Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = polysialic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3275 KiB  
Article
Polysialylation of Glioblastoma Cells Is Regulated by Autophagy Under Nutrient Deprivation
by Sofia Scibetta, Giuseppe Pepe, Marco Iuliano, Alessia Iaiza, Elisabetta Palazzo, Marika Quadri, Thomas J. Boltje, Francesco Fazi, Vincenzo Petrozza, Sabrina Di Bartolomeo, Alba Di Pardo, Antonella Calogero, Giorgio Mangino, Vittorio Maglione and Paolo Rosa
Int. J. Mol. Sci. 2025, 26(15), 7625; https://doi.org/10.3390/ijms26157625 - 6 Aug 2025
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor marked by invasive growth and therapy resistance. Tumor cells adapt to hostile conditions, such as hypoxia and nutrient deprivation, by activating survival mechanisms including autophagy and metabolic reprogramming. Among GBM-associated changes, hypersialylation, particularly, the aberrant [...] Read more.
Glioblastoma (GBM) is a highly aggressive brain tumor marked by invasive growth and therapy resistance. Tumor cells adapt to hostile conditions, such as hypoxia and nutrient deprivation, by activating survival mechanisms including autophagy and metabolic reprogramming. Among GBM-associated changes, hypersialylation, particularly, the aberrant expression of polysialic acid (PSA), has been linked to increased plasticity, motility, and immune evasion. PSA, a long α2,8-linked sialic acid polymer typically attached to the NCAM, is abundant in the embryonic brain and re-expressed in cancers, correlating with poor prognosis. Here, we investigated how PSA expression was regulated in GBM cells under nutrient-limiting conditions. Serum starvation induced a marked increase in PSA-NCAM, driven by upregulation of the polysialyltransferase ST8SiaIV and an autophagy-dependent recycling of sialic acids from degraded glycoproteins. Inhibition of autophagy or sialidases impaired PSA induction, and PSA regulation appeared dependent on p53 function. Immunohistochemical analysis of GBM tissues revealed co-localization of PSA and LC3, particularly around necrotic regions. In conclusion, we identified a novel mechanism by which GBM cells sustain PSA-NCAM expression via autophagy-mediated sialic acid recycling under nutrient stress. This pathway may enhance cell migration, immune escape, and stem-like properties, offering a potential therapeutic target in GBM. Full article
(This article belongs to the Special Issue Targeting Glioblastoma Metabolism)
Show Figures

Figure 1

14 pages, 1767 KiB  
Article
Toluidine Blue for the Determination of Binding of Anionic Polysaccharides to Lipid Raft Domains by Absorption Spectroscopy
by Sandra Gębczyńska, Julia Gdowska, Agata Mikos, Iga Gawrońska, Teresa Janas, Aleksander Czogalla and Tadeusz Janas
Membranes 2025, 15(5), 139; https://doi.org/10.3390/membranes15050139 - 2 May 2025
Viewed by 724
Abstract
The complexes of negatively charged polysaccharides with lipid vesicles have been shown to have applications in medicine, bioremediation, water purification, and construction of nano-biosensors. This article presents research on the formation of these complexes based on the interactions between three types of liposomes, [...] Read more.
The complexes of negatively charged polysaccharides with lipid vesicles have been shown to have applications in medicine, bioremediation, water purification, and construction of nano-biosensors. This article presents research on the formation of these complexes based on the interactions between three types of liposomes, DOPC liposomes (which contain a lipid bilayer in the liquid-disordered (Ld) state), RAFT liposomes (which contain liquid-ordered (Lo) lipid raft domains surrounded by lipids in the Ld state) and SPH–CHL liposomes (which contain a lipid bilayer in the Lo state), and two selected anionic polysaccharides, polysialic acid (PSA) and polygalacturonic acid (PGA). The analysis was conducted using a toluidine blue (TB) probe and the absorption spectroscopy technique. In contrast to DOPC and SPH–CHL liposomes, binding of negatively charged PSA or PGA chains to RAFT liposomes induced a TB absorption maximum shift from 630 nm to 560 nm. The obtained results indicate that toluidine blue can be applied for monitoring the formation of these nano-complexes, and that the boundaries between Ld/Lo domains within membranes in RAFT liposomes can significantly enhance the binding affinity of negatively charged polysaccharides to the lipid bilayer surface. The observed metachromatic shift in TB absorption suggests that negatively charged PSA and PGA chains interact with the Ld/Lo boundaries within RAFT liposome membranes. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Graphical abstract

17 pages, 8441 KiB  
Article
Blockade of Sialylation with Decrease in Polysialic Acid Levels Counteracts Transforming Growth Factor β1-Induced Skin Fibroblast-to-Myofibroblast Transition
by Bianca Saveria Fioretto, Irene Rosa, Alessia Tani, Elena Andreucci, Eloisa Romano, Eleonora Sgambati and Mirko Manetti
Cells 2024, 13(12), 1067; https://doi.org/10.3390/cells13121067 - 19 Jun 2024
Cited by 3 | Viewed by 1725
Abstract
Aberrant sialylation with overexpression of the homopolymeric glycan polysialic acid (polySia) was recently reported in fibroblasts from fibrotic skin lesions. Yet, whether such a rise in polySia levels or sialylation in general may be functionally implicated in profibrotic activation of fibroblasts and their [...] Read more.
Aberrant sialylation with overexpression of the homopolymeric glycan polysialic acid (polySia) was recently reported in fibroblasts from fibrotic skin lesions. Yet, whether such a rise in polySia levels or sialylation in general may be functionally implicated in profibrotic activation of fibroblasts and their transition to myofibroblasts remains unknown. Therefore, we herein explored whether inhibition of sialylation could interfere with the process of skin fibroblast-to-myofibroblast transition induced by the master profibrotic mediator transforming growth factor β1 (TGFβ1). Adult human skin fibroblasts were pretreated with the competitive pan-sialyltransferase inhibitor 3-Fax-peracetyl-Neu5Ac (3-Fax) before stimulation with recombinant human TGFβ1, and then analyzed for polySia expression, cell viability, proliferation, migratory ability, and acquisition of myofibroblast-like morphofunctional features. Skin fibroblast stimulation with TGFβ1 resulted in overexpression of polySia, which was effectively blunted by 3-Fax pre-administration. Pretreatment with 3-Fax efficiently lessened TGFβ1-induced skin fibroblast proliferation, migration, changes in cell morphology, and phenotypic and functional differentiation into myofibroblasts, as testified by a significant reduction in FAP, ACTA2, COL1A1, COL1A2, and FN1 gene expression, and α-smooth muscle actin, N-cadherin, COL1A1, and FN-EDA protein levels, as well as a reduced contractile capability. Moreover, skin fibroblasts pre-administered with 3-Fax displayed a significant decrease in Smad3-dependent canonical TGFβ1 signaling. Collectively, our in vitro findings demonstrate for the first time that aberrant sialylation with increased polySia levels has a functional role in skin fibroblast-to-myofibroblast transition and suggest that competitive sialyltransferase inhibition might offer new therapeutic opportunities against skin fibrosis. Full article
(This article belongs to the Special Issue Fibrosis in Chronic Inflammatory Diseases)
Show Figures

Figure 1

19 pages, 4281 KiB  
Article
NMR Studies of the Interactions between Sialyllactoses and the Polysialytransferase Domain for Polysialylation Inhibition
by Bo Lu, Si-Ming Liao, Shi-Jie Liang, Jian-Xiu Li, Xue-Hui Liu, Ri-Bo Huang and Guo-Ping Zhou
Curr. Issues Mol. Biol. 2024, 46(6), 5682-5700; https://doi.org/10.3390/cimb46060340 - 7 Jun 2024
Viewed by 1763
Abstract
It is known that sialyllactose (SL) in mammalians is a major source of sialic acid (Sia), which can further form cytidine monophosphate sialic acid (CMP-Sia), and the final product is polysialic acid (polySia) using polysialyltransferases (polySTs) on the neural cell adhesion molecule (NCAM). [...] Read more.
It is known that sialyllactose (SL) in mammalians is a major source of sialic acid (Sia), which can further form cytidine monophosphate sialic acid (CMP-Sia), and the final product is polysialic acid (polySia) using polysialyltransferases (polySTs) on the neural cell adhesion molecule (NCAM). This process is called NCAM polysialylation. The overexpression of polysialylation is strongly related to cancer cell migration, invasion, and metastasis. In order to inhibit the overexpression of polysialylation, in this study, SL was selected as an inhibