Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = ponderosa pine (Pinus ponderosa Lawson & C. Lawson)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2240 KiB  
Article
Multi-Annual Dendroclimatic Patterns for the Desert National Wildlife Refuge, Southern Nevada, USA
by Franco Biondi and James Roberts
Forests 2025, 16(7), 1142; https://doi.org/10.3390/f16071142 - 10 Jul 2025
Viewed by 321
Abstract
Ponderosa pine (Pinus ponderosa Lawson & C. Lawson) forests in the western United States have experienced reduced fire frequency since Euro-American settlement, usually because of successful fire suppression policies and even without such human impacts at remote sites in the Great Basin [...] Read more.
Ponderosa pine (Pinus ponderosa Lawson & C. Lawson) forests in the western United States have experienced reduced fire frequency since Euro-American settlement, usually because of successful fire suppression policies and even without such human impacts at remote sites in the Great Basin and Mojave Deserts. In an effort to improve our understanding of long-term environmental dynamics in sky-island ecosystems, we developed tree-ring chronologies from ponderosa pines located in the Sheep Mountain Range of southern Nevada, inside the Desert National Wildlife Refuge (DNWR). After comparing those dendrochronological records with other ones available for the south-central Great Basin, we analyzed their climatic response using station-recorded monthly precipitation and air temperature data from 1950 to 2024. The main climatic signal was December through May total precipitation, which was then reconstructed at annual resolution over the past five centuries, from 1490 to 2011 CE. The mean episode duration was 2.6 years, and the maximum drought duration was 11 years (1924–1934; the “Dust Bowl” period), while the longest episode, 19 years (1905–1923), is known throughout North America as the “early 1900s pluvial”. By quantifying multi-annual dry and wet episodes, the period since DNWR establishment was placed in a long-term dendroclimatic framework, allowing us to estimate the potential drought resilience of its unique, tree-dominated environments. Full article
(This article belongs to the Special Issue Environmental Signals in Tree Rings)
Show Figures

Figure 1

11 pages, 3059 KiB  
Article
Assessment of the Modulus of Rupture and Modulus of Elasticity in Static Bending of Yellow Pine Earlywood and Latewood
by Piotr Mańkowski, Zbigniew Karwat and Agnieszka Laskowska
Forests 2025, 16(2), 265; https://doi.org/10.3390/f16020265 - 2 Feb 2025
Viewed by 1382
Abstract
The purpose of this research was to investigate the modulus of rupture (MOR) and modulus of elasticity (MOE) in the static bending of yellow pine (Pinus ponderosa Douglas ex C. Lawson) earlywood and latewood. The relationship between the properties of these wood [...] Read more.
The purpose of this research was to investigate the modulus of rupture (MOR) and modulus of elasticity (MOE) in the static bending of yellow pine (Pinus ponderosa Douglas ex C. Lawson) earlywood and latewood. The relationship between the properties of these wood zones and the MOR and MOE of yellow pine wood tested was determined with the methodology specified in the standards. An important element of the research was to verify the suitability of the developed method for testing the MOR and MOE of small wood samples obtained from the earlywood and latewood zone. The MOR of the earlywood was about 6% higher than the MOR of the pine wood determined using standard samples, and these differences were not statistically significant. However, the MOR of the latewood was approximately three times higher than the MOR of the pine wood determined using standard samples, and these differences were statistically significant. The MOR of the latewood was found to be 2.5 times higher than the MOR of the earlywood. The MOE of the latewood was found to be two times higher than the MOE of the earlywood. This was due to the density of particular wood zones and the dimensions of structural elements—tracheids. The maximum load (Fmax) transferred by latewood zones was four times higher than the Fmax transferred by earlywood zones. The deflection at the Fmax of the earlywood zone was 20% smaller than the deflection at the Fmax of the latewood zone. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

