Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = polyvinylidene difluoride membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5832 KiB  
Article
Electrospinning Technology to Influence Hep-G2 Cell Growth on PVDF Fiber Mats as Medical Scaffolds: A New Perspective of Advanced Biomaterial
by Héctor Herrera Hernández, Carlos O. González Morán, Gemima Lara Hernández, Ilse Z. Ramírez-León, Citlalli J. Trujillo Romero, Juan A. Alcántara Cárdenas and Jose de Jesus Agustin Flores Cuautle
J. Compos. Sci. 2025, 9(8), 401; https://doi.org/10.3390/jcs9080401 - 1 Aug 2025
Viewed by 337
Abstract
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes [...] Read more.
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes (fiber mats) made of polyvinylidene difluoride (PVDF) for possible use in cellular engineering. A standard culture medium was employed to support the proliferation of Hep-G2 cells under controlled conditions (37 °C, 4.8% CO2, and 100% relative humidity). Subsequently, after the incubation period, electrochemical impedance spectroscopy (EIS) assays were conducted in a physiological environment to characterize the electrical cellular response, providing insights into the biocompatibility of the material. Scanning electron microscopy (SEM) was employed to evaluate cell adhesion, morphology, and growth on the PVDF polymer membranes. The results suggest that PVDF polymer membranes can be successfully produced through electrospinning technology, resulting in the formation of a dipole structure, including the possible presence of a polar β-phase, contributing to piezoelectric activity. EIS measurements, based on Rct and Cdl values, are indicators of ion charge transfer and strong electrical interactions at the membrane interface. These findings suggest a favorable environment for cell proliferation, thereby enhancing cellular interactions at the fiber interface within the electrolyte. SEM observations displayed a consistent distribution of fibers with a distinctive spherical agglomeration on the entire PVDF surface. Finally, integrating piezoelectric properties into cell culture systems provides new opportunities for investigating the influence of electrical interactions on cellular behavior through electrochemical techniques. Based on the experimental results, this electrospun polymer demonstrates great potential as a promising candidate for next-generation biomaterials, with a probable application in tissue regeneration. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

14 pages, 3187 KiB  
Article
Characterizations of Electrospun PVDF-Based Mixed Matrix Membranes with Nanomaterial Additives
by Haya Taleb, Venkatesh Gopal, Sofian Kanan, Raed Hashaikeh, Nidal Hilal and Naif Darwish
Nanomaterials 2025, 15(15), 1151; https://doi.org/10.3390/nano15151151 - 25 Jul 2025
Viewed by 359
Abstract
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. [...] Read more.
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. This work ultimately aims to develop a novel permselective polymeric membrane material to be employed in an electrochemical desalination system. This part of the study addresses the optimization, preparation, and characterization of a polyvinylidene difluoride (PVDF) polymeric membrane using the electrospinning technique. The membranes produced in this work were fabricated under specific operational, environmental, and material parameters. Five different additives and nano-additives, i.e., graphene oxide (GO), carbon nanotubes (CNTs), zinc oxide (ZnO), activated carbon (AC), and a zeolitic imidazolate metal–organic framework (ZIF-8), were used to modify the functionality and selectivity of the prepared PVDF membranes. Each membrane was synthesized at two different levels of additive composition, i.e., 0.18 wt.% and 0.45 wt.% of the entire PVDF polymeric solution. The physiochemical properties of the prepared membranes were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), zeta potential, contact angle, conductivity, porosity, and pore size distribution. Based on findings of this study, PVDF/GO membrane exhibited superior results, with an electrical conductivity of 5.611 mS/cm, an average pore size of 2.086 µm, and a surface charge of −38.33 mV. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

