Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (218)

Search Parameters:
Keywords = porous ceramic composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2688 KiB  
Article
Red Clay as a Raw Material for Sustainable Masonry Composite Ceramic Blocks
by Todorka Samardzioska, Igor Peshevski, Valentina Zileska Pancovska, Bojan Golaboski, Milorad Jovanovski and Sead Abazi
Sustainability 2025, 17(15), 6852; https://doi.org/10.3390/su17156852 - 28 Jul 2025
Viewed by 659
Abstract
The pursuit of sustainable construction practices has become imperative in the modern era. This paper delves into the research of the properties and application of a specific material called “red clay” from the locality “Crvena Mogila” in Macedonia. A series of laboratory tests [...] Read more.
The pursuit of sustainable construction practices has become imperative in the modern era. This paper delves into the research of the properties and application of a specific material called “red clay” from the locality “Crvena Mogila” in Macedonia. A series of laboratory tests were conducted to evaluate the physical, mechanical, and chemical properties of the material. The tested samples show that it is a porous material with low density, high water absorption, and compressive strength in range of 29.85–38.32 MPa. Samples of composite wall blocks were made with partial replacement of natural aggregate with red clay aggregate. Two types of blocks were produced with dimensions of 390 × 190 × 190 mm, with five and six holes. The average compressive strength of the blocks ranges from 3.1 to 4.1 MPa, which depends on net density and the number of holes. Testing showed that these blocks have nearly seven-times-lower thermal conductivity than conventional concrete blocks and nearly twice-lower conductivity than full-fired clay bricks. The general conclusion is that the tested red clay is an economically viable and sustainable material with favourable physical, mechanical, and thermal parameters and can be used as a granular aggregate in the production of composite ceramic blocks. Full article
(This article belongs to the Special Issue Environmental Protection and Sustainable Ecological Engineering)
Show Figures

Figure 1

16 pages, 8495 KiB  
Article
Utilization of Waste Clay–Diatomite in the Production of Durable Mullite-Based Insulating Materials
by Svetlana Ilić, Jelena Maletaškić, Željko Skoko, Marija M. Vuksanović, Željko Radovanović, Ivica Ristović and Aleksandra Šaponjić
Appl. Sci. 2025, 15(13), 7512; https://doi.org/10.3390/app15137512 - 4 Jul 2025
Viewed by 290
Abstract
Microstructural, mechanical and qualitative phase identification of durable mullite-based ceramics obtained by utilization of waste clay–diatomite has been studied. Mullite-based ceramics were fabricated using waste clay–diatomite from the Baroševac open-cast coal mine, Kolubara (Serbia). The raw material consists mainly of SiO2 (70.5 [...] Read more.
Microstructural, mechanical and qualitative phase identification of durable mullite-based ceramics obtained by utilization of waste clay–diatomite has been studied. Mullite-based ceramics were fabricated using waste clay–diatomite from the Baroševac open-cast coal mine, Kolubara (Serbia). The raw material consists mainly of SiO2 (70.5 wt%) and a moderately high content of Al2O3 (13.8 wt%). In order to achieve the stoichiometric mullite composition (3Al2O3-2SiO2), the raw material was mixed with an appropriate amount of Al(NO3)3·9H2O. After preparing the precursor powder, the green compacts were sintered at 1300, 1400 and 1500 °C for 2 h. During the process, rod-shaped mullite grains were formed, measuring approximately 5 µm in length and a diameter of 500 nm (aspect ratio 10:1). The microstructure of the sample sintered at 1500 °C resulted in a well-developed, porous, nest-like morphology. According to the X-ray diffraction analysis, the sample at 1400 °C consisted of mullite, cristobalite and corundum phases, while the sample sintered at 1500 °C contained mullite (63.24 wt%) and an amorphous phase that reached 36.7 wt%. Both samples exhibited exceptional compressive strength—up to 188 MPa at 1400 °C. However, the decrease in compressive strength to 136 MPa at 1500 °C is attributed to changes in the phase composition, the disappearance of the corundum phase and alterations in the microstructure. This occurred despite an increase in bulk density to 2.36 g/cm3 (approximately 82% of theoretical density) and a complete reduction in open porosity. The residual glassy phase (36.7 wt% at 1500 °C) is probably the key factor influencing the mechanical properties at room temperature in these ceramics produced from waste clay–diatomite. However, the excellent mechanical stability of the samples sintered at 1400 and 1500 °C, achieved without binders or additives and using mined diatomaceous earth, supports further research into mullite-based insulating materials. Mullite-based materials obtained from mining waste might be successfully used in the field of energy-efficient refractory materials and thermal insulators. for high-temperature applications Full article
Show Figures