16 pages, 3651 KiB  
Article
The Potential of Non-Native Pines for Timber Production—A Case Study from Afforested Post-Mining Sites
by Aleš Zeidler, Vlastimil Borůvka, Karol Tomczak, Zdeněk Vacek, Jan Cukor, Stanislav Vacek and Arkadiusz Tomczak
Forests 2024, 15(8), 1388; https://doi.org/10.3390/f15081388 - 8 Aug 2024
Cited by 5 | Viewed by 1165
Abstract
Scots pine (Pinus sylvestris L.) represents one of the most important commercial coniferous tree species, providing valuable timber. Due to climate change, it is experiencing serious problems in some areas, therefore, finding a suitable substitute for its wood is currently a challenge. [...] Read more.
Scots pine (Pinus sylvestris L.) represents one of the most important commercial coniferous tree species, providing valuable timber. Due to climate change, it is experiencing serious problems in some areas, therefore, finding a suitable substitute for its wood is currently a challenge. In this study, we compared the wood quality of three different non-native pine species and Scots pine growing at the same site to ensure identical growing conditions. Black pine (Pinus nigra J. F. Arnold), a pine species native to Southern Europe, lodgepole pine (Pinus contorta Douglas ex Loudon), and ponderosa pine (Pinus ponderosa Douglas ex C. Lawson) native to North America were compared to Scots pine for selected quantitative (productivity) and qualitative (physical and mechanical) properties. Significant differences between pine species were found in all quantitative dendrometric parameters, except average diameter at breast height. The stand volume ranged from 157 m3 ha−1 for lodgepole pine to 356 m3 ha−1 for Scots pine. For qualitative characteristics, wood density, shrinkage, and compressive strength were used to find differences among species in choosing the best alternative. The highest wood density was obtained for Scots pine (458 kg m−3), followed by black pine with 441 kg m−3. The density of the remaining pine species was significantly lower. Scots pine also exceeded the tested species in compressive strength (44.2 MPa). Lodgepole pine achieved the second highest value (39.3 MPa) but was statistically similar to black pine (36.5 MPa). The tested pine species exhibited similar values in shrinkage, which were statistically insignificant, ranging from 14.3% for lodgepole pine to 15.1% for Scots pine. Based on applications and preferred characteristics, black pine or lodgepole pine could serve as the Scots pine substitute in some areas. And vice versa, ponderosa pine did not attain the Scots pine wood quality. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

18 pages, 2899 KiB  
Article
Testing Explant Sources, Culture Media, and Light Conditions for the Improvement of Organogenesis in Pinus ponderosa (P. Lawson and C. Lawson)
by Alejandra Rojas-Vargas, Ander Castander-Olarieta, Antonia Maiara Marques do Nascimento, María Laura Vélez, Cátia Pereira, João Martins, Mónica Zuzarte, Jorge Canhoto, Itziar A. Montalbán and Paloma Moncaleán
Plants 2023, 12(4), 850; https://doi.org/10.3390/plants12040850 - 14 Feb 2023
Cited by 5 | Viewed by 3467
Abstract
Pinus. ponderosa (P. Lawson and C. Lawson) is a commercial tree and one of the most important forest species in North America. Ponderosa pine suffers hardship when going through vegetative propagation and, in some cases, 15–30 years are needed to achieve full reproductive [...] Read more.
Pinus. ponderosa (P. Lawson and C. Lawson) is a commercial tree and one of the most important forest species in North America. Ponderosa pine suffers hardship when going through vegetative propagation and, in some cases, 15–30 years are needed to achieve full reproductive capacity. Based on previous works on P. ponderosa regeneration through in vitro organogenesis and trying to improve the published protocols, our objective was to analyze the influence of different types of explants, basal culture media, cytokinins, auxins, and light treatments on the success of shoot multiplication and rooting phases. Whole zygotic embryos and 44 µΜ 6-benzyladenine showed the best results in terms of explants survival. For shoot organogenesis, whole zygotic embryos and half LP (LP medium, Quoirin and Lepoivre, 1977, modified by Aitken-Christie et al., 1988) macronutrients were selected. A significant positive interaction between whole zygotic embryos and half LP macronutrients was found for the percentage of explants forming shoots. Regarding the light treatments applied, a significantly higher percentage of shoots elongated enough to be rooted was detected in shoots growing under blue LED at a light intensity of 61.09 µmol m−2 s−1. However, the acclimatization percentage was higher in shoots previously cultivated under fluorescent light at a light intensity of 61.71 µmol m−2 s−1. Anatomical studies using light microscopy and scanning electron microscopy showed the light treatments promoted differences in anatomical aspects in in vitro shoots; needles of plantlets exposed to red and blue LEDs revealed less stomata compared with needles from plantlets exposed to fluorescent light. Full article
(This article belongs to the Special Issue Application of Biotechnology to Woody Propagation)
Show Figures

