Air Pollution and Climate Drive Annual Growth in Ponderosa Pine Trees in Southern California
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tree Ring Chronology
2.2. Climate Data
2.3. Air Pollution Data
2.4. Climate Response Analysis
3. Results
4. Discussion
4.1. Climate and Tree Increment Growth
4.2. NO2, Ozone, and Tree Growth
4.3. Colinearity of Ozone and Nitrogen Dioxide
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCullough, I.M.; Davis, F.W.; Williams, A.P. A range of possibilities: Assessing geographic variation in climate sensitivity of ponderosa pine using tree rings. For. Ecol. Manag. 2017, 402, 223–233. [Google Scholar] [CrossRef]
- Graumlich, L.J. A 1000-Year Record of Temperature and Precipitation in the Sierra Nevada. Quat. Res. 1993, 39, 249–255. [Google Scholar] [CrossRef]
- Kerhoulas, L.P.; Kolb, T.E.; Koch, G.W. The Influence of Monsoon Climate on Latewood Growth of Southwestern Ponderosa Pine. Forests 2017, 8, 140. [Google Scholar] [CrossRef] [Green Version]
- Dannenberg, M.P.; Wise, E.K. Seasonal climate signals from multiple tree ring metrics: A case study of Pinus ponderosa in the upper Columbia River Basin. J. Geophys. Res. Biogeosci. 2016, 121, 1178–1189. [Google Scholar] [CrossRef] [Green Version]
- Kerhoulas, L.P.; Kane, J.M. Sensitivity of ring growth and carbon allocation to climatic variation vary within ponderosa pine trees. Tree Physiol. 2011, 32, 14–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salzer, M.W.; Kipfmueller, K.F. Reconstructed Temperature and Precipitation on A Millennial Timescale from Tree-Rings in the Southern Colorado Plateau, U.S.A. Clim. Chang. 2005, 70, 465–487. [Google Scholar] [CrossRef]
- Fuchs, L.; Stevens, L.E.; Fulé, P.Z. Dendrochronological assessment of springs effects on ponderosa pine growth, Arizona, USA. For. Ecol. Manag. 2019, 435, 89–96. [Google Scholar] [CrossRef]
- Brown, P.M.; Wu, R. Climate and disturbance forcing of episodic tree recruitment in a southwestern ponderosa pine landscape. Ecology 2005, 86, 3030–3038. [Google Scholar] [CrossRef]
- Leavitt, S.W.; Wright, W.E.; Long, A. Spatial expression of ENSO, drought, and summer monsoon in seasonal δ13C of ponderosa pine tree rings in southern Arizona and New Mexico. J. Geophys. Res. Space Phys. 2002, 107. [Google Scholar] [CrossRef]
- Cook, E.R.; Woodhouse, C.A.; Eakin, C.M.; Meko, D.M.; Stahle, D.W. Long-Term Aridity Changes in the Western United States. Science 2004, 306, 1015–1018. [Google Scholar] [CrossRef] [Green Version]
- Stephens, S.L.; Lydersen, J.M.; Collins, B.M.; Fry, D.L.; Meyer, M.D. Historical and current landscape-scale ponderosa pine and mixed conifer forest structure in the Southern Sierra Nevada. Ecosphere 2015, 6, art79. [Google Scholar] [CrossRef]
- Koppen, W. Das geographische system der klimat. Handb. Klimatol. 1936, 46, 1–44. [Google Scholar]
- Rosenthal, J.S.; Helvey, R.A.; Battalino, T.E.; Fisk, C.; Greiman, P.W. Ozone transport by mesoscale and diurnal wind circulations across southern California. Atmos. Environ. 2003, 37, 51–71. [Google Scholar] [CrossRef]
- Miller, P.R.; Taylor, O.C.; McBride, J.R. Oxidant Air Pollution Impacts in the Montane Forests of Southern California: A Case Study of the San Bernardino Mountains; Springer: New York, NY, USA, 2012. [Google Scholar]
- Bao, J.-W.; Michelson, S.A.; Persson, P.O.G.; Djalalova, I.V.; Wilczak, J.M. Observed and WRF-Simulated Low-Level Winds in a High-Ozone Episode during the Central California Ozone Study. J. Appl. Meteorol. Clim. 2008, 47, 2372–2394. [Google Scholar] [CrossRef]
