0.015 | 0.322 |
g-As4Se5, unmilled (bulky discs) | 0.02 | 0.196 | 0.359 | 1.858 | 0.62 | 0.008 | 0.310 |
g-As4Se5, nanomilled (pellets) | 0.06 | 0.204 | 0.373 | 2.204 | 0.52 | 0.015 | 0.325 |
g-As4Se4, unmilled (bulky discs) | 0.05 | 0.205 | 0.370 | 1.982 | 0.55 | 0.015 | 0.322 |
g-As4Se4, nanomilled (pellets) | 0.05 | 0.210 | 0.378 | 2.264 | 0.52 | 0.013 | 0.325 |
Glassy Arsenoselenides: Composition, State (Sample) | Positron-Trapping MODES | Ps-Decay Modes | |||||
---|---|---|---|---|---|---|---|
τb, ns | κd, ns−1 | τ2-τb, ns | τ2/τb, a.u. | η, a.u. | R3, nm | fv3, % | |
g-As2Se3, unmilled (bulky discs) | 0.272 | 1.51 | 0.09 | 1.32 | 0.29 | 0.296 | 0.15 |
g-As2Se3, nanomilled (pellets) | 0.270 | 1.24 | 0.10 | 1.37 | 0.25 | 0.296 | 0.29 |
g-As4Se5, unmilled (bulky discs) | 0.273 | 1.45 | 0.09 | 1.32 | 0.28 | 0.275 | 0.12 |
g-As4Se5, nanomilled (pellets) | 0.272 | 1.23 | 0.10 | 1.37 | 0.25 | 0.306 | 0.32 |
g-As4Se4, unmilled (bulky discs) | 0.272 | 1.23 | 0.10 | 1.23 | 0.25 | 0.306 | 0.32 |
g-As4Se4, nanomilled (pellets) | 0.274 | 1.12 | 0.10 | 1.38 | 0.23 | 0.311 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shpotyuk, O.; Lukáčová Bujňáková, Z.; Baláž, P.; Shpotyuk, Y.; Hyla, M.; Kozdras, A.; Ingram, A.; Boyko, V.; Demchenko, P.; Kovalskiy, A. Molecular Network Polyamorphism in Mechanically Activated Arsenic Selenides Under Deviation from As2Se3 Stoichiometry. Molecules 2025, 30, 642. https://doi.org/10.3390/molecules30030642
Shpotyuk O, Lukáčová Bujňáková Z, Baláž P, Shpotyuk Y, Hyla M, Kozdras A, Ingram A, Boyko V, Demchenko P, Kovalskiy A. Molecular Network Polyamorphism in Mechanically Activated Arsenic Selenides Under Deviation from As2Se3 Stoichiometry. Molecules. 2025; 30(3):642. https://doi.org/10.3390/molecules30030642
Chicago/Turabian StyleShpotyuk, Oleh, Zdenka Lukáčová Bujňáková, Peter Baláž, Yaroslav Shpotyuk, Malgorzata Hyla, Andrzej Kozdras, Adam Ingram, Vitaliy Boyko, Pavlo Demchenko, and Andriy Kovalskiy. 2025. "Molecular Network Polyamorphism in Mechanically Activated Arsenic Selenides Under Deviation from As2Se3 Stoichiometry" Molecules 30, no. 3: 642. https://doi.org/10.3390/molecules30030642
APA StyleShpotyuk, O., Lukáčová Bujňáková, Z., Baláž, P., Shpotyuk, Y., Hyla, M., Kozdras, A., Ingram, A., Boyko, V., Demchenko, P., & Kovalskiy, A. (2025). Molecular Network Polyamorphism in Mechanically Activated Arsenic Selenides Under Deviation from As2Se3 Stoichiometry. Molecules, 30(3), 642. https://doi.org/10.3390/molecules30030642