Figure 1

14 pages, 2445 KiB  
Article
Provenance Variation in Early Survival, Growth, and Carbon Isotope Discrimination of Southwestern Ponderosa Pine Growing in Three Common Gardens across an Elevational Gradient
by Aalap Dixit, Thomas Kolb, Owen Burney, Karen Mock and Kevin Grady
Forests 2021, 12(11), 1561; https://doi.org/10.3390/f12111561 - 12 Nov 2021
Cited by 10 | Viewed by 3328
Abstract
We investigated early survival, growth, and carbon isotope discrimination of ponderosa pine (Pinus ponderosa Lawson & C. Lawson var. scopulorum Engelm.) seedlings from different provenances using common gardens across an elevational gradient in order to examine the potential for adaptation to extreme [...] Read more.
We investigated early survival, growth, and carbon isotope discrimination of ponderosa pine (Pinus ponderosa Lawson & C. Lawson var. scopulorum Engelm.) seedlings from different provenances using common gardens across an elevational gradient in order to examine the potential for adaptation to extreme environments and constraints to artificial regeneration. Twenty-one provenances from a range of elevations across Arizona and New Mexico were planted in three common gardens: a high-elevation meadow in aspen-mixed conifer forest, a mid-elevation ponderosa pine forest, and a low-elevation pinyon juniper woodland. Two years after planting in 2018, survival was highest at the mid-elevation site (54%), low at the high-elevation site (1.5%), and 0% at the low-elevation site. At the hot and dry low-elevation site, provenances from low-elevations survived longer than provenances from mid- and high-elevations, which suggests greater drought tolerance of low-elevation provenances. Mortality agents changed from abiotic (drought) to biotic (herbivory) with an increase in elevation across sites. High mortality of seedlings planted at high-elevation sites from biotic agents, such as rodents, may challenge efforts to establish ponderosa pine in assisted migration projects. Seedlings had significantly higher growth rate and carbon isotope discrimination (∆13C) at the mid-elevation site than the high-elevation site. Provenances differed significantly in diameter, and ∆13C, but not in height growth rate for the first year after planting. Provenance variation in ∆13C suggests genetic variation in water use efficiency that may be useful for future evaluation of southwestern ponderosa pine seed sources for reforestation. Full article
Show Figures

Figure 1

29 pages, 3263 KiB  
Article
Preference and Performance of the Pine-Tree Lappet Dendrolimus pini on Various Pine Species
by Adrian Łukowski, Marian J. Giertych, Dawid Adamczyk, Ewa Mąderek and Piotr Karolewski
Forests 2021, 12(9), 1261; https://doi.org/10.3390/f12091261 - 16 Sep 2021
Cited by 4 | Viewed by 2448
Abstract
Global commercial and recreational transport may lead to the unintentional invasion of insect species, which in turn may pose a threat to native organisms. In this study, we aimed to assess whether the economically important pest of Pinus sylvestris L., moth Dendrolimus pini [...] Read more.
Global commercial and recreational transport may lead to the unintentional invasion of insect species, which in turn may pose a threat to native organisms. In this study, we aimed to assess whether the economically important pest of Pinus sylvestris L., moth Dendrolimus pini L. (DP), is able to feed on nine other pine species, and how this will affect its survival, performance, growth, and development. We carried out food choice tests and a no-choice laboratory feeding experiment. We found that this insect mostly preferred its prime host, but also Pinus cembra L., Pinus contorta Douglas ex Loudon, Pinus nigra J.F.Arnold, and Pinus ponderosa Douglas ex C.Lawson. The performance test revealed a host-specific response of DP to the host plant. This response was manifested in a large variation in body mass as well as in a decrease or increase in life-history traits, such as fecundity, and wing morphology parameters. However, the larvae’s choice of particular hosts corresponded to the results of the performance test. Larvae more willingly selected food allowing better results in their performance. Larvae achieved better values of growth and development when fed on European and North American pine species or on species with two- and three-needle fascicles. In addition, attractants and repellents in needles of different pine species were chemically analyzed. Variations in the secondary metabolite composition as well as the specific leaf area of different pine species effectively explained the results found in the insects, but the content of sugars and nitrogen remains to be elucidated. We speculate that DP poses a serious threat to large areas of pine forests, if transferred, as it can survive and develop on many economically important tree species in North America and Europe. Full article
Show Figures