- Parrish, D.D.; Xu, J.; Croes, B.; Shao, M. Air quality improvement in Los Angeles—Perspectives for developing cities. Front. Environ. Sci. Eng. 2016, 10, 11. [Google Scholar] [CrossRef]
- Docherty, K.S.; Aiken, A.C.; Huffman, J.A.; Ulbrich, I.M.; Decarlo, P.F.; Sueper, D.; Worsnop, D.R.; Snyder, D.C.; Peltier, R.E.; Weber, R.J.; et al. The 2005 Study of Organic Aerosols at Riverside (SOAR-1): Instrumental intercomparisons and fine particle composition. Atmos. Chem. Phys. Discuss. 2011, 11, 12387–12420. [Google Scholar] [CrossRef] [Green Version]
- Ryerson, T.B.; Andrews, A.E.; Angevine, W.M.; Bates, T.S.; Brock, C.A.; Cairns, B.; Cohen, R.C.; Cooper, O.R.; De Gouw, J.A.; Fehsenfeld, F.C.; et al. The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study. J. Geophys. Res. Atmos. 2013, 118, 5830–5866. [Google Scholar] [CrossRef]
- Park, C.; Gerbig, C.; Newman, S.; Ahmadov, R.; Feng, S.; Gurney, K.R.; Carmichael, G.R.; Park, S.-Y.; Lee, H.-W.; Goulden, M.; et al. CO2 Transport, Variability, and Budget over the Southern California Air Basin Using the High-Resolution WRF-VPRM Model during the CalNex 2010 Campaign. J. Appl. Meteorol. Clim. 2018, 57, 1337–1352. [Google Scholar] [CrossRef]
- Trouet, V.; Taylor, A.H.; Wahl, E.R.; Skinner, C.N.; Stephens, S.L. Fire-climate interactions in the American West since 1400 CE. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Steiner, A.L.; Tonse, S.; Cohen, R.C.; Goldstein, A.H.; Harley, R.A. Influence of future climate and emissions on regional air quality in California. J. Geophys. Res. Space Phys. 2006, 111. [Google Scholar] [CrossRef]
- Johnson, C.E.; Collins, W.J.; Stevenson, D.S.; Derwent, R.G. Relative roles of climate and emissions changes on future tropospheric oxidant concentrations. J. Geophys. Res. Space Phys. 1999, 104, 18631–18645. [Google Scholar] [CrossRef] [Green Version]
- Mickley, L.J.; Jacob, D.J.; Field, B.D.; Rind, D. Effects of future climate change on regional air pollution episodes in the United States. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Leung, L.R.; Gustafson, W.I., Jr. Potential regional climate change and implications to US air quality. Geophys. Res. Lett. 2005, 32, L16711. [Google Scholar] [CrossRef] [Green Version]
- Arbaugh, M.J.; Peterson, D.L.; Miller, P.R. Air Pollution Effects on Growth of Ponderosa Pine, Jeffrey Pine, and Bigcone Douglas-Fir. In Oxidant Air Pollution Impacts in the Montane Forests of Southern California: A Case Study of the San Bernardino Mountains; Miller, P.R., McBride, J.R., Eds.; Springer: New York, NY, USA, 1999; pp. 179–207. [Google Scholar]
- Grulke, N.E. The Physiological Basis of Ozone Injury Assessment Attributes in Sierran Conifers. In Developments in Environmental Science; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2003; Chapter 3; Volume 2, pp. 55–81. [Google Scholar]
- Evans, L.S.; Miller, P.R. Histological Comparison of Single and Additive O3 and SO2 Injuries to Elongating Ponderosa Pine Needles. Am. J. Bot. 1975, 62, 416. [Google Scholar] [CrossRef]
- Tingey, D.T.; Hogsett, W.E.; Lee, E.H.; Laurence, J.A. Stricter Ozone Ambient Air Quality Standard Has Beneficial Effect on Ponderosa Pine in California. Environ. Manag. 2004, 34, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Agathokleous, E.; Saitanis, C.J.; Wang, X.; Watanabe, M.; Koike, T. A Review Study on Past 40 Years of Research on Effects of Tropospheric O3 on Belowground Structure, Functioning, and Processes of Trees: A Linkage with Potential Ecological Implications. Water, Air, Soil Pollut. 2015, 227, 1–28. [Google Scholar] [CrossRef]