Figure 1

23 pages, 35270 KiB  
Article
Dispersed PM10 Microspheres from Coal Fly Ash: Fine Fraction Separation, Characterisation, and Glass–Ceramic Preparation
by Elena V. Fomenko, Galina V. Akimochkina and Natalia N. Anshits
Molecules 2025, 30(12), 2600; https://doi.org/10.3390/molecules30122600 - 15 Jun 2025
Viewed by 451
Abstract
Developing resource-efficient technologies for producing ceramic materials with specific properties and performance characteristics is one of the most important tasks in modern materials science. As natural resources face depletion, the use of anthropogenic wastes, including fly ash from coal combustion, for the development [...] Read more.
Developing resource-efficient technologies for producing ceramic materials with specific properties and performance characteristics is one of the most important tasks in modern materials science. As natural resources face depletion, the use of anthropogenic wastes, including fly ash from coal combustion, for the development of new compositions and the production of ceramics with an improved microstructure is of particular significance. The use of PM10 fly ash microspheres in ceramic production will help to reduce particulate matter emissions. In this study, fine narrow fractions of PM10 microspheres were successfully separated from coal fly ash using aerodynamic and magnetic separation. Glass–ceramic materials with a homogeneous microstructure, an open porosity of 0.4–37%, a compressive strength of 5–159 MPa, and acid resistance of up to 99.9% were obtained using narrow fractions. The materials obtained are promising for application as highly porous ceramics, effective microfiltration membranes, and fine-structured technical ceramics, which can be used in installations operating in aggressive media and/or at high temperatures. The ceramic membranes were characterised by high liquid permeability values up to 1194 L·m−2·h−1·bar−1. Filtration tests showed that the retention coefficient for dispersed microsilica particles with dav = 1.9 μm is 0.99. Full article
Show Figures

Figure 1

15 pages, 3873 KiB  
Article
Porous Silica Gels Doped with Gold Nanoparticles: Preparation, Microstructure, Optical and Textural Properties
by Nina Danchova, Dimitar Shandurkov, Roumen Tsekov, Luben Mihaylov, Tony Spassov and Stoyan Gutzov
Gels 2025, 11(6), 454; https://doi.org/10.3390/gels11060454 - 13 Jun 2025
Viewed by 354
Abstract
Porous silica gel powders, doped with gold nanoparticles (AuNPs), were obtained by heating silica gels containing 1-dodecanethiol and tetrachloroauric acid at temperatures of 450 °C, 700 °C and 900 °C, and characterized using X-ray diffraction, TEM/EDS studies, UV/Vis reflectance spectroscopy and DTA/TG investigations. [...] Read more.
Porous silica gel powders, doped with gold nanoparticles (AuNPs), were obtained by heating silica gels containing 1-dodecanethiol and tetrachloroauric acid at temperatures of 450 °C, 700 °C and 900 °C, and characterized using X-ray diffraction, TEM/EDS studies, UV/Vis reflectance spectroscopy and DTA/TG investigations. The color and microstructure of the obtained samples with a composition SiO2:AuNPs (about 0.03% Au) depend on the heating temperature. The UV/Vis reflection spectra of the samples are explained using Mie’s theory. The thermal stability of the obtained samples, as well as the processes occurring in the sol–gel matrix upon heating, were monitored by DTA/TG. The textural properties of the obtained materials were described based on adsorption–desorption isotherms. The obtained nanocomposites are promising pigments for ceramic glazes, similar to the Purple of Cassius. The textural properties of certain samples, SBET = 200–350 m2/g, a mean pore diameter (DAV) of approximately 10 nm and a specific pore volume (Vt) between 0.5 and 0.8 cm3/g, make them promising candidates for catalytic applications, comparable to aerogel-like materials. Full article
(This article belongs to the Special Issue Aerogels—Preparation and Properties)
Show Figures

