Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = porcine organ culture model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1598 KiB  
Article
Drug-Dependent Inhibitory Effects on Corneal Epithelium Structure, Cell Viability, and Corneal Wound Healing by Local Anesthetics
by Sabine Foja, Joana Heinzelmann, Susanne Hünniger, Anja Viestenz, Christiane Rüger and Arne Viestenz
Int. J. Mol. Sci. 2024, 25(23), 13074; https://doi.org/10.3390/ijms252313074 - 5 Dec 2024
Viewed by 942
Abstract
Local anesthetics are commonly used in ophthalmic surgery. However, their use can affect the healing process. This study aimed to investigate the potential impact of anesthetic substances at clinically relevant concentrations and incubation times (3 min), specifically oxybuprocaine (OBPC, 0.4%), lidocaine (LIDO, 2%), [...] Read more.
Local anesthetics are commonly used in ophthalmic surgery. However, their use can affect the healing process. This study aimed to investigate the potential impact of anesthetic substances at clinically relevant concentrations and incubation times (3 min), specifically oxybuprocaine (OBPC, 0.4%), lidocaine (LIDO, 2%), and bupivacaine (BUPI, 0.5%), either alone or supplemented with hylase (HYLA, 30 I.E.), on corneal epithelium structure, cell viability, and wound healing. To assess the potential cytotoxicity of these anesthetic substances, viability and colony-forming efficiency (CFE) assays were conducted using the human telomerase-immortalized corneal epithelial (hTCEpi) cell line. Additionally, the toxicity of these substances was evaluated using a 3D human tissue-specific corneal epithelial construct as well as a porcine corneal culture model. The results indicate that OBPC (Novesine® 0.4%) exhibited significant cytotoxicity in 2D and 3D corneal epithelial cell culture models and delayed wound healing in the ex vivo porcine corneal organ culture model. In contrast, LIDO, BUPI, and HYLA were less cytotoxic to corneal cells, with no observed impact on wound healing in the porcine corneal organ culture model. In summary, local anesthetics commonly used in eye surgery are generally considered safe. However, the application of OBPC (Novesine® 0.4%) may delay wound healing. Full article
(This article belongs to the Special Issue Functional Roles of Epithelial and Endothelial Cells)
Show Figures

Figure 1

16 pages, 3036 KiB  
Article
Protection against Oxidative Stress by Coenzyme Q10 in a Porcine Retinal Degeneration Model
by Leonie Deppe, Ana M. Mueller-Buehl, Teresa Tsai, Carl Erb, H. Burkhard Dick and Stephanie C. Joachim
J. Pers. Med. 2024, 14(4), 437; https://doi.org/10.3390/jpm14040437 - 22 Apr 2024
Cited by 4 | Viewed by 2376
Abstract
Oxidative stress plays an important role in neurodegenerative diseases, including glaucoma. Therefore, we analyzed if the antioxidant coenzyme Q10 (CoQ10), which is also commercially available, can prevent retinal degeneration induced by hydrogen peroxide (H2O2) in a porcine organ culture [...] Read more.
Oxidative stress plays an important role in neurodegenerative diseases, including glaucoma. Therefore, we analyzed if the antioxidant coenzyme Q10 (CoQ10), which is also commercially available, can prevent retinal degeneration induced by hydrogen peroxide (H2O2) in a porcine organ culture model. Retinal explants were cultivated for eight days, and H2O2 (500 µM, 3 h) induced the oxidative damage. CoQ10 therapy was applied (700 µM, 48 h). Retinal ganglion cells (RGCs) and microglia were examined immunohistologically in all groups (control, H2O2, H2O2 + CoQ10). Cellular, oxidative, and inflammatory genes were quantified via RT-qPCR. Strong RGC loss was observed with H2O2 (p ≤ 0.001). CoQ10 elicited RGC protection compared to the damaged group at a histological (p ≤ 0.001) and mRNA level. We detected more microglia cells with H2O2, but CoQ10 reduced this effect (p = 0.004). Cellular protection genes (NRF2) against oxidative stress were stimulated by CoQ10 (p ≤ 0.001). Furthermore, mitochondrial oxidative stress (SOD2) increased through H2O2 (p = 0.038), and CoQ10 reduced it to control level. Our novel results indicate neuroprotection via CoQ10 in porcine retina organ cultures. In particular, CoQ10 appears to protect RGCs by potentially inhibiting apoptosis-related pathways, activating intracellular protection and reducing mitochondrial stress. Full article
(This article belongs to the Special Issue Glaucoma Management in the Era of Personalized Medicine)
Show Figures