17 pages, 7524 KiB  
Article
Bicomponent Electrospinning of PVDF-Based Nanofiber Membranes for Air Filtration and Oil–Water Separation
by Tianxue Feng, Lin Fu, Zhimei Mu, Wenhui Wei, Wenwen Li, Xiu Liang, Liang Ma, Yitian Wu, Xiaoyu Wang, Tao Wu, Meng Gao, Guanchen Xu and Xingshuang Zhang
Polymers 2025, 17(5), 703; https://doi.org/10.3390/polym17050703 - 6 Mar 2025
Cited by 2 | Viewed by 1489
Abstract
Particulate matter (PM) and water pollution have posed serious hazards to human health. Nanofiber membranes (NFMs) have emerged as promising candidates for the elimination of PMs and the separation of oil–water mixtures. In this study, a polyvinylidene difluoride (PVDF)-based nanofiber membrane with an [...] Read more.
Particulate matter (PM) and water pollution have posed serious hazards to human health. Nanofiber membranes (NFMs) have emerged as promising candidates for the elimination of PMs and the separation of oil–water mixtures. In this study, a polyvinylidene difluoride (PVDF)-based nanofiber membrane with an average diameter of approximately 150 nm was prepared via a double-nozzle electrospinning technology, demonstrating high-efficiency PM filtration and oil–water separation. The finer fiber diameter not only enhances PM filtration efficiency but also reduces air resistance. The high-voltage electric field and mechanical stretching during electrospinning promote high crystallization of β-phase PVDF. Additionally, the electrostatic charges generated on the surface of β-phase PVDF facilitate the adsorption of PM from the atmosphere. The introduction of polydopamine (PDA) in PVDF produces abundant adsorption sites, enabling outstanding filtration performance. PVDF-PVDF/PDA NFMs can achieve remarkable PM0.3 filtration efficiency (99.967%) while maintaining a low pressure drop (144 Pa). PVDF-PVDF/PDA NFMs are hydrophobic, and its water contact angle (WCA) is 125.9°. It also shows excellent resistance to both acidic and alkaline environments, along with notable flame retardancy, as it can self-extinguish within 3 s. This nanofiber membrane holds significant promise for applications in personal protection, indoor air filtration, oily wastewater treatment, and environmental protection. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 3rd Edition)
Show Figures

Graphical abstract

19 pages, 5898 KiB  
Article
Preparation of Am-MSN/PVDF Mixed Matrix Membranes for Enhanced Removal of Reactive Black 5
by Jihao Zuo, Mengkang Lu, Jinting Cai, Ruopeng Lan, Xinjuan Zeng and Cailong Zhou
Membranes 2025, 15(2), 42; https://doi.org/10.3390/membranes15020042 - 1 Feb 2025
Cited by 1 | Viewed by 950
Abstract
The discharge of large volumes of textile dyeing wastewater, characterized by poor biodegradability and high toxicity, poses severe threats to the environment. In this study, polyvinylidene difluoride (PVDF) membranes were prepared using the nonsolvent-induced phase separation (NIPS) method, with porous amino-functionalized mesoporous silica [...] Read more.
The discharge of large volumes of textile dyeing wastewater, characterized by poor biodegradability and high toxicity, poses severe threats to the environment. In this study, polyvinylidene difluoride (PVDF) membranes were prepared using the nonsolvent-induced phase separation (NIPS) method, with porous amino-functionalized mesoporous silica nanoparticles (Am-MSNs) mixed into the casting solution to fabricate the Am-MSN/PVDF mixed matrix membranes. By varying the amount of Am-MSNs added, the microstructure and overall performance of the membranes were comprehensively analyzed. The results demonstrated that the addition of Am-MSNs significantly enhanced the hydrophilicity of the membranes. The high specific surface area and amino groups of Am-MSNs facilitated interactions with dye molecules, such as Reactive Black 5 (RB5), through hydrogen bonding, electrostatic attraction, and physical adsorption, resulting in a marked improvement in RB5 rejection rates. Static adsorption tests further validated the superior adsorption capacity of the Am-MSN/PVDF mixed matrix membranes for RB5. Additionally, the nanoscale mesoporous structure of Am-MSNs enhanced the mechanical strength of the membranes. The synergistic effects of the mesoporous structure and amino groups significantly increased the efficiency and stability of the Am-MSN/PVDF mixed matrix membranes in dye removal applications, providing an effective and sustainable solution for the treatment of dye-contaminated wastewater. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