Figure 1

14 pages, 2578 KiB  
Article
Air Pollution and Climate Drive Annual Growth in Ponderosa Pine Trees in Southern California
by Hillary S. Jenkins
Climate 2021, 9(5), 82; https://doi.org/10.3390/cli9050082 - 13 May 2021
Cited by 2 | Viewed by 3382
Abstract
The ponderosa pine (Pinus ponderosa, Douglas ex C. Lawson) is a climate-sensitive tree species dominant in the mixed conifer stands of the San Bernardino Mountains of California. However, the close proximity to the city of Los Angeles has resulted in extremely [...] Read more.
The ponderosa pine (Pinus ponderosa, Douglas ex C. Lawson) is a climate-sensitive tree species dominant in the mixed conifer stands of the San Bernardino Mountains of California. However, the close proximity to the city of Los Angeles has resulted in extremely high levels of air pollution. Nitrogen (N) deposition, resulting from nitrous oxides emitted from incomplete combustion of fossil fuels, has been recorded in this region since the 1980s. The impact of this N deposition on ponderosa pine growth is complex and often obscured by other stressors including climate, bark beetle attack, and tropospheric ozone pollution. Here I use a 160-year-long (1855–2015) ponderosa pine tree ring chronology to examine the annual response of tree growth to both N deposition and climate in this region. The chronology is generated from 34 tree cores taken near Crestline, CA. A stepwise multiple regression between the tree ring chronology and various climate and air pollution stressors indicates that drought conditions at the end of the rainy season (March) and NO2 pollution during the water year (pOct-Sep) exhibit primary controls on growth (r2-adj = 0.65, p < 0.001). The direct correlation between NO2 and tree growth suggests that N deposition has a positive impact on ponderosa pine bole growth in this region. However, it is important to note that ozone, a known stressor to ponderosa pine trees, and NO2 are also highly correlated (r = 0.84, p < 0.05). Chronic exposure to both ozone and nitrogen dioxide may, therefore, have unexpected impacts on tree sensitivity to climate and other stressors in a warming world. Full article
(This article belongs to the Special Issue Climate Change Impact on Plant Ecology)
Show Figures

Figure 1

10 pages, 3109 KiB  
Article
Provenance Geographical and Climatic Characteristics Influence Budburst Phenology of Southwestern Ponderosa Pine Seedlings
by Aalap Dixit, Thomas Kolb and Owen Burney
Forests 2020, 11(10), 1067; https://doi.org/10.3390/f11101067 - 4 Oct 2020
Cited by 5 | Viewed by 2486
Abstract
Ponderosa pine (Pinus ponderosa Lawson & C. Lawson var. scopulorum Engelm.) forests of the southwestern US are threatened by climate change and deforestation. Information about geographic patterns of provenance variation in budburst phenology is needed to make decisions about selecting seed sources [...] Read more.
Ponderosa pine (Pinus ponderosa Lawson & C. Lawson var. scopulorum Engelm.) forests of the southwestern US are threatened by climate change and deforestation. Information about geographic patterns of provenance variation in budburst phenology is needed to make decisions about selecting seed sources for future planting. In this study, provenance variation in the budburst phenology of ponderosa pine seedlings was examined using common garden studies. Seedlings from 21 provenances, representing an elevational gradient in Arizona and New Mexico, were planted in July 2018 at a ponderosa pine-dominated field site in northern Arizona. Field budburst was monitored weekly on all seedlings in the spring of 2019. Field budburst was compared with budburst timing of the same provenances measured under greenhouse conditions. The hypotheses for this study were that (1) budburst varies among provenances, with earlier budburst in low-elevation provenances, and (2) differences in budburst timing among provenances are consistent for seedlings grown in greenhouse and field environments. Field results show that provenances vary in budburst date and that low- and middle-elevation provenances break bud sooner than high-elevation provenances. Field budburst date had a moderate, positive correlation with provenance mean annual precipitation (r = 0.522) and a moderate, negative trend with latitude (r = −0.413). Budburst date of provenances in the greenhouse had a moderate, positive trend with budburst date in the field (r = 0.554), suggesting application of greenhouse results to field plantings. Such information about provenance variation and environmental and geographic trends in budburst timing will be useful for developing species-specific seed transfer guidelines and effective assisted migration strategies in a changing climate. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