Figure 1

15 pages, 3910 KiB  
Article
Assessment of Tilapia Skin Collagen for Biomedical Research Applications in Comparison with Mammalian Collagen
by Jyun-Yuan Huang, Tzyy-Yue Wong, Ting-Yuan Tu, Ming-Jer Tang, Hsi-Hui Lin and Yuan-Yu Hsueh
Molecules 2024, 29(2), 402; https://doi.org/10.3390/molecules29020402 - 13 Jan 2024
Cited by 12 | Viewed by 4579
Abstract
Collagen is an important material for biomedical research, but using mammalian tissue-derived collagen carries the risk of zoonotic disease transmission. Marine organisms, such as farmed tilapia, have emerged as a safe alternative source of collagen for biomedical research. However, the tilapia collagen products [...] Read more.
Collagen is an important material for biomedical research, but using mammalian tissue-derived collagen carries the risk of zoonotic disease transmission. Marine organisms, such as farmed tilapia, have emerged as a safe alternative source of collagen for biomedical research. However, the tilapia collagen products for biomedical research are rare, and their biological functions remain largely unexamined. In this study, we characterized a commercial tilapia skin collagen using SDS-PAGE and fibril formation assays and evaluated its effects on skin fibroblast adhesion, proliferation, and migration, comparing it with commercial collagen from rat tails, porcine skin, and bovine skin. The results showed that tilapia skin collagen is a type I collagen, similar to rat tail collagen, and has a faster fibril formation rate and better-promoting effects on cell migration than porcine and bovine skin collagen. We also confirmed its application in a 3D culture for kidney cells’ spherical cyst formation, fibroblast-induced gel contraction, and tumor spheroid interfacial invasion. Furthermore, we demonstrated that the freeze-dried tilapia skin collagen scaffold improved wound closure in a mouse excisional wound model, similar to commercial porcine or bovine collagen wound dressings. In conclusion, tilapia skin collagen is an ideal biomaterial for biomedical research. Full article
(This article belongs to the Special Issue Polymer Scaffolds for Biomedical Applications III)
Show Figures

Graphical abstract

14 pages, 13173 KiB  
Article
Modeling Co-Infection by Streptococcus suis and Haemophilus parasuis Reveals Influences on Biofilm Formation and Host Response
by Mengxia Gao, Jing Zuo, Yamin Shen, Shuo Yuan, Shuji Gao, Yuxin Wang, Yang Wang and Li Yi
Animals 2023, 13(9), 1511; https://doi.org/10.3390/ani13091511 - 29 Apr 2023
Cited by 6 | Viewed by 2369
Abstract
Streptococcus suis (S. suis) and Haemophilus parasuis (H. parasuis) are two primary pathogens currently affecting the porcine industry. They often cause encephalitis and arthritis. They also frequently co-infect in clinical settings. In the current study, we identified significant correlations [...] Read more.
Streptococcus suis (S. suis) and Haemophilus parasuis (H. parasuis) are two primary pathogens currently affecting the porcine industry. They often cause encephalitis and arthritis. They also frequently co-infect in clinical settings. In the current study, we identified significant correlations between S. suis and H. parasuis. The results from CI versus RIR suggested that S. suis and H. parasuis were competitive in general. Compared to mono-species biofilm, the biomass, bio-volume, and thickness of mixed-species biofilms were significantly higher, which was confirmed using crystal violet staining, confocal laser scanning microscopy, and scanning electron microscopy. Compared to mono-species biofilm, the viable bacteria in the mixed-species biofilms were significantly lower, which was confirmed using the enumeration of colony-forming units (CFU cm−2). The susceptibility of antibiotics in the co-culture decreased in the planktonic state. In contrast, biofilm state bacteria are significantly more difficult to eradicate with antibiotics than in a planktonic state. Whether in planktonic or biofilm state, the expression of virulence genes of S. suis and H. parasuis in mixed culture was very different from that in single culture. Subsequently, by establishing a mixed infection model in mice, we found that the colonization of the two pathogens in organs increased after mixed infection, and altered the host’s inflammatory response. In summary, our results indicate that S. suis and H. parasuis compete when co-cultured in vitro. Surprisingly, S. suis and H. parasuis synergistically increased colonization capacity after co-infection in vivo. This study elucidated the interaction between S. suis and H. parasuis during single infections and co-infections. Future studies on bacterial disease control and antibiotic treatment should consider the interaction of mixed species. Full article
(This article belongs to the Special Issue Bacterial Diseases in Livestock and Poultry)
Show Figures