17 pages, 5470 KiB  
Article
Microfiltration Membrane Pore Functionalization with Primary and Quaternary Amines for PFAS Remediation: Capture, Regeneration, and Reuse
by Sam Thompson, Angela M. Gutierrez, Jennifer Bukowski and Dibakar Bhattacharyya
Molecules 2024, 29(17), 4229; https://doi.org/10.3390/molecules29174229 - 6 Sep 2024
Viewed by 2084
Abstract
The widespread production and use of multi-fluorinated carbon-based substances for a variety of purposes has contributed to the contamination of the global water supply in recent decades. Conventional wastewater treatment can reduce contaminants to acceptable levels, but the concentrated retentate stream is still [...] Read more.
The widespread production and use of multi-fluorinated carbon-based substances for a variety of purposes has contributed to the contamination of the global water supply in recent decades. Conventional wastewater treatment can reduce contaminants to acceptable levels, but the concentrated retentate stream is still a burden to the environment. A selective anion-exchange membrane capable of capture and controlled release could further concentrate necessary contaminants, making their eventual degradation or long-term storage easier. To this end, commercial microfiltration membranes were modified using pore functionalization to incorporate an anion-exchange moiety within the membrane matrix. This functionalization was performed with primary and quaternary amine-containing polymer networks ranging from weak to strong basic residues. Membrane loading ranged from 0.22 to 0.85 mmol/g membrane and 0.97 to 3.4 mmol/g membrane for quaternary and primary functionalization, respectively. Modified membranes exhibited a range of water permeances within approximately 45–131 LMH/bar. The removal of PFASs from aqueous streams was analyzed for both “long-chain” and “short-chain” analytes, perfluorooctanoic acid and perfluorobutyric acid, respectively. Synthesized membranes demonstrated as high as 90% rejection of perfluorooctanoic acid and 50–80% rejection of perfluorobutyric acid after 30% permeate recovery. Regenerated membranes maintained the capture performance for three cycles of continuous operation. The efficiency of capture and reuse can be improved through the consideration of charge density, water flux, and influent contaminant concentration. This process is not limited by the substrate and, thus, is able to be implemented on other platforms. This research advances a versatile membrane platform for environmentally relevant applications that seek to help increase the global availability of safe drinking water. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

28 pages, 5829 KiB  
Opinion
Slot Blot- and Electrospray Ionization–Mass Spectrometry/Matrix-Assisted Laser Desorption/Ionization–Mass Spectrometry-Based Novel Analysis Methods for the Identification and Quantification of Advanced Glycation End-Products in the Urine
by Takanobu Takata, Shinya Inoue, Kenshiro Kunii, Togen Masauji and Katsuhito Miyazawa
Int. J. Mol. Sci. 2024, 25(17), 9632; https://doi.org/10.3390/ijms25179632 - 5 Sep 2024
Cited by 1 | Viewed by 1689
Abstract
Proteins, saccharides, and low molecular organic compounds in the blood, urine, and saliva could potentially serve as biomarkers for diseases related to diet, lifestyle, and the use of illegal drugs. Lifestyle-related diseases (LSRDs) such as diabetes mellitus (DM), non-alcoholic steatohepatitis, cardiovascular disease, hypertension, [...] Read more.
Proteins, saccharides, and low molecular organic compounds in the blood, urine, and saliva could potentially serve as biomarkers for diseases related to diet, lifestyle, and the use of illegal drugs. Lifestyle-related diseases (LSRDs) such as diabetes mellitus (DM), non-alcoholic steatohepatitis, cardiovascular disease, hypertension, kidney disease, and osteoporosis could develop into life-threatening conditions. Therefore, there is an urgent need to develop biomarkers for their early diagnosis. Advanced glycation end-products (AGEs) are associated with LSRDs and may induce/promote LSRDs. The presence of AGEs in body fluids could represent a biomarker of LSRDs. Urine samples could potentially be used for detecting AGEs, as urine collection is convenient and non-invasive. However, the detection and identification of AGE-modified proteins in the urine could be challenging, as their concentrations in the urine might be extremely low. To address this issue, we propose a new analytical approach. This strategy employs a method previously introduced by us, which combines slot blotting, our unique lysis buffer named Takata’s lysis buffer, and a polyvinylidene difluoride membrane, in conjunction with electrospray ionization-mass spectrometry (ESI)/matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). This novel strategy could be used to detect AGE-modified proteins, AGE-modified peptides, and free-type AGEs in urine samples. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