Figure 1

20 pages, 9010 KiB  
Article
Polycaprolactone/Doped Bioactive Glass Composite Scaffolds for Bone Regeneration
by Ana Sofia Pádua, Manuel Pedro Fernandes Graça and Jorge Carvalho Silva
J. Funct. Biomater. 2025, 16(6), 200; https://doi.org/10.3390/jfb16060200 - 1 Jun 2025
Viewed by 787
Abstract
Critical-size bone defects do not heal spontaneously and require external support, making bone regeneration a central challenge in tissue engineering. Polymeric/ceramic composite scaffolds offer a promising approach to mimic the structural and biological properties of bone. In this study, we aimed to evaluate [...] Read more.
Critical-size bone defects do not heal spontaneously and require external support, making bone regeneration a central challenge in tissue engineering. Polymeric/ceramic composite scaffolds offer a promising approach to mimic the structural and biological properties of bone. In this study, we aimed to evaluate the effect of different doping oxides in bioactive glass (BG) on the performance of polycaprolactone (PCL)-based composite scaffolds for bone tissue engineering applications. Composite scaffolds were fabricated using solvent casting, hot pressing, and salt-leaching techniques, combining PCL with 25 wt% of BG or doped BG containing 4 mol% of tantalum, zinc, magnesium, or niobium oxides, and 1 mol% of copper oxide. The scaffolds were characterized in terms of morphology, mechanical properties, and in vitro biological performance. All scaffolds exhibited a highly porous, interconnected structure. Mechanical compression tests indicated that elastic modulus increased with ceramic content, while doping had no measurable effect. Cytotoxicity assays confirmed biocompatibility across all scaffolds. Among the tested materials, the Zn-doped BG/PCL scaffold uniquely supported cell adhesion and proliferation and significantly enhanced alkaline phosphatase (ALP) activity—an early marker of osteogenic differentiation—alongside the Nb-doped scaffold. These results highlight the Zn-doped BG/PCL composite as a promising candidate for bone regeneration applications. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

20 pages, 5257 KiB  
Article
Defects Identification and Crack Depth Determination in Porous Media on the Brick Masonry Example Using Ultrasonic Methods: Numerical Analysis and Machine Learning
by Alexey N. Beskopylny, Sergey A. Stel’makh, Evgenii M. Shcherban’, Vasilii Dolgov, Nikita Beskopylny, Diana Elshaeva, Andrei Chernil’nik, Ivan Panfilov and Irina Razveeva
J. Compos. Sci. 2025, 9(6), 267; https://doi.org/10.3390/jcs9060267 - 28 May 2025
Viewed by 568
Abstract
Automation of the structural health monitoring process involves the use of successful methods for detecting defects and determining their critical characteristics. An efficient means of crack detection in composite materials is the ultrasonic method, but its application to determine critical crack parameters, such [...] Read more.
Automation of the structural health monitoring process involves the use of successful methods for detecting defects and determining their critical characteristics. An efficient means of crack detection in composite materials is the ultrasonic method, but its application to determine critical crack parameters, such as depth in construction practice, is difficult or leads to large errors. This article focuses on machine learning methods usage to detect cracks in composite materials like brickwork. Ceramic bricks with various mechanical properties and with pre-grown cracks from 2 to 60 mm are considered. To understand the processes occurring during the ultrasonic pulse transmission, modeling was performed in the ANSYS environment. The brick is considered a porous medium weakened by a crack. Numerical modeling allows for the identification of the main features of the signal response and the determination of the amplitude-time range for different porosity and crack depth values. Using machine learning methods made it possible to solve two related problems. The first, binary classification, i.e., the presence or absence of a crack, is solved with 100% accuracy. The second is determining the crack depth. A neural network was built using an ensemble of decision trees. The accuracy of crack depth prediction is R2 = 0.983, and the error in predicted values is within 8%. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