Figure 1

17 pages, 15427 KiB  
Article
Initial Characterization of 3D Culture of Yolk Sac Tissue
by Vitória Mattos Pereira, Priscila Avelino Ferreira Pinto, Lina Castelo Branco Motta, Matheus F. Almeida, André Furugen Cesar de Andrade, Ana Paula Pinoti Pavaneli and Carlos Eduardo Ambrósio
Animals 2023, 13(9), 1435; https://doi.org/10.3390/ani13091435 - 22 Apr 2023
Cited by 4 | Viewed by 3455
Abstract
The role of the yolk sac (YS) in miscarriage is not yet clear, largely due to ethical reasons that make in vivo studies difficult to conduct. However, 3D cultures could provide a solution to this problem by enabling cells to be arranged in [...] Read more.
The role of the yolk sac (YS) in miscarriage is not yet clear, largely due to ethical reasons that make in vivo studies difficult to conduct. However, 3D cultures could provide a solution to this problem by enabling cells to be arranged in a way that more closely mimics the structure of the YS as it exists in vivo. In this study, three domestic species (porcine, canine, and bovine) were chosen as models to standardize 3D culture techniques for the YS. Two techniques of 3D culture were chosen: the Matrigel® and Hanging-Drop techniques, and the 2D culture technique was used as a standardized method. The formed structures were initially characterized using scanning electron microscopy (SEM), immunohistochemistry (IHC), and quantitative real-time PCR (RT-qPCR). In general, the 3D culture samples showed better organization of the YS cells compared to 2D cultures. The formed structures from both 3D methods assemble the mesothelial layer of YS tissue. Regarding the IHC assay, all in vitro models were able to express zinc and cholesterol transport markers, although only 3D culture techniques were able to generate structures with different markers pattern, indicating a cell differentiation process when compared to 2D cultures. Regarding mRNA expression, the 3D models had a greater gene expression pattern on the Hemoglobin subunit zeta-like (HBZ) gene related to the YS tissue, although no significant expression was found in Alpha-fetoprotein (AFP), indicating a lack of endodermal differentiation in our 3D model. With the initial technique and characterization established, the next step is to maintain the cultures and characterize the diversity of cell populations, stemness, functions, and genetic stability of each 3D in vitro model. Full article
Show Figures

Figure 1

16 pages, 1564 KiB  
Review
The Oncopig as an Emerging Model to Investigate Copper Regulation in Cancer
by Alyssa L. Carlson, Jaime Carrazco-Carrillo, Aaron Loder, Lobna Elkhadragy, Kyle M. Schachtschneider and Teresita Padilla-Benavides
Int. J. Mol. Sci. 2022, 23(22), 14012; https://doi.org/10.3390/ijms232214012 - 13 Nov 2022
Cited by 3 | Viewed by 3487
Abstract
Emerging evidence points to several fundamental contributions that copper (Cu) has to promote the development of human pathologies such as cancer. These recent and increasing identification of the roles of Cu in cancer biology highlights a promising field in the development of novel [...] Read more.
Emerging evidence points to several fundamental contributions that copper (Cu) has to promote the development of human pathologies such as cancer. These recent and increasing identification of the roles of Cu in cancer biology highlights a promising field in the development of novel strategies against cancer. Cu and its network of regulatory proteins are involved in many different contextual aspects of cancer from driving cell signaling, modulating cell cycle progression, establishing the epithelial-mesenchymal transition, and promoting tumor growth and metastasis. Human cancer research in general requires refined models to bridge the gap between basic science research and meaningful clinical trials. Classic studies in cultured cancer cell lines and animal models such as mice and rats often present caveats when extended to humans due to inherent genetic and physiological differences. However, larger animal models such as pigs are emerging as more appropriate tools for translational research as they present more similarities with humans in terms of genetics, anatomical structures, organ sizes, and pathological manifestations of diseases like cancer. These similarities make porcine models well-suited for addressing long standing questions in cancer biology as well as in the arena of novel drug and therapeutic development against human cancers. With the emergent roles of Cu in human health and pathology, the pig presents an emerging and valuable model to further investigate the contributions of this metal to human cancers. The Oncopig Cancer Model is a transgenic swine model that recapitulates human cancer through development of site and cell specific tumors. In this review, we briefly outline the relationship between Cu and cancer, and how the novel Oncopig Cancer Model may be used to provide a better understanding of the mechanisms and causal relationships between Cu and molecular targets involved in cancer. Full article
(This article belongs to the Special Issue Homeostasis: Metals and Cellular Redox and Immunity Status)
Show Figures