29 pages, 7908 KiB  
Review
PVDF-Based Piezo-Catalytic Membranes—A Net-Zero Emission Approach towards Textile Wastewater Purification
by Amna Siddique, Hifza Nawaz, Shumaila Razzaque, Anila Tabasum, Hugh Gong, Humaira Razzaq and Muhammad Umar
Polymers 2024, 16(5), 699; https://doi.org/10.3390/polym16050699 - 4 Mar 2024
Cited by 8 | Viewed by 3684
Abstract
Among the various water purification techniques, advancements in membrane technology, with better fabrication and analysis, are receiving the most research attention. The piezo-catalytic degradation of water pollutants is an emerging area of research in water purification technology. This review article focuses on piezoelectric [...] Read more.
Among the various water purification techniques, advancements in membrane technology, with better fabrication and analysis, are receiving the most research attention. The piezo-catalytic degradation of water pollutants is an emerging area of research in water purification technology. This review article focuses on piezoelectric polyvinylidene difluoride (PVDF) polymer-based membranes and their nanocomposites for textile wastewater remediation. At the beginning of this article, the classification of piezoelectric materials is discussed. Among the various membrane-forming polymers, PVDF is a piezoelectric polymer discussed in detail due to its exceptional piezoelectric properties. Polyvinylidene difluoride can show excellent piezoelectric properties in the beta phase. Therefore, various methods of β-phase enhancement within the PVDF polymer and various factors that have a critical impact on its piezo-catalytic activity are briefly explained. This review article also highlights the major aspects of piezoelectric membranes in the context of dye degradation and a net-zero approach. The β-phase of the PVDF piezoelectric material generates an electron–hole pair through external vibrations. The possibility of piezo-catalytic dye degradation via mechanical vibrations and the subsequent capture of the resulting CO2 and H2 gases open up the possibility of achieving the net-zero goal. Full article
(This article belongs to the Special Issue Advanced Polymer for Membrane Applications)
Show Figures

Figure 1

16 pages, 3601 KiB  
Opinion
Potential of the Novel Slot Blot Method with a PVDF Membrane for Protein Identification and Quantification in Kampo Medicines
by Takanobu Takata, Togen Masauji and Yoshiharu Motoo
Membranes 2023, 13(12), 896; https://doi.org/10.3390/membranes13120896 - 1 Dec 2023
Cited by 6 | Viewed by 3286
Abstract
Kampo is a Japanese traditional medicine modified from traditional Chinese medicine. Kampo medicines contain various traditional crude drugs with unknown compositions due to the presence of low-molecular-weight compounds and proteins. However, the proteins are generally rare and extracted with high-polarity solvents such as [...] Read more.
Kampo is a Japanese traditional medicine modified from traditional Chinese medicine. Kampo medicines contain various traditional crude drugs with unknown compositions due to the presence of low-molecular-weight compounds and proteins. However, the proteins are generally rare and extracted with high-polarity solvents such as water, making their identification and quantification difficult. To develop methods for identifying and quantifying the proteins in Kampo medicines, in the current study we employ previous technology (e.g., column chromatography, electrophoresis, and membrane chromatography), focusing on membrane chromatography with a polyvinylidene difluoride (PVDF) membrane. Moreover, we consider slot blot analysis based on the principle of membrane chromatography, which is beneficial for analyzing the proteins in Kampo medicines as the volume of the samples is not limited. In this article, we assess a novel slot blot method developed in 2017 and using a PVDF membrane and special lysis buffer to quantify advanced glycation end products-modified proteins against other slot blots. We consider our slot blot analysis superior for identifying and quantifying proteins in Kampo medicines compared with other methods as the data obtained with our novel slot blot can be shown with both error bars and the statistically significant difference, and our operation step is simpler than those of other methods. Full article
(This article belongs to the Collection Feature Papers in Membrane Engineering and Applications)
Show Figures