19 pages, 10147 KiB  
Article
The Effects of In Situ Growth of SiC Nanowires on the Electromagnetic Wave Absorption Properties of SiC Porous Ceramics
by Jingxiong Liu, Genlian Li, Tianmiao Zhao, Zhiqiang Gong, Feng Li, Wen Xie, Songze Zhao and Shaohua Jiang
Materials 2025, 18(9), 1910; https://doi.org/10.3390/ma18091910 - 23 Apr 2025
Cited by 1 | Viewed by 478
Abstract
In situ-grown SiC nanowires (SiCnws) on SiC porous material (SiCnws@SiC) were prepared using sol–gel and carbothermal reduction methods, which substantially improves the electromagnetic wave absorption property of composite material. The crystallinity and purity of SiCnws are the best when the sintering temperature is [...] Read more.
In situ-grown SiC nanowires (SiCnws) on SiC porous material (SiCnws@SiC) were prepared using sol–gel and carbothermal reduction methods, which substantially improves the electromagnetic wave absorption property of composite material. The crystallinity and purity of SiCnws are the best when the sintering temperature is 1600 °C. When the ratio of the carbon source (C) to the silicon source (Si) is 1:1, SiCnws@SiC composite exhibits excellent electromagnetic wave absorption performance, the minimum reflection loss is −56.95 dB at a thickness of 2.30 mm, and the effective absorption bandwidth covers 1.85 GHz. The optimal effective absorption bandwidth is 4.01 GHz when the thickness is 2.59 mm. The enhancement of the electromagnetic wave absorption performance of SiCnws is mainly attributed to the increase in the heterogeneous interface and multiple reflection and scattering caused by the network structure, increasing dielectric loss and conduction loss. In addition, defects could occur during the growth of SiCnws, which could become the center of dipole polarization and increase the polarization loss of composite materials. Therefore, in situ growth of SiCnws on SiC porous ceramics is a promising method to improve electromagnetic wave absorption. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

19 pages, 10296 KiB  
Article
Microstructure and Thermal Analysis Kinetics of Y2Hf2O7/Y3Al5O12 Composites Prepared by Solution Combustion Synthesis
by Rui Li, Shengyue Gu, Yimin Guo, Bei Xue, Qian Zhou, Ruimei Yuan, Longkang Cong and Yaming Zhang
Coatings 2025, 15(4), 470; https://doi.org/10.3390/coatings15040470 - 15 Apr 2025
Viewed by 419
Abstract
With the development of high-speed and high-temperature equipment, thermal barrier materials are facing increasingly harsh service environments. The addition of YAG to Y2Hf2O7 has been proposed in order to improve its long-term high-temperature performance. In this work, Y [...] Read more.
With the development of high-speed and high-temperature equipment, thermal barrier materials are facing increasingly harsh service environments. The addition of YAG to Y2Hf2O7 has been proposed in order to improve its long-term high-temperature performance. In this work, Y2Hf2O7/Y3Al5O12 composite powders were synthesized by combustion synthesis with urea, glycine, EDTA, citric acid, and glucose as fuels, while hafnium tetrachloride, yttrium nitrate hexahydrate, and aluminum nitrate nonahydrate were used as raw materials. The effects of fuels on the morphology and phase composition of synthetic powders were studied. Chemical reaction kinetic parameters were established by the Kissinger, Augis and Bennett, and Mahadevan methods. Y2Hf2O7 and Y3Al5O12 are the main components in the powders synthesized with urea as fuel, while YAlO3 and Y2Hf2O7 are the main phases with the other fuels. SEM and TEM analysis reveal that the powders prepared by the solution combustion method exhibit a typical porous morphology. When urea is used as fuel, the powders show a uniform elemental distribution, distinct ceramic grain crystallization, clear grain boundaries, and a uniform distribution of alternating grains. Compared to several other fuels, urea is more suitable for the preparation of Y2Hf2O7/Y3Al5O12 composite powders. In the process of preparing powders with urea, the activation energies for the combustion reaction calculated using the three methods are 100.579, 104.864, and 109.148 kJ·mol−1, while the activation energies related to crystal formation are 120.397, 125.001, and 129.600 kJ·mol−1, respectively. Full article
(This article belongs to the Special Issue Ceramic and Glass Material Coatings)
Show Figures