Figure 1

18 pages, 5348 KiB  
Article
Injectable Cell-Laden Nanofibrous Matrix for Treating Annulus Fibrosus Defects in Porcine Model: An Organ Culture Study
by Evan Roebke, Diego Jacho, Oliver Eby, Sulaiman Aldoohan, Haitham Elsamaloty and Eda Yildirim-Ayan
Life 2022, 12(11), 1866; https://doi.org/10.3390/life12111866 - 12 Nov 2022
Cited by 6 | Viewed by 2250
Abstract
Lower back pain commonly arises from intervertebral disc (IVD) failure, often caused by deteriorating annulus fibrosus (AF) and/or nucleus pulposus (NP) tissue. High socioeconomic cost, quality of life issues, and unsatisfactory surgical options motivate the rapid development of non-invasive, regenerative repair strategies for [...] Read more.
Lower back pain commonly arises from intervertebral disc (IVD) failure, often caused by deteriorating annulus fibrosus (AF) and/or nucleus pulposus (NP) tissue. High socioeconomic cost, quality of life issues, and unsatisfactory surgical options motivate the rapid development of non-invasive, regenerative repair strategies for lower back pain. This study aims to evaluate the AF regenerative capacity of injectable matrix repair strategy in ex vivo porcine organ culturing using collagen type-I and polycaprolactone nanofibers (PNCOL) with encapsulated fibroblast cells. Upon 14 days organ culturing, the porcine IVDs were assessed using gross optical imaging, magnetic resonance imaging (MRI), histological analysis, and Reverse Transcriptase quantitative PCR (RT-qPCR) to determine the regenerative capabilities of the PNCOL matrix at the AF injury. PNCOL-treated AF defects demonstrated a full recovery with increased gene expressions of AF extracellular matrix markers, including Collagen-I, Aggrecan, Scleraxis, and Tenascin, along with anti-inflammatory markers such as CD206 and IL10. The PNCOL treatment effectively regenerates the AF tissue at the injury site contributing to decreased herniation risk and improved surgical outcomes, thus providing effective non-invasive strategies for treating IVD injuries. Full article
(This article belongs to the Special Issue Frontiers in Tissue Injury and Regeneration Repair)
Show Figures

Figure 1

14 pages, 1142 KiB  
Review
Porcine Intestinal Organoids: Overview of the State of the Art
by Panpan Ma, Puxian Fang, Tianze Ren, Liurong Fang and Shaobo Xiao
Viruses 2022, 14(5), 1110; https://doi.org/10.3390/v14051110 - 21 May 2022
Cited by 6 | Viewed by 5058
Abstract
The intestinal tract is a crucial part of the body for growth and development, and its dysregulation can cause several diseases. The lack of appropriate in vitro models hampers the development of effective preventions and treatments against these intestinal tract diseases. Intestinal organoids [...] Read more.
The intestinal tract is a crucial part of the body for growth and development, and its dysregulation can cause several diseases. The lack of appropriate in vitro models hampers the development of effective preventions and treatments against these intestinal tract diseases. Intestinal organoids are three-dimensional (3D) polarized structures composed of different types of cells capable of self-organization and self-renewal, resembling their organ of origin in architecture and function. Porcine intestinal organoids (PIOs) have been cultured and are used widely in agricultural, veterinary, and biomedical research. Based on the similarity of the genomic sequence, anatomic morphology, and drug metabolism with humans and the difficulty in obtaining healthy human tissue, PIOs are also considered ideal models relative to rodents. In this review, we summarize the current knowledge on PIOs, emphasizing their culturing, establishment and development, and applications in the study of host–microbe interactions, nutritional development, drug discovery, and gene editing potential. Full article
(This article belongs to the Special Issue State-of-the-Art Veterinary Virology Research in China)
Show Figures