Figure 1

15 pages, 3831 KiB  
Article
Protein/Protein and Quantum Dot/Protein Organization in Sequential Monolayer Materials Studied Using Resonance Energy Transfer
by Jakub Sławski, Katarzyna Walczewska-Szewc and Joanna Grzyb
Appl. Sci. 2023, 13(21), 11917; https://doi.org/10.3390/app132111917 - 31 Oct 2023
Cited by 1 | Viewed by 1581
Abstract
Controlled junctions of proteins and nanomaterials offer multiple potential applications in the further construction of nanobiodevices. One of the possible junction types is a set of sequential monolayers of various components deposited on a given substrate. The advantage of such an organization is [...] Read more.
Controlled junctions of proteins and nanomaterials offer multiple potential applications in the further construction of nanobiodevices. One of the possible junction types is a set of sequential monolayers of various components deposited on a given substrate. The advantage of such an organization is its high sensitivity, resulting from a huge surface covered by molecules or particles. What is more, the molecules/particles adsorbed on a substrate might be easier to handle than the assay in a cuvette. For further application, there should be crosstalk between monolayers; this is defined by the type of individuals forming a complex system. Here, we are studying, using mainly confocal microscopy and FLIM imaging, crosstalk through resonance energy transfer. The sequential monolayers of fluorescent proteins and CdTe quantum dots were deposited on a convenient substrate, a polyvinylidene difluoride membrane. First, we found that the degree of coverage is lower in the second monolayer. Hence, by manipulating the order of deposition, we obtained a system with a varied yield of resonance energy transfer with a donor excess or an acceptor excess. For a deeper understanding of the energy transfer and its limitations in this system influencing the assay pursuit, we utilized Monte Carlo computation. We found that, indeed, the distance between the monolayers, as well as the degree of coverage, is crucial. With the results of the simulation, we might estimate the relative degree of coverage in our sequential monolayers. We also found that in quantum-dots/protein-composed systems, the yield is stronger than predicted by Monte Carlo simulation. Hence, there should be protein reorientation on the nanoparticle surface, leading to such an effect. Finally, we showed that the yield of resonance energy transfer may be modulated by the external application of poly-L-lysines. These chemicals influenced QD fluorescence but not protein fluorescence and might be used, therefore, as a trigger or a switch in nanobiodevices employing those types of sequential monolayers. Full article
(This article belongs to the Special Issue Design and Applications of Artificial Biomolecule Assemblies)
Show Figures

Figure 1

15 pages, 5101 KiB  
Article
Wetting-Based Comparison of Ag, Carbon Black, and MoS2 Composite Membranes for Photothermal Membrane Distillation
by Tarik Eljaddi and Corinne Cabassud
Membranes 2023, 13(9), 780; https://doi.org/10.3390/membranes13090780 - 4 Sep 2023
Cited by 4 | Viewed by 2054
Abstract
Photothermal membrane distillation is a new-generation desalination process that can take advantage of the ability of specific materials to convert solar energy to heat at the membrane surface and thus to overcome temperature polarization. The development of appropriate photothermal membranes is challenging because [...] Read more.
Photothermal membrane distillation is a new-generation desalination process that can take advantage of the ability of specific materials to convert solar energy to heat at the membrane surface and thus to overcome temperature polarization. The development of appropriate photothermal membranes is challenging because many criteria need to be considered, including light to heat conversion, permeability and low wetting, and fouling, as well as cost. Based on our experience with wetting characterization, this study compares photothermal membranes prepared using different well-known or promising materials, i.e., silver nanoparticles (Ag NPs), carbon black, and molybdenum disulfide (MoS2), in terms of their structural properties, permeability, wettability, and wetting. Accordingly, membranes with different proportions of photothermal NPs are prepared and fully characterized in this study. Wetting is investigated using the detection of dissolved tracer intrusion (DDTI) method following membrane distillation operations with saline solutions. The advantages of MoS2 and carbon black-based photothermal membranes in comparison with polyvinylidene difluoride (PVDF) membranes include both a permeability increase and a less severe wetting mechanism, with lower wetting indicators in the short term. These materials are also much cheaper than Ag NPs, having higher permeabilities and presenting less severe wetting mechanisms. Full article
(This article belongs to the Special Issue 2D Materials for Membrane Distillation)
Show Figures

Figure 1

12 pages, 4636 KiB  
Article
Study on Low Thermal-Conductivity of PVDF@SiAG/PET Membranes for Direct Contact Membrane Distillation Application
by Jun Xiang, Sitong Wang, Nailin Chen, Xintao Wen, Guiying Tian, Lei Zhang, Penggao Cheng, Jianping Zhang and Na Tang
Membranes 2023, 13(9), 773; https://doi.org/10.3390/membranes13090773 - 31 Aug 2023
Cited by 9 | Viewed by 2502
Abstract
In order to enhance the separation performance and reduce the heat loss of transmembrane for membrane distillation, the thermal efficiency and hydrophobicity of the membrane distillation need to be simultaneously enhanced. In this work, a polyvinylidene difluoride/polyethylene glycol terephthalate (PVDF/PET) hydrophobic/hydrophilic membrane has [...] Read more.
In order to enhance the separation performance and reduce the heat loss of transmembrane for membrane distillation, the thermal efficiency and hydrophobicity of the membrane distillation need to be simultaneously enhanced. In this work, a polyvinylidene difluoride/polyethylene glycol terephthalate (PVDF/PET) hydrophobic/hydrophilic membrane has been prepared by non-solvent phase induction method. Nanosized silica aerogel (SiAG) with high porosity has been added to the composite membranes. The modifying effects and operating conditions on permeate flux and thermal efficiency in direct contact membrane distillation (DCMD) are investigated. Furthermore, the latent heat of vaporization and the heat transfer across the membranes have been compared for SiAG addition, which indicates that the composite PVDF@SiAG/PET membranes demonstrate a great potential for distillation-separation application due to their high heat efficiency. Full article
(This article belongs to the Special Issue Advances in Membrane Distillation)
Show Figures