24 pages, 1816 KiB  
Article
Implications of Reduced Stand Density on Tree Growth and Drought Susceptibility: A Study of Three Species under Varying Climate
by Mathias Steckel, W. Keith Moser, Miren del Río and Hans Pretzsch
Forests 2020, 11(6), 627; https://doi.org/10.3390/f11060627 - 2 Jun 2020
Cited by 40 | Viewed by 4557
Abstract
A higher frequency of increasingly severe droughts highlights the need for short-term measures to adapt existing forests to climate change. The maintenance of reduced stand densities has been proposed as a promising silvicultural tool for mitigating drought stress. However, the relationship between stand [...] Read more.
A higher frequency of increasingly severe droughts highlights the need for short-term measures to adapt existing forests to climate change. The maintenance of reduced stand densities has been proposed as a promising silvicultural tool for mitigating drought stress. However, the relationship between stand density and tree drought susceptibility remains poorly understood, especially across ecological gradients. Here, we analysed the effect of reduced stand density on tree growth and growth sensitivity, as well as on short-term drought responses (resistance, recovery, and resilience) of Scots pine (Pinus sylvestris L.), sessile oak (Quercus petraea (Matt.) Liebl.), and ponderosa pine (Pinus ponderosa Douglas ex C. Lawson). Tree ring series from 409 trees, growing in stands of varying stand density, were analysed at sites with different water availability. For all species, mean tree growth was significantly higher under low compared with maximum stand density. Mean tree growth sensitivity of Scots pine was significantly higher under low compared with moderate and maximum stand density, while growth sensitivity of ponderosa pine peaked under maximum stand density. Recovery and resilience of Scots pine, as well as recovery of sessile oak and ponderosa pine, decreased with increasing stand density. In contrast, resistance and resilience of ponderosa pine significantly increased with increasing stand density. Higher site water availability was associated with significantly reduced drought response indices of Scots pine and sessile oak in general, except for resistance of oak. In ponderosa pine, higher site water availability significantly lessened recovery. Higher site water availability significantly moderated the positive effect of reduced stand density on drought responses. Stand age had a significantly positive effect on the resistance of Scots pine and a negative effect on recovery of sessile oak. We discuss potential causes for the observed response patterns, derive implications for adaptive forest management, and make recommendations for further research in this field. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