- Mills, G.; Harmens, H.; Wagg, S.; Sharps, K.; Hayes, F.; Fowler, D.; Sutton, M.; Davies, B. Ozone impacts on vegetation in a nitrogen enriched and changing climate. Environ. Pollut. 2016, 208, 898–908. [Google Scholar] [CrossRef] [Green Version]
- Grulke, N.; Andersen, C.; Fenn, M.; Miller, P. Ozone exposure and nitrogen deposition lowers root biomass of ponderosa pine in the San Bernardino Mountains, California. Environ. Pollut. 1998, 103, 63–73. [Google Scholar] [CrossRef]
- Fenn, M.E.; Preisler, H.K.; Fried, J.S.; Bytnerowicz, A.; Schilling, S.L.; Jovan, S.; Kuegler, O. Evaluating the effects of nitrogen and sulfur deposition and ozone on tree growth and mortality in California using a spatially comprehensive forest inventory. For. Ecol. Manag. 2020, 465, 118084. [Google Scholar] [CrossRef]
- Grulke, N.E.; Heath, R.L. Ozone effects on plants in natural ecosystems. Plant Biol. 2019, 22, 12–37. [Google Scholar] [CrossRef]
- Negrón, J.F.; McMillin, J.D.; Anhold, J.A.; Coulson, D. Bark beetle-caused mortality in a drought-affected ponderosa pine landscape in Arizona, USA. For. Ecol. Manag. 2009, 257, 1353–1362. [Google Scholar] [CrossRef]
- Ferretti, M.; Bacaro, G.; Brunialti, G.; Confalonieri, M.; Cristofolini, F.; Cristofori, A.; Frati, L.; Finco, A.; Gerosa, G.; Maccherini, S.; et al. Scarce evidence of ozone effect on recent health and productivity of alpine forests—A case study in Trentino, N. Italy. Environ. Sci. Pollut. Res. 2018, 25, 8217–8232. [Google Scholar] [CrossRef]
- Grulke, N.E.; Minnich, R.A.; Paine, T.D.; Seybold, S.J.; Chavez, D.J.; Fenn, M.E.; Riggan, P.J.; Dunn, A. Chapter 17 Air Pollution Increases Forest Susceptibility to Wildfires: A Case Study in the San Bernardino Mountains in Southern California. Wildland Fires Air Pollut. 2009, 8, 365. [Google Scholar] [CrossRef]
- Griffin, J.R. The Distribution of Forest Trees in California; Pacific Southwest Forest and Range Experiment Station: Berkeley, CA USA, 1972; Volume 82. [Google Scholar]
- Speer, J.H. Fundamentals of Tree-Ring Research; University of Arizona Press: Tucson, AZ, USA, 2010. [Google Scholar]
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the Average Value of Correlated Time Series, with Applications in Den-droclimatology and Hydrometeorology. J. Appl. Meteorol. Climatol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Holmes, R. Computer-Assisted Quality Control in Tree-Ring Dating and Measurement. Tree-Ring Bull. 1983, 43, 51–67. [Google Scholar]
- LDEO. ARSTAN; Lamont-Doherty Earth Observatory: New York, NY, USA, 2014. [Google Scholar]
- Cook, E.R. A Time Series Analysis Approach to Tree-Ring Standardization; University of Arizona: Tucson, AZ, USA, 1985; 171p. [Google Scholar]
- Cook, E.R. The Decomposition of Tree-Ring Series for Environmental Studies; Tree-Ring Bulletin: Tree Ring Society: Tucson, AZ, USA, 1987; Volume 47, pp. 37–59. [Google Scholar]
- Edinger, J.G.; McCutchan, M.H.; Miller, P.R.; Ryan, B.C.; Schroeder, M.J.; Behar, J.V. Penetration and Duration of Oxidant Air Pollution in the South Coast Air Basin of California. J. Air Pollut. Control. Assoc. 1972, 22, 882–886. [Google Scholar] [CrossRef]
- Winant, C.D.; Dorman, C.E. Seasonal patterns of surface wind stress and heat flux over the Southern California Bight. J. Geophys. Res. Space Phys. 1997, 102, 5641–5653. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. Air Quality System Data Mart. 2021. Available online: https://www.epa.gov/airdata (accessed on 15 January 2021).