Figure 1

14 pages, 3813 KiB  
Article
Preparation of a Molecularly Imprinted Silica Nanoparticles Embedded Microfiltration Membrane for Selective Separation of Tetrabromobisphenol A from Water
by Xingran Zhang, Xiang Luo, Jiaqi Wei, Yuanyuan Zhang, Minmin Jiang, Qiaoyan Wei, Mei Chen, Xueye Wang, Xuehong Zhang and Junjian Zheng
Membranes 2023, 13(6), 571; https://doi.org/10.3390/membranes13060571 - 31 May 2023
Cited by 5 | Viewed by 1739
Abstract
The ubiquitous presence of tetrabromobisphenol A (TBBPA) in aquatic environments has caused severe environmental and public health concerns; it is therefore of great significance to develop effective techniques to remove this compound from contaminated waters. Herein, a TBBPA imprinted membrane was successfully fabricated [...] Read more.
The ubiquitous presence of tetrabromobisphenol A (TBBPA) in aquatic environments has caused severe environmental and public health concerns; it is therefore of great significance to develop effective techniques to remove this compound from contaminated waters. Herein, a TBBPA imprinted membrane was successfully fabricated via incorporating imprinted silica nanoparticles (SiO2 NPs). The TBBPA imprinted layer was synthesized on the 3-(methacryloyloxy) propyltrimethoxysilane (KH-570) modified SiO2 NPs via surface imprinting. Eluted TBBPA molecularly imprinted nanoparticles (E-TBBPA-MINs) were incorporated onto a polyvinylidene difluoride (PVDF) microfiltration membrane via vacuum-assisted filtration. The obtained E-TBBPA-MINs embedded membrane (E-TBBPA-MIM) showed appreciable permeation selectivity toward the structurally analogous to TBBPA (i.e., 6.74, 5.24 and 6.31 of the permselectivity factors for p-tert-butylphenol (BP), bisphenol A (BPA) and 4,4′-dihydroxybiphenyl (DDBP), respectively), far superior to the non-imprinted membrane (i.e., 1.47, 1.17 and 1.56 for BP, BPA and DDBP, respectively). The permselectivity mechanism of E-TBBPA-MIM could be attributed to the specific chemical adsorption and spatial complementation of TBBPA molecules by the imprinted cavities. The resulting E-TBBPA-MIM exhibited good stability after five adsorption/desorption cycles. The findings of this study validated the feasibility of developing nanoparticles embedded molecularly imprinted membrane for efficient separation and removal of TBBPA from water. Full article
(This article belongs to the Special Issue Membrane-Based System Design and Optimization)
Show Figures

Figure 1

22 pages, 2768 KiB  
Review
Is the Novel Slot Blot a Useful Method for Quantification of Intracellular Advanced Glycation End-Products?
by Takanobu Takata
Metabolites 2023, 13(4), 564; https://doi.org/10.3390/metabo13040564 - 16 Apr 2023
Cited by 10 | Viewed by 4259
Abstract
Various types of advanced glycation end-products (AGEs) have been identified and studied. I have reported a novel slot blot analysis to quantify two types of AGEs, glyceraldehyde-derived AGEs, also called toxic AGEs (TAGE), and 1,5-anhydro-D-fructose AGEs. The traditional slot blot method has been [...] Read more.
Various types of advanced glycation end-products (AGEs) have been identified and studied. I have reported a novel slot blot analysis to quantify two types of AGEs, glyceraldehyde-derived AGEs, also called toxic AGEs (TAGE), and 1,5-anhydro-D-fructose AGEs. The traditional slot blot method has been used for the detection and quantification of RNA, DNA, and proteins since around 1980 and is one of the more commonly used analog technologies to date. However, the novel slot blot analysis has been used to quantify AGEs from 2017 to 2022. Its characteristics include (i) use of a lysis buffer containing tris-(hydroxymethyl)-aminomethane, urea, thiourea, and 3-[3-(cholamidopropyl)-dimetyl-ammonio]-1-propane sulfonate (a lysis buffer with a composition similar to that used in two-dimensional gel electrophoresis-based proteomics analysis); (ii) probing of AGE-modified bovine serum albumin (e.g., standard AGE aliquots); and (iii) use of polyvinylidene difluoride membranes. In this review, the previously used quantification methods of slot blot, western blot, immunostaining, enzyme-linked immunosorbent assay, gas chromatography–mass spectrometry (MS), matrix-associated laser desorption/ionization–MS, and liquid chromatography–electrospray ionization–MS are described. Lastly, the advantages and disadvantages of the novel slot blot compared to the above methods are discussed. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