Figure 1

19 pages, 2868 KiB  
Article
Thiolated Chitosan Conjugated Liposomes for Oral Delivery of Selenium Nanoparticles
by Atiđa Selmani, Elisabeth Seibert, Carolin Tetyczka, Doris Kuehnelt, Ivan Vidakovic, Karin Kornmueller, Markus Absenger-Novak, Borna Radatović, Ivana Vinković Vrček, Gerd Leitinger, Eleonore Fröhlich, Andreas Bernkop-Schnürch, Eva Roblegg and Ruth Prassl
Pharmaceutics 2022, 14(4), 803; https://doi.org/10.3390/pharmaceutics14040803 - 6 Apr 2022
Cited by 13 | Viewed by 4032
Abstract
This study aimed to design a hybrid oral liposomal delivery system for selenium nanoparticles (Lip-SeNPs) to improve the bioavailability of selenium. Thiolated chitosan, a multifunctional polymer with mucoadhesive properties, was used for surface functionalization of Lip-SeNPs. Selenium nanoparticle (SeNP)-loaded liposomes were manufactured by [...] Read more.
This study aimed to design a hybrid oral liposomal delivery system for selenium nanoparticles (Lip-SeNPs) to improve the bioavailability of selenium. Thiolated chitosan, a multifunctional polymer with mucoadhesive properties, was used for surface functionalization of Lip-SeNPs. Selenium nanoparticle (SeNP)-loaded liposomes were manufactured by a single step microfluidics-assisted chemical reduction and assembling process. Subsequently, chitosan-N-acetylcysteine was covalently conjugated to the preformed Lip-SeNPs. The Lip-SeNPs were characterized in terms of composition, morphology, size, zeta potential, lipid organization, loading efficiency and radical scavenging activity. A co-culture system (Caco-2:HT29-MTX) that integrates mucus secreting and enterocyte-like cell types was used as a model of the human intestinal epithelium to determine adsorption, mucus penetration, release and transport properties of Lip-SeNPs in vitro. Thiolated Lip-SeNPs were positively charged with an average size of about 250 nm. Thiolated Lip-SeNPs tightly adhered to the mucus layer without penetrating the enterocytes. This finding was consistent with ex vivo adsorption studies using freshly excised porcine small intestinal tissues. Due to the improved mucoadhesion and retention in a simulated microenvironment of the small intestine, thiolated Lip-SeNPs might be a promising tool for oral selenium delivery. Full article
(This article belongs to the Special Issue Application of Chitosan and Hyaluronan in Medicine)
Show Figures

Graphical abstract

24 pages, 5976 KiB  
Article
Hypoxic Processes Induce Complement Activation via Classical Pathway in Porcine Neuroretinas
by Ana M. Mueller-Buehl, Torsten Buehner, Christiane Pfarrer, Leonie Deppe, Laura Peters, Burkhard H. Dick and Stephanie C. Joachim
Cells 2021, 10(12), 3575; https://doi.org/10.3390/cells10123575 - 18 Dec 2021
Cited by 10 | Viewed by 3456
Abstract
Considering the fact that many retinal diseases are yet to be cured, the pathomechanisms of these multifactorial diseases need to be investigated in more detail. Among others, oxidative stress and hypoxia are pathomechanisms that take place in retinal diseases, such as glaucoma, age-related [...] Read more.
Considering the fact that many retinal diseases are yet to be cured, the pathomechanisms of these multifactorial diseases need to be investigated in more detail. Among others, oxidative stress and hypoxia are pathomechanisms that take place in retinal diseases, such as glaucoma, age-related macular degeneration, or diabetic retinopathy. In consideration of these diseases, it is also evidenced that the immune system, including the complement system and its activation, plays an important role. Suitable models to investigate neuroretinal diseases are organ cultures of porcine retina. Based on an established model, the role of the complement system was studied after the induction of oxidative stress or hypoxia. Both stressors led to a loss of retinal ganglion cells (RGCs) accompanied by apoptosis. Hypoxia activated the complement system as noted by higher C3+ and MAC+ cell numbers. In this model, activation of the complement cascade occurred via the classical pathway and the number of C1q+ microglia was increased. In oxidative stressed retinas, the complement system had no consideration, but strong inflammation took place, with elevated TNF, IL6, and IL8 mRNA expression levels. Together, this study shows that hypoxia and oxidative stress induce different mechanisms in the porcine retina inducing either the immune response or an inflammation. Our findings support the thesis that the immune system is involved in the development of retinal diseases. Furthermore, this study is evidence that both approaches seem suitable models to investigate undergoing pathomechanisms of several neuroretinal diseases. Full article
(This article belongs to the Collection Oxidative Stress in Human Health and Disease)
Show Figures