- Daly, C.; Halbleib, M.; Smith, J.I.; Gibson, W.P.; Doggett, M.K.; Taylor, G.H.; Curtis, J.; Pasteris, P.P. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Clim. 2008, 28, 2031–2064. [Google Scholar] [CrossRef]
- Strachan, S.; Daly, C. Testing the daily PRISM air temperature model on semiarid mountain slopes. J. Geophys. Res. Atmos. 2017, 122, 5697–5715. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Reig-Gracia, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Clim. 2014, 34, 3001–3023. [Google Scholar] [CrossRef] [Green Version]
- Beguería, S.; Vicente-Serrano, S.M.; Angulo-Martínez, M. A Multiscalar Global Drought Dataset: The SPEIbase: A New Gridded Product for the Analysis of Drought Variability and Impacts. Bull. Am. Meteorol. Soc. 2010, 91, 1351–1356. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I.; Angulo, M.; El Kenawy, A. A New Global 0.5° Gridded Dataset (1901–2006) of a Multiscalar Drought Index: Comparison with Current Drought Index Datasets Based on the Palmer Drought Severity Index. J. Hydrometeorol. 2010, 11, 1033–1043. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Dai, A. The Magnitude and Causes of Global Drought Changes in the Twenty-First Century under a Low–Moderate Emissions Scenario. J. Clim. 2015, 28, 4490–4512. [Google Scholar] [CrossRef]
- Lee, E.; Tingey, D.T.; Hogsett, W.E.; Laurence, J.A. History of tropospheric ozone for the San Bernardino Mountains of Southern California, 1963–1999. Atmos. Environ. 2003, 37, 2705–2717. [Google Scholar] [CrossRef]
- Lee, E. Use of auxiliary data for spatial interpolation of surface ozone patterns. In Developments in Environmental Science; Elsevier: Amsterdam, The Netherlands, 2003; pp. 165–194. [Google Scholar]
- Finley, K.; Zhang, J. Climate Effect on Ponderosa Pine Radial Growth Varies with Tree Density and Shrub Removal. Forests 2019, 10, 477. [Google Scholar] [CrossRef] [Green Version]
- Pettit, J.L.; Derose, R.J.; Long, J.N. Climatic Drivers of Ponderosa Pine Growth in Central Idaho. Tree-Ring Res. 2018, 74, 172–184. [Google Scholar] [CrossRef]
- Peltier, D.M.P.; Ogle, K. Legacies of more frequent drought in ponderosa pine across the western United States. Glob. Chang. Biol. 2019, 25, 3803–3816. [Google Scholar] [CrossRef]
- Shamir, E.; Meko, D.; Touchan, R.; Lepley, K.S.; Campbell, R.; Kaliff, R.N.; Georgakakos, K.P. Snowpack- and Soil Water Content-Related Hydrologic Indices and Their Association With Radial Growth of Conifers in the Sierra Nevada, California. J. Geophys. Res. Biogeosci. 2020, 125. [Google Scholar] [CrossRef]
- Zhao, H.; Gao, G.; An, W.; Zou, X.; Li, H.; Hou, M. Timescale differences between SC-PDSI and SPEI for drought monitoring in China. Phys. Chem. Earth Parts ABC 2017, 102, 48–58. [Google Scholar] [CrossRef]
- Grulke, N.; Balduman, L. Deciduous Conifers: High N Deposition and O3 Exposure Effects on Growth and Biomass Allocation in Ponderosa Pine. Water, Air, Soil Pollut. 1999, 116, 235–248. [Google Scholar] [CrossRef]
- Grulke, N.E. Physiological Responses of Ponderosa Pine to Gradients of Environmental Stressors. In Oxidant Air Pollution Impacts in the Montane Forests of Southern California: A Case Study of the San Bernardino Mountains; Miller, P.R., McBride, J.R., Eds.; Springer: New York, NY, USA, 1999; pp. 126–163. [Google Scholar]
- Miller, P.R.; Arbaugh, M.J.; Temple, P.J. Ozone and Its Known and Potential Effects on Forests in Western United States. In Forest Decline and Ozone: A Comparison of Controlled Chamber and Field Experiments; Sandermann, H., Wellburn, A.R., Heath, R.L., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 39–67. [Google Scholar]
- Miller, P.R.; Longbotham, G.J.; Longbotham, C. Sensitivity of selected western conifers to ozone. Plant Dis. 1983, 67, 1113–1115. [Google Scholar] [CrossRef]