Figure 1

16 pages, 3807 KiB  
Article
Development of Structurally Graded Alumina–Polymer Composites as Potential Orthodontic Bracket Materials
by Yin Mun Wong, Anthony J. Ireland and Bo Su
Biomimetics 2025, 10(4), 227; https://doi.org/10.3390/biomimetics10040227 - 5 Apr 2025
Viewed by 817
Abstract
To create an orthodontic bracket material combining the favourable properties of ceramic and polymer while minimising their limitations, graded porous ceramic scaffolds were created using unidirectional gelation-freeze casting, following which the pores were infiltrated with polymer. Two processing parameters were investigated: (1) sedimentation [...] Read more.
To create an orthodontic bracket material combining the favourable properties of ceramic and polymer while minimising their limitations, graded porous ceramic scaffolds were created using unidirectional gelation-freeze casting, following which the pores were infiltrated with polymer. Two processing parameters were investigated: (1) sedimentation times of 0, 8, and 24 h, with ceramic solid loading of 20 vol.% and 2.5 wt.% gelatine concentration, and (2) ceramic solid loadings of 15, 20, and 25 vol.% with a fixed 2.5 wt.% gelatine concentration and an 8 h sedimentation time. The graded ceramic structures demonstrated porosity gradients ranging from 9.86 to 63.84 vol.%, except those with 25 vol.% ceramic solid loading at 8 h sedimentation. The Al2O3-UDMA/TEGDMA composites had compressive strengths of 60.25 to 120.92 MPa, modulus of elasticity of 19.84 to 35.29 GPa, and fracture toughness of 0.78 to 1.78 MPa·m1/2. The values observed were between those of dense ceramic and pure polymer. Statistical analysis was conducted using Excel® 2019 (Microsoft®, Washington, DC, USA). Means, standard deviations, and 95% confidence intervals (CI) were calculated at a significance level of α = 0.05, alongside polynomial regression to evaluate relationships between variables. Composites with 20 vol.% ceramic solid loading at 8 h sedimentation displayed promising potential for further clinical validation. Full article
Show Figures

Figure 1

15 pages, 5005 KiB  
Article
Thermal Insulation Efficiency and Mechanisms of Flexible Sandwich Structure
by Yuanzhe Xie, Juan Chen, Shuo Li, Mengxiao Guo and Niansu Jing
Materials 2025, 18(7), 1426; https://doi.org/10.3390/ma18071426 - 24 Mar 2025
Viewed by 471
Abstract
Thermal insulation layers between batteries are an effective way to reduce the propagation of thermal runaway in lithium-ion batteries. A flexible composite sandwich structure material has been designed for thermal insulation, featuring mica rolls (MRs) as the protective layers and a ceramic fiber [...] Read more.
Thermal insulation layers between batteries are an effective way to reduce the propagation of thermal runaway in lithium-ion batteries. A flexible composite sandwich structure material has been designed for thermal insulation, featuring mica rolls (MRs) as the protective layers and a ceramic fiber felt (CFF) as the core layer. Experimental and numerical simulations demonstrate that at a hot-surface temperature of 900 °C, the cold-surface temperature of the sandwich structure with a 0.3 mm MR and 3.0 mm CFF layer is only 175 °C, which is significantly lower than the 350 °C observed for a standalone 3.0 mm CFF layer under the same conditions. The MR layer effectively shields against flames and impedes heat transfer, while the porous structure of the CFF, enhanced by microcracks and holes, increases heat transfer paths and scatters radiated heat. This synergistic interaction between the MR and CFF layers results in a superior thermal insulation performance. The findings highlight the potential of this sandwich structure in improving the safety and thermal management of lithium-ion batteries and other energy storage systems. Full article
Show Figures