Figure 1

22 pages, 2486 KiB  
Article
Protease-Triggered Release of Stabilized CXCL12 from Coated Scaffolds in an Ex Vivo Wound Model
by Sabrina Spiller, Tom Wippold, Kathrin Bellmann-Sickert, Sandra Franz, Anja Saalbach, Ulf Anderegg and Annette G. Beck-Sickinger
Pharmaceutics 2021, 13(10), 1597; https://doi.org/10.3390/pharmaceutics13101597 - 1 Oct 2021
Cited by 5 | Viewed by 3344
Abstract
Biomaterials are designed to improve impaired healing of injured tissue. To accomplish better cell integration, we suggest to coat biomaterial surfaces with bio-functional proteins. Here, a mussel-derived surface-binding peptide is used and coupled to CXCL12 (stromal cell-derived factor 1α), a chemokine that activates [...] Read more.
Biomaterials are designed to improve impaired healing of injured tissue. To accomplish better cell integration, we suggest to coat biomaterial surfaces with bio-functional proteins. Here, a mussel-derived surface-binding peptide is used and coupled to CXCL12 (stromal cell-derived factor 1α), a chemokine that activates CXCR4 and consequently recruits tissue-specific stem and progenitor cells. CXCL12 variants with either non-releasable or protease-mediated-release properties were designed and compared. Whereas CXCL12 was stabilized at the N-terminus for protease resistance, a C-terminal linker was designed that allowed for specific cleavage-mediated release by matrix metalloproteinase 9 and 2, since both enzymes are frequently found in wound fluid. These surface adhesive CXCL12 derivatives were produced by expressed protein ligation. Functionality of the modified chemokines was assessed by inositol phosphate accumulation and cell migration assays. Increased migration of keratinocytes and primary mesenchymal stem cells was demonstrated. Immobilization and release were studied for bioresorbable PCL-co-LC scaffolds, and accelerated wound closure was demonstrated in an ex vivo wound healing assay on porcine skin grafts. After 24 h, a significantly improved CXCL12-specific growth stimulation of the epithelial tips was already observed. The presented data display a successful application of protein-coated biomaterials for skin regeneration. Full article
(This article belongs to the Special Issue Trends in Drug Delivery for Wounds Treatment)
Show Figures

Graphical abstract

15 pages, 4119 KiB  
Article
Establishment of a Robust and Simple Corneal Organ Culture Model to Monitor Wound Healing
by Sandra Schumann, Eva Dietrich, Charli Kruse, Salvatore Grisanti and Mahdy Ranjbar
J. Clin. Med. 2021, 10(16), 3486; https://doi.org/10.3390/jcm10163486 - 6 Aug 2021
Cited by 7 | Viewed by 3668
Abstract
The use of in vitro systems to investigate the process of corneal wound healing offers the opportunity to reduce animal pain inflicted during in vivo experimentation. This study aimed to establish an easy-to-handle ex vivo organ culture model with porcine corneas for the [...] Read more.
The use of in vitro systems to investigate the process of corneal wound healing offers the opportunity to reduce animal pain inflicted during in vivo experimentation. This study aimed to establish an easy-to-handle ex vivo organ culture model with porcine corneas for the evaluation and modulation of epithelial wound healing. Cultured free-floating cornea disks with a punch defect were observed by stereomicroscopic photo documentation. We analysed the effects of different cell culture media and investigated the impact of different wound sizes as well as the role of the limbus. Modulation of the wound healing process was carried out with the cytostatic agent Mitomycin C. The wound area calculation revealed that after three days over 90% of the lesion was healed. As analysed with TUNEL and lactate dehydrogenase assay, the culture conditions were cell protecting and preserved the viability of the corneal tissue. Wound healing rates differ dependent on the culture medium used. Mitomycin C hampered wound healing in a concentration-dependent manner. The porcine cornea ex vivo culture ideally mimics the in vivo situation and allows investigations of cellular behaviour in the course of wound healing. The effect of substances can be studied, as we have documented for a mitosis inhibitor. This model might aid in toxicological studies as well as in the evaluation of drug efficacy and could offer a platform for therapeutic approaches based on regenerative medicine. Full article
(This article belongs to the Special Issue Treatment of Cornea and Ocular Surface Diseases)
Show Figures