12 pages, 2087 KiB  
Article
A Simple, Semi-Quantitative Acyl Biotin Exchange-Based Method to Detect Protein S-Palmitoylation Levels
by Valentina Buffa, Giorgia Adamo, Sabrina Picciotto, Antonella Bongiovanni and Daniele P. Romancino
Membranes 2023, 13(3), 361; https://doi.org/10.3390/membranes13030361 - 21 Mar 2023
Cited by 1 | Viewed by 3642
Abstract
Protein S-palmitoylation is a reversible post-translational lipidation in which palmitic acid (16:0) is added to protein cysteine residue by a covalent thioester bond. This modification plays an active role in membrane targeting of soluble proteins, protein–protein interaction, protein trafficking, and subcellular localization. Moreover, [...] Read more.
Protein S-palmitoylation is a reversible post-translational lipidation in which palmitic acid (16:0) is added to protein cysteine residue by a covalent thioester bond. This modification plays an active role in membrane targeting of soluble proteins, protein–protein interaction, protein trafficking, and subcellular localization. Moreover, palmitoylation is related to different diseases, such as neurodegenerative pathologies, cancer, and developmental defects. The aim of this research is to provide a straightforward and sensitive procedure to detect protein palmitoylation based on Acyl Biotin Exchange (ABE) chemistry. Our protocol setup consists of co-immunoprecipitation of native proteins (i.e., CD63), followed by the direct detection of palmitoylation on proteins immobilized on polyvinylidene difluoride (PVDF) membranes. With respect to the conventional ABE-based protocol, we optimized and validated a rapid semi-quantitative assay that is shown to be significantly more sensitive and highly reproducible. Full article
(This article belongs to the Special Issue Membrane Interaction between Lipids, Proteins and Peptides)
Show Figures

Figure 1

15 pages, 10314 KiB  
Article
Effects of Porous Supports in Thin-Film Composite Membranes on CO2 Separation Performances
by Hongfang Guo, Wenqi Xu, Jing Wei, Yulei Ma, Zikang Qin, Zhongde Dai, Jing Deng and Liyuan Deng
Membranes 2023, 13(3), 359; https://doi.org/10.3390/membranes13030359 - 21 Mar 2023
Cited by 10 | Viewed by 3435
Abstract
Despite numerous publications on membrane materials and the fabrication of thin-film composite (TFC) membranes for CO2 separation in recent decades, the effects of porous supports on TFC membrane performance have rarely been reported, especially when humid conditions are concerned. In this work, [...] Read more.
Despite numerous publications on membrane materials and the fabrication of thin-film composite (TFC) membranes for CO2 separation in recent decades, the effects of porous supports on TFC membrane performance have rarely been reported, especially when humid conditions are concerned. In this work, six commonly used porous supports were investigated to study their effects on membrane morphology and the gas transport properties of TFC membranes. Two common membrane materials, Pebax and poly(vinyl alcohol) (PVA), were employed as selective layers to make sample membranes. The fabricated TFC membranes were tested under humid conditions, and the effect of water vapor on gas permeation in the supports was studied. The experiments showed that all membranes exhibited notably different performances under dry or humid conditions. For polyacrylonitrile (PAN) and poly(ether sulfones) (PESF) membranes, the water vapor easily condenses in the pores of these supports, thus sharply increasing the mass transfer resistance. The effect of water vapor is less in the case of polyvinylidene difluoride (PVDF) and polysulfone (PSF), showing better long-term stability. Porous supports significantly contribute to the overall mass transfer resistance. The presence of water vapor worsens the mass transfer in the porous support due to the pore condensation and support material swelling. The membrane fabrication condition must be optimized to avoid pore condensation and maintain good separation performance. Full article
(This article belongs to the Section Membrane Applications)
Show Figures

Figure 1

Back to TopTop