Figure 1

13 pages, 2281 KiB  
Article
Innovative Hygroscopic Material for Humidity Regulation: Diatomaceous Earth Composite Porous Ceramic
by Zhennan Yao, Enza Migliore, Massimiliano Galluzzi and Jingze Liu
Crystals 2025, 15(2), 158; https://doi.org/10.3390/cryst15020158 - 4 Feb 2025
Viewed by 1316
Abstract
Urbanization in hot and humid regions such as southern China has increased the demand for comfortable indoor environments. In order to design a material for efficient passive indoor humidity regulation, this study investigates a composite material that combines the hygroscopic properties of salt [...] Read more.
Urbanization in hot and humid regions such as southern China has increased the demand for comfortable indoor environments. In order to design a material for efficient passive indoor humidity regulation, this study investigates a composite material that combines the hygroscopic properties of salt and the adsorption capacity of diatomaceous earth (DE). Firstly, we prepared DE and boehmite into moisture-absorbing porous materials. Then, the initial DE-based sample was innovatively doped with SiO2 nanomaterials and loaded with LiCl to enhance the humidity regulation ability of the composite, especially in the adsorption and desorption ability of water vapour. The microstructure and phase composition of the composite samples were analysed, and we observed an increase in porosity, filling performance and capillary condensation upon the introduction of SiO2 nanoparticles. The hygroscopic salt loaded into the pores can absorb more water when exposed to the ambient humidity. This synergic effect can effectively improve the hygroscopic performance of the composite material while maintaining the stability of the physical and chemical properties. The optimized samples showed a moisture absorption rate of 28% in high-humidity environments, meeting moisture buffer value evaluation standards. The study’s findings lay the foundation for the future integration of these materials through advanced manufacturing technologies. Full article
(This article belongs to the Section Polycrystalline Ceramics)
Show Figures