- Lorenz, M.; Clarke, N.; Paoletti, E.; Bytnerowicz, A.; Grulke, N.; Lukina, N.; Sase, H.; Staelens, J. Air Pollution Impacts on Forests in a Changing Climate; International Union of Forest Research Organizations (IUFRO): Vienna, Austria, 2010. [Google Scholar]
- Beyers, J.L.; Riechers, G.H.; Temple, P.J. Effects of long-term ozone exposure and drought on the photosynthetic capacity of ponderosa pine (Pinus ponderosa Laws). New Phytol. 1992, 122, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Padgett, P. Nitrogen deposition: The up and down side for production and down side for production agriculture. Plant Physiol. 2009, 101, 141–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Temple, P.J.; Miller, P.R. Seasonal influences on ozone uptake and foliar injury to ponderosa and Jeffrey pines at a southern California site. In Proceedings of the International Symposium on Air Pollution and Climate Change Effects on Forest Ecosystems, Albany, CA, USA, 5–9 February 1996; pp. 221–228. [Google Scholar]
- Avila, A.; Aguillaume, L.; Izquieta-Rojano, S.; García-Gómez, H.; Elustondo, D.; Santamaría, J.M.; Alonso, R. Quantitative study on nitrogen deposition and canopy retention in Mediterranean evergreen forests. Environ. Sci. Pollut. Res. 2017, 24, 26213–26226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paoletti, E.; Bytnerowicz, A.; Andersen, C.; Augustaitis, A.; Ferretti, M.; Grulke, N.; Günthardt-Goerg, M.S.; Innes, J.; Johnson, D.; Karnosky, D.; et al. Impacts of Air Pollution and Climate Change on Forest Ecosystems—Emerging Research Needs. Sci. World J. 2007, 7, 1–8. [Google Scholar] [CrossRef]
Chronology | |
---|---|
# Trees (# cores) | 20 (34) |
Series length (# years) | 1855–2015 (160) |
Mean series Series intercorrelation Sensitivity Signal to noise ratio EPS (expressed population signal) | 88.32 0.7863 0.286 13.239 0.929 |
Precipitation | Temperature | SPEI | PDSI | |
---|---|---|---|---|
pOct | 0.12 | −0.27 | 0.22 | 0.37 |
pNov | 0.01 | −0.09 | −0.08 | 0.30 |
pDec | 0.14 | 0.10 | 0.08 | 0.32 |
Jan | 0.10 | 0.00 | 0.13 | 0.35 |
Feb | 0.29 | −0.11 | 0.26 | 0.39 |
Mar | 0.32 | −0.16 | 0.31 | 0.46 |
Apr | 0.09 | 0.02 | 0.05 | 0.38 |
May | 0.00 | 0.02 | −0.02 | 0.36 |
Jun | 0.11 | −0.06 | −0.05 | 0.32 |
Jul | −0.12 | −0.14 | 0.00 | 0.30 |
Aug | 0.18 | 0.00 | 0.01 | 0.28 |
Sep | 0.05 | −0.11 | 0.02 | 0.33 |
Oct | 0.05 | −0.20 | 0.20 | 0.28 |
Nov | −0.03 | 0.00 | −0.10 | 0.22 |
Dec | 0.12 | 0.11 | 0.08 | 0.22 |
pOct–Sep (Water Year) | 0.39 | −0.15 | 0.23 | 0.42 |
pNov–Apr | 0.37 | −0.08 | 0.29 | 0.44 |
pOct–Apr | 0.38 | −0.14 | 0.33 | 0.44 |
pDec–Mar (Wet Season) | 0.36 | −0.08 | 0.35 | 0.43 |
May–Sep (Dry Season) | 0.08 | −0.09 | −0.01 | 0.35 |
Jun–Aug | 0.16 | −0.10 | −0.02 | 0.30 |
Variable | Estimate | Std. Error | t Value | p |
---|---|---|---|---|
Intercept | 1.29 | 0.24 | 5.29 | p < 0.001 |
pOct–Sep NO2 | −0.03 | 0.13 | −0.23 | p < 0.001 |
March PDSI | 0.01 | 0.00 | 5.33 | 0.005 |
pOct Temperature | −0.03 | 0.02 | −2.11 | 0.02 |
pOct–Apr SPEI | 0.04 | 0.02 | 2.86 | 0.57 |
pOct–Sep Precipitation | 0.00 | 0.00 | −0.43 | 0.67 |
Adjusted r2 | 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jenkins, H.S. Air Pollution and Climate Drive Annual Growth in Ponderosa Pine Trees in Southern California. Climate 2021, 9, 82. https://doi.org/10.3390/cli9050082
Jenkins HS. Air Pollution and Climate Drive Annual Growth in Ponderosa Pine Trees in Southern California. Climate. 2021; 9(5):82. https://doi.org/10.3390/cli9050082
Chicago/Turabian StyleJenkins, Hillary S. 2021. "Air Pollution and Climate Drive Annual Growth in Ponderosa Pine Trees in Southern California" Climate 9, no. 5: 82. https://doi.org/10.3390/cli9050082
APA StyleJenkins, H. S. (2021). Air Pollution and Climate Drive Annual Growth in Ponderosa Pine Trees in Southern California. Climate, 9(5), 82. https://doi.org/10.3390/cli9050082