19 pages, 2352 KiB  
Article
Restoration Treatments Improve Overstory Tree Resistance Attributes and Growth in a Ponderosa Pine/Douglas-Fir Forest
by Justin S. Crotteau and Christopher R. Keyes
Forests 2020, 11(5), 574; https://doi.org/10.3390/f11050574 - 21 May 2020
Cited by 8 | Viewed by 2774
Abstract
Research Highlights: This study provides much needed insight into the development of resistance to disturbance and growth dynamics of overstory trees in response to restoration-based fuel reduction, and will be useful to scientists and managers attempting to better grasp the relative merits of [...] Read more.
Research Highlights: This study provides much needed insight into the development of resistance to disturbance and growth dynamics of overstory trees in response to restoration-based fuel reduction, and will be useful to scientists and managers attempting to better grasp the relative merits of restoration treatment types. Background and Objectives: Restoration-based fuel reduction treatments are common in dry, fire-prone forests of the western United States. The primary objective of such treatments is to immediately reduce a stand’s crown fire hazard. However, the impact of these treatments on residual trees is relevant to assess their longevity and resistance to future disturbances. In this study, we evaluate the effects of restoration on retained overstory ponderosa pine (Pinus ponderosa Lawson & C. Lawson) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees in western Montana, where treatments were experimentally implemented 13 years prior as part of the national Fire and Fire Surrogate study. Materials and Methods: We examined tree attributes in response to the following replicated treatments: thin-only, burn-only, thin + burn, and a no-action control. We analyzed three different tree attributes that confer resistance to common disturbances: height-to-diameter ratio (resistance to wind), bark thickness (resistance to surface fire), and growth efficiency (resistance to bark beetles). Results: Our models suggest that thinning (with or without burning) alters tree attributes relative to the control in a manner that may increase tree resistance to wind and snow breakage, surface fire, and biotic agents such as bark beetles. Further analysis of annual growth of ponderosa pine and Douglas-fir varied by treatment type: thinning-based restoration (thin-only and thin + burn) increased diameter growth for both species, crown length and width in ponderosa pine, and crown length in Douglas-fir relative to unthinned treatments. Burning (burn-only and thin + burn) did not significantly affect tree growth relative to unburned treatments. Conclusions: While low-severity prescribed burning treatments are often used for restoration and have various ecosystem benefits, this study demonstrates that thinning (alone or in addition to burning) produces more measureable, beneficial results to overstory tree disturbance resistance metrics and growth. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

11 pages, 3453 KiB  
Article
Aboveground Biomass Response to Release Treatments in a Young Ponderosa Pine Plantation
by Martin Ritchie, Jianwei Zhang and Ethan Hammett
Forests 2019, 10(9), 795; https://doi.org/10.3390/f10090795 - 12 Sep 2019
Cited by 1 | Viewed by 3192
Abstract
Controlling competing vegetation is vital for early plantation establishment and growth. Aboveground biomass (AGB) response to manual grubbing release from shrub competition was compared with no release control in a twelve-year-old ponderosa pine (Pinus ponderosa Lawson & C. Lawson) plantation established after [...] Read more.
Controlling competing vegetation is vital for early plantation establishment and growth. Aboveground biomass (AGB) response to manual grubbing release from shrub competition was compared with no release control in a twelve-year-old ponderosa pine (Pinus ponderosa Lawson & C. Lawson) plantation established after a wildfire in northeastern California. In addition, response to chemical release followed by precommercial thinning in an adjacent plantation was also examined as a growth potential from a more intensively managed regime, where shrub competition was virtually eliminated. We measured AGB in both planted trees and competing woody shrubs to partition the biomass pools in the plantation. The results showed a significant grubbing treatment effect on basal diameter (BD) at 10 cm aboveground (p = 0.02), but not on tree height (p = 0.055). Height and BD were 2.0 m and 7.4 cm in the manual release, respectively, compared to 1.7 m and 5.6 cm in the control. However, chemical release produced much greater rates of tree growth with a height of 3.6 m and BD of 14.7 cm, respectively. Tree AGB was 60% higher with the manual release of shrubs (1.2 Mg ha−1) than with control (0.7 Mg ha−1) (p < 0.05). The planted area without shrub competition yielded a much higher green tree biomass (16.0 Mg ha−1). When woody shrub biomass was included, the total AGB (trees and woody shrubs) appeared slightly higher, but non-significant in the no release control (13.3 Mg ha−1) than in the manual release (11.9 Mg ha−1) (p = 0.66); the chemical release had 17.1 Mg ha−1. Clearly, shrub biomass dominated this young plantation when understory shrubs were not completely controlled. Although the manual release did increase targeted tree growth to some degree, the cost may limit this practice to a smaller scale and the remaining shrub dominance may create long-term reductions in growth and a persistent fuels problem in these fire-prone ecosystems. Full article
Show Figures