Figure 1

22 pages, 10352 KiB  
Article
Physico-Chemical Properties of Granular Sorbents Based on Natural Bentonite Modified by Polyhydroxocations of Aluminum and Iron (III) by Co-Precipitation
by Bakytgul Kussainova, Gaukhar Tazhkenova, Ivan Kazarinov, Marina Burashnikova, Raigul Ramazanova, Yelena Ivashchenko, Bekzat Saurbayeva, Batima Tantybayeva, Ainur Seitkan, Gulsim Matniyazova, Khalipa Sadiyeva, Aisha Nurlybayeva and Aidana Bazarkhankyzy
Molecules 2025, 30(1), 195; https://doi.org/10.3390/molecules30010195 - 6 Jan 2025
Cited by 1 | Viewed by 1163
Abstract
The physicochemical and adsorption properties of granular sorbents based on natural bentonite and modified sorbents based on it have been studied. It was found that modification of natural bentonite with iron (III) polyhydroxocations (mod. 1_Fe_5 GA) and aluminum (III) (mod. 1_Al_5 GA) by [...] Read more.
The physicochemical and adsorption properties of granular sorbents based on natural bentonite and modified sorbents based on it have been studied. It was found that modification of natural bentonite with iron (III) polyhydroxocations (mod. 1_Fe_5 GA) and aluminum (III) (mod. 1_Al_5 GA) by the “co-precipitation” method leads to a change in their chemical composition, structure, and sorption properties. It is shown that modified sorbents based on natural bentonite are finely porous (nanostructured) objects with a predominance of pores measuring 1.5–8.0 nm, with a specific surface area of 55–65 m2/g. Modification of bentonite with iron (III) and aluminum compounds by the “co-precipitation” method also leads to an increase in the sorption capacity of the obtained sorbents with respect to bichromate and arsenate anions and nickel cations by 5-10 times compared with natural bentonite. The obtained sorption isotherms were classified as Langmuir type isotherms. Kinetic analysis showed that at the initial stage the sorption process is controlled by an external diffusion factor, i.e. refers to the diffusion of sorbent from solution into a liquid film on the surface of the sorbent. Then the sorption process begins to proceed in a mixed diffusion mode, when it limits both the external diffusion factor and the internal diffusion factor (the diffusion of the sorbent to the active centers through the system of pores and capillaries). To determine the contribution of the chemical stage to the rate of adsorption of bichromate and arsenate anions and nickel(II) cations with the studied granular sorbents, kinetic curves were processed using the equations of chemical kinetics (pseudo-second-order model). As a result, it was found that the adsorption of the studied anions by modified sorbents based on natural bentonite is best described by a pseudo-second-order kinetic model. It is shown that the use of natural bentonite for the development of technology for the production of granular sorbents based on it has an undeniable advantage, firstly, in terms of its chemical and structural properties, it is easily and effectively modified, and secondly, having astringent properties, granules are easily made on its basis, which turn into ceramics during high-temperature firing. The result is a granular sorbent with high physical and mechanical properties. Since bentonite is an environmentally friendly product, the technology of recycling spent sorbents is also greatly simplified. Full article
(This article belongs to the Special Issue Recent Advances in Porous Materials)
Show Figures

Graphical abstract

19 pages, 31778 KiB  
Article
Effect of Microsize and Nanosize TiO2 on Porous Mullite-Alumina Ceramic Prepared by Slip Casting
by Ludmila Mahnicka-Goremikina, Maris Rundans, Vadims Goremikins, Ruta Svinka, Visvaldis Svinka, Liga Orlova and Inna Juhnevica
Materials 2024, 17(24), 6171; https://doi.org/10.3390/ma17246171 - 17 Dec 2024
Cited by 1 | Viewed by 802
Abstract
Sintered porous mullite-alumina ceramics are obtained from the concentrated suspension of powdered raw materials such as kaolin, gamma and alpha Al2O3, and amorphous SiO2, mainly by a solid-state reaction with the presence of a liquid phase. The [...] Read more.
Sintered porous mullite-alumina ceramics are obtained from the concentrated suspension of powdered raw materials such as kaolin, gamma and alpha Al2O3, and amorphous SiO2, mainly by a solid-state reaction with the presence of a liquid phase. The modification of mullite ceramic is achieved by the use of micro- and nanosize TiO2 powders. The phase compositions were measured using an X-ray powder diffraction (XRD) Rigaku Ultima+ (Tokyo, Japan) and microstructures of the sintered specimens were analysed using scanning electron microscopy (SEM) Hitachi TM3000-TableTop (Tokyo, Japan). The shrinkage, bulk density, apparent porosity, and water uptake of the specimens was determined after firing using Archimedes’ principle. The apparent porosity of the modified mullite ceramic is 52–69 ± 1%, water uptake is 33–40 ± 1%, pore size distributions are 0.05–0.8 μm, 0.8–10 μm and 10–1000 μm, and bulk density are variated from 1.15 ± 0.05 to 1.4 ± 0.05 g/cm3. The microsize TiO2 and nanosize TiO2 speed up the mullitisation process and allow the decrease in the quantity used as raw material amorphous SiO2, which was the purpose of the study. The use of nanosize TiO2 additive increases the porosity of such a ceramic, decreasing the bulk density and linear thermal expansion. Full article
Show Figures