Figure 1

20 pages, 3459 KiB  
Article
Kinetic Analysis of Lidocaine Elimination by Pig Liver Cells Cultured in 3D Multi-Compartment Hollow Fiber Membrane Network Perfusion Bioreactors
by Gerardo Catapano, Juliane K. Unger, Elisabetta M. Zanetti, Gionata Fragomeni and Jörg C. Gerlach
Bioengineering 2021, 8(8), 104; https://doi.org/10.3390/bioengineering8080104 - 23 Jul 2021
Cited by 1 | Viewed by 3734
Abstract
Liver cells cultured in 3D bioreactors is an interesting option for temporary extracorporeal liver support in the treatment of acute liver failure and for animal models for preclinical drug screening. Bioreactor capacity to eliminate drugs is generally used for assessing cell metabolic competence [...] Read more.
Liver cells cultured in 3D bioreactors is an interesting option for temporary extracorporeal liver support in the treatment of acute liver failure and for animal models for preclinical drug screening. Bioreactor capacity to eliminate drugs is generally used for assessing cell metabolic competence in different bioreactors or to scale-up bioreactor design and performance for clinical or preclinical applications. However, drug adsorption and physical transport often disguise the intrinsic drug biotransformation kinetics and cell metabolic state. In this study, we characterized the intrinsic kinetics of lidocaine elimination and adsorption by porcine liver cells cultured in 3D four-compartment hollow fiber membrane network perfusion bioreactors. Models of lidocaine transport and biotransformation were used to extract intrinsic kinetic information from response to lidocaine bolus of bioreactor versus adhesion cultures. Different from 2D adhesion cultures, cells in the bioreactors are organized in liver-like aggregates. Adsorption on bioreactor constituents significantly affected lidocaine elimination and was effectively accounted for in kinetic analysis. Lidocaine elimination and cellular monoethylglicinexylidide biotransformation featured first-order kinetics with near-to-in vivo cell-specific capacity that was retained for times suitable for clinical assist and drug screening. Different from 2D cultures, cells in the 3D bioreactors challenged with lidocaine were exposed to close-to-physiological lidocaine and monoethylglicinexylidide concentration profiles. Kinetic analysis suggests bioreactor technology feasibility for preclinical drug screening and patient assist and that drug adsorption should be accounted for to assess cell state in different cultures and when laboratory bioreactor design and performance is scaled-up to clinical use or toxicological drug screening. Full article
Show Figures

Graphical abstract

9 pages, 979 KiB  
Article
Clearance of Gram-Negative Bacterial Pathogens from the Ocular Surface by Predatory Bacteria
by Eric G. Romanowski, Shilpi Gupta, Androulla Pericleous, Daniel E. Kadouri and Robert M. Q. Shanks
Antibiotics 2021, 10(7), 810; https://doi.org/10.3390/antibiotics10070810 - 3 Jul 2021
Cited by 14 | Viewed by 3205
Abstract
It was previously demonstrated that predatory bacteria are able to efficiently eliminate Gram-negative pathogens including antibiotic-resistant and biofilm-associated bacteria. In this proof-of-concept study we evaluated whether two species of predatory bacteria, Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus, were able to alter the survival [...] Read more.
It was previously demonstrated that predatory bacteria are able to efficiently eliminate Gram-negative pathogens including antibiotic-resistant and biofilm-associated bacteria. In this proof-of-concept study we evaluated whether two species of predatory bacteria, Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus, were able to alter the survival of Gram-negative pathogens on the ocular surface. Clinical keratitis isolates of Pseudomonas aeruginosa (strain PAC) and Serratia marcescens (strain K904) were applied to the ocular surface of NZW rabbits followed by application of predatory bacteria. At time intervals, surviving pathogenic bacteria were enumerated. In addition, B. bacteriovorus and S. marcescens were applied to porcine organ culture corneas under contact lenses, and the ocular surface was examined by scanning electron microscopy. The ocular surface epithelial layer of porcine corneas exposed to S. marcescens, but not B. bacteriovorus was damaged. Using this model, neither pathogen could survive on the rabbit ocular surface for longer than 24 h. M. aeruginosavorus correlated with a more rapid clearance of P. aeruginosa but not S. marcescens from rabbit eyes. This study supports previous evidence that predatory bacteria are well tolerated by the cornea, but suggest that predatory bacteria do not considerably change the ability of the ocular surface to clear the tested Gram-negative bacterial pathogens from the ocular surface. Full article
(This article belongs to the Special Issue Ocular Surface Infection and Antimicrobials)
Show Figures