Figure 1

20 pages, 3249 KiB  
Article
Climate Effect on Ponderosa Pine Radial Growth Varies with Tree Density and Shrub Removal
by Kaelyn Finley and Jianwei Zhang
Forests 2019, 10(6), 477; https://doi.org/10.3390/f10060477 - 31 May 2019
Cited by 14 | Viewed by 3949
Abstract
With increasing temperatures and projected changes in moisture availability for the Mediterranean climate of northern California, empirical evidence of the long-term responses of forests to climate are important for managing these ecosystems. We can assess forest treatment strategies to improve climate resilience by [...] Read more.
With increasing temperatures and projected changes in moisture availability for the Mediterranean climate of northern California, empirical evidence of the long-term responses of forests to climate are important for managing these ecosystems. We can assess forest treatment strategies to improve climate resilience by examining past responses to climate for both managed and unmanaged plantations. Using an experimental, long-term density and shrub removal study of ponderosa pine (Pinus ponderosa Lawson & C. Lawson) on a poor-quality site with low water-holding capacity and high runoff of the North Coastal mountain range in California, we examined the relationships between radial growth and climate for these trees over a common interval of 1977–2011. Resistance indices, defined here as the ratio between current year radial growth and the performance of the four previous years, were correlated to climatic variables during the same years. We found that all treatments’ radial growth benefited from seasonal spring moisture availability during the current growing year. Conversely, high spring and early summer temperatures had detrimental effects on growth. High-density treatments with manzanita understories were sensitive to summer droughts while lower densities and treatments with full shrub removal were not. The explanatory power of the climate regression models was generally more consistent for the same shrub treatments across the four different densities. The resistance indices for the lower density and complete shrub removal treatment groups were less dependent on previous years’ climatic conditions. We conclude that, for ponderosa pine plantations with significant manzanita encroachment, understory removal and heavy thinning treatments increase subsequent growth for remaining trees and decrease sensitivity to climate. Full article
Show Figures

Figure 1

15 pages, 3121 KiB  
Communication
Drought Impacts and Compounding Mortality on Forest Trees in the Southern Sierra Nevada
by Lauren S. Pile, Marc D. Meyer, Ramiro Rojas, Olivia Roe and Mark T. Smith
Forests 2019, 10(3), 237; https://doi.org/10.3390/f10030237 - 7 Mar 2019
Cited by 27 | Viewed by 4713
Abstract
The increase in compounding disturbances, such as “hotter droughts” coupled with insect outbreaks, has significant impacts on the integrity of forested ecosystems and their subsequent management for important ecosystem services and multiple-use objectives. In the Southern Sierra Nevada, years of severe drought have [...] Read more.
The increase in compounding disturbances, such as “hotter droughts” coupled with insect outbreaks, has significant impacts on the integrity of forested ecosystems and their subsequent management for important ecosystem services and multiple-use objectives. In the Southern Sierra Nevada, years of severe drought have resulted in unprecedented tree mortality across this mountainous landscape. Additionally, past land management practices, including fire suppression, have led to overly stocked, homogenous forest stand structures, dominated by small diameter, shade-tolerant and fire-intolerant tree species. Thus, the current condition of the landscape has further increased the susceptibility of forest trees to multiple stressors. We sought to determine the effects of extreme drought and insect outbreaks on tree mortality and their influence on forest stand structure and composition. To characterize mortality patterns, we monitored the condition of mature forest trees (>25.4 cm diameter at breast height) across 255 monitoring plots with four repeated measurements from 2015 through 2017. Tree mortality varied by species and through time. Reductions in pine species (Pinus lambertiana Douglas and P. ponderosa Lawson & C. Lawson) occurred earlier in the study period than Abies concolor (Gord. & Glend.) Lindl. Ex Hildebr. or Calocedrus decurrens (Torr.) Florin. Across species, larger tree size, most often associated with tree height, was consistently related to increased survival in mature, overstory trees. As expected, sites with greater pine stocking and subsequently more bark beetle (Curculionidae: Scolytinae) host availability had increased pine mortality, especially for P. ponderosa. For Abies concolor, lower overstory basal area increased tree survival for this species. This study highlights the importance of effective forest monitoring, especially during a period of unprecedented ecological change as the compounding disturbance had a disproportional effect on pine species in smaller diameter classes. Proactive forest management may be necessary to maintain and promote these ecologically important species in heterogeneous mixtures across the landscape. Full article
Show Figures