Figure 1

21 pages, 6455 KiB  
Article
Determination of Crack Depth in Brickworks by Ultrasonic Methods: Numerical Simulation and Regression Analysis
by Alexey N. Beskopylny, Sergey A. Stel’makh, Evgenii M. Shcherban’, Vasilii Dolgov, Irina Razveeva, Nikita Beskopylny, Diana Elshaeva and Andrei Chernil’nik
J. Compos. Sci. 2024, 8(12), 536; https://doi.org/10.3390/jcs8120536 - 16 Dec 2024
Cited by 1 | Viewed by 1370
Abstract
Ultrasonic crack detection is one of the effective non-destructive methods of structural health monitoring (SHM) of buildings and structures. Despite its widespread use, crack detection in porous and heterogeneous composite building materials is an insufficiently studied issue and in practice leads to significant [...] Read more.
Ultrasonic crack detection is one of the effective non-destructive methods of structural health monitoring (SHM) of buildings and structures. Despite its widespread use, crack detection in porous and heterogeneous composite building materials is an insufficiently studied issue and in practice leads to significant errors of more than 40%. The purpose of this article is to study the processes occurring in ceramic bricks weakened by cracks under ultrasonic exposure and to develop a method for determining the crack depth based on the characteristics of the obtained ultrasonic response. At the first stage, the interaction of the ultrasonic signal with the crack and the features of the pulse propagation process in ceramic bricks were considered using numerical modeling with the ANSYS environment. The FEM model allowed us to identify the characteristic aspects of wave propagation in bricks and compare the solution with the experimental one for the reference sample. Further experimental studies were carried out on ceramic bricks, as the most common elements of buildings and structures. A total of 110 bricks with different properties were selected. The cracks were natural or artificially created and were of varying depth and width. The experimental data showed that the greatest influence on the formation of the signal was exerted by the time parameters of the response: the time when the signal reaches a value of 12 units, the time of reaching the first maximum, the time of reaching the first minimum, and the properties of the material. Based on the regression analysis, a model was obtained that relates the crack depth to the signal parameters and the properties of the material. The error in the predicted values according to this model was approximately 8%, which was significantly more accurate than the existing approach. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Figure 1

21 pages, 8662 KiB  
Article
Effect of Alumina Proportion on the Microstructure and Technical and Mechanical Characteristics of Zirconia-Based Porous Ceramics
by Rusul Ahmed Shakir, Róbert Géber, Marwan T. Mezher, Tomasz Trzepieciński and Ferenc Móricz
J. Compos. Sci. 2024, 8(12), 517; https://doi.org/10.3390/jcs8120517 - 9 Dec 2024
Cited by 1 | Viewed by 1150
Abstract
The current study investigates the process of preparing and analysing porous-structured ceramics made from zirconium, aluminium, and magnesium ceramic oxides. The starch consolidation casting (SCC) technique, with different types of starches (potato and tapioca), was used for this purpose. Our objective was to [...] Read more.
The current study investigates the process of preparing and analysing porous-structured ceramics made from zirconium, aluminium, and magnesium ceramic oxides. The starch consolidation casting (SCC) technique, with different types of starches (potato and tapioca), was used for this purpose. Our objective was to methodically examine the impact of different processing factors, such as the temperature at which pre-sintering and sintering occur, and the proportions of ceramic powders, on the microstructure, mechanical characteristics, and porosity of the resultant composites. Pre-sintering effectively reduced the rate of shrinkage during the final sintering stage; this resulted in more controlled and predictable shrinkage, leading to better dimensional stability and reduced risk of defects in the final product. A higher alumina content was associated with an increase in apparent porosity and a reduction in volume shrinkage and apparent densities. The mercury intrusion porosimetry (MIP) findings concluded that the prepared porous ceramics have a multi-modal pore structure. The highest calculated compressive strength was 76.89 MPa for a sample with a porous structure, which was manufactured using 20 wt.% tapioca starch and 30 wt.% alumina content. The main advantage of alumina is its ability to improve compressive strength by refining the grain structure and serving as a barrier against fracture development. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

Back to TopTop