Figure 1

16 pages, 2823 KiB  
Article
The Role of Interleukin-1-Receptor-Antagonist in Bladder Cancer Cell Migration and Invasion
by Lisa Schneider, Junnan Liu, Cheng Zhang, Anca Azoitei, Sabine Meessen, Xi Zheng, Catharina Cremer, Christian Gorzelanny, Sybille Kempe-Gonzales, Cornelia Brunner, Felix Wezel, Christian Bolenz, Cagatay Gunes and Axel John
Int. J. Mol. Sci. 2021, 22(11), 5875; https://doi.org/10.3390/ijms22115875 - 30 May 2021
Cited by 20 | Viewed by 4755
Abstract
Background: The interleukin-1-receptor antagonist IL1RA (encoded by the IL1RN gene) is a potent competitive antagonist to interleukin-1 (IL1) and thereby is mainly involved in the regulation of inflammation. Previous data indicated a role of IL1RA in muscle-invasive urothelial carcinoma of the bladder (UCB) [...] Read more.
Background: The interleukin-1-receptor antagonist IL1RA (encoded by the IL1RN gene) is a potent competitive antagonist to interleukin-1 (IL1) and thereby is mainly involved in the regulation of inflammation. Previous data indicated a role of IL1RA in muscle-invasive urothelial carcinoma of the bladder (UCB) as well as an IL1-dependent decrease in tissue barrier function, potentially contributing to cancer cell invasion. Objective: Based on these observations, here we investigated the potential roles of IL1RA, IL1A, and IL1B in bladder cancer cell invasion in vitro. Methods: Cell culture, real-time impedance sensing, invasion assays (Boyden chamber, pig bladder model), qPCR, Western blot, ELISA, gene overexpression. Results: We observed a loss of IL1RA expression in invasive, high-grade bladder cancer cell lines T24, UMUC-3, and HT1197 while IL1RA expression was readily detectable in the immortalized UROtsa cells, the non-invasive bladder cancer cell line RT4, and in benign patient urothelium. Thus, we modified the invasive human bladder cancer cell line T24 to ectopically express IL1RA, and measured changes in cell migration/invasion using the xCELLigence Real-Time-Cell-Analysis (RTCA) system and the Boyden chamber assay. The real-time observation data showed a significant decrease of cell migration and invasion in T24 cells overexpressing IL1RA (T24-IL1RA), compared to cells harboring an empty vector (T24-EV). Concurrently, tumor cytokines, e.g., IL1B, attenuated the vascular endothelial barrier, which resulted in a reduction of the Cell Index (CI), an impedance-based dimensionless unit. This reduction could be reverted by the simultaneous incubation with IL1RA. Moreover, we used an ex vivo porcine organ culture system to evaluate cell invasion capacity and showed that T24-IL1RA cells showed significantly less invasive capacity compared to parental T24 cells or T24-EV. Conclusions: Taken together, our results indicate an inverse correlation between IL1RA expression and tumor cell invasive capacity and migration, suggesting that IL1RA plays a role in bladder carcinogenesis, while the exact mechanisms by which IL1RA influences tumor cells migration/invasion remain to be clarified in future studies. Furthermore, we confirmed that real-time impedance sensing and the porcine ex vivo organ culture methods are powerful tools to discover differences in cancer cell migration and invasion. Full article
Show Figures

Figure 1

Back to TopTop