Figure 1

11 pages, 1659 KiB  
Article
The Hungry Bob Fire & Fire Surrogate Study: A 20-Year Evaluation of the Treatment Effects
by George L. McCaskill
Forests 2019, 10(1), 15; https://doi.org/10.3390/f10010015 - 28 Dec 2018
Cited by 4 | Viewed by 3011
Abstract
The Hungry Bob fuels reduction project was part of a 12-site National Fire and Fire Surrogate (FFS) network of experiments conducted across the United States from the late 1990s through the early 2000s to determine the regional differences in applying alternative fuel-reduction treatments [...] Read more.
The Hungry Bob fuels reduction project was part of a 12-site National Fire and Fire Surrogate (FFS) network of experiments conducted across the United States from the late 1990s through the early 2000s to determine the regional differences in applying alternative fuel-reduction treatments to forests. The Hungry Bob project focused on restoration treatments applied in low elevation, dry second-growth ponderosa pine (Pinus ponderosa subsp. ponderosa (Douglas ex C. Lawson) and Douglas-fir (Pseudotsuga menziesii subsp. glauca (Beissn.) Franco forests of northeastern Oregon. Treatments included a single entry thin from below in 1998, a late season burn in 2000, a thin (1999) followed by burning (2000), and a no-treatment control. This paper represents results 20 years after treatments and focuses on the treatment effects upon tree diameter growth, crown health, and ladder fuel conditions within the dry eastside stands. The Thin + Burn units produced the best diameter growth in ponderosa pine trees, whereas the Thin units had the best growth for Douglas-fir. The Burn treatment did not improve diameter growth over the Controls. The Thin + Burn treatments also produced trees with the highest tree crown ratios. The Burn unit trees had lower crown ratios compared to the Control trees. The crown reduction (reduction in tree crown ratio since 2004) was largest in the Burn-only units and smallest in the Thin + Burn units. Finally, the heights to the lower tree crowns were highest in the Thin + Burn trees and lowest in the Burn unit trees. Based upon the 20-year responses, the Thin + Burn treatments produced the best conditions for stand growth, while limiting fire stress upon residual tree crowns. It also proved most effective at reducing ladder fuels as represented by higher tree crown heights. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

17 pages, 3201 KiB  
Article
Overstory Structure and Surface Cover Dynamics in the Decade Following the Hayman Fire, Colorado
by Paula J. Fornwalt, Camille S. Stevens-Rumann and Byron J. Collins
Forests 2018, 9(3), 152; https://doi.org/10.3390/f9030152 - 17 Mar 2018
Cited by 15 | Viewed by 4680
Abstract
The 2002 Hayman Fire burned with mixed-severity across a 400-ha dry conifer study site in Colorado, USA, where overstory tree and surface cover attributes had been recently measured on 20 0.1-ha permanent plots. We remeasured these plots repeatedly during the first post-fire decade [...] Read more.
The 2002 Hayman Fire burned with mixed-severity across a 400-ha dry conifer study site in Colorado, USA, where overstory tree and surface cover attributes had been recently measured on 20 0.1-ha permanent plots. We remeasured these plots repeatedly during the first post-fire decade to examine how the attributes changed through time and whether changes were influenced by fire severity. We found that most attributes were temporally dynamic and that fire severity shaped their dynamics. For example, low-severity plots experienced a modest reduction in live overstory density due to both immediate and delayed tree mortality, and no change in live overstory basal area through time; in contrast, high-severity plots experienced an immediate and total loss of live overstory density and basal area. Large snag density in low-severity plots did not vary temporally because snag recruitment balanced snag loss; however, in high-severity plots large snag density increased markedly immediately post-fire and then declined by about half by post-fire year ten as snags fell. Mineral soil cover increased modestly immediately post-fire in low-severity plots and substantially immediately post-fire in high-severity plots, but changed little in ensuing years for either severity class. By incorporating pre-fire and repeatedly-measured post-fire data for a range of severities, our study uniquely contributes to the current understanding of wildfire effects in dry conifer forests and should be of interest to managers, researchers, and others. Full article
(This article belongs to the Special Issue Wildland Fire, Forest Dynamics, and Their Interactions)
Show Figures

Figure 1

Back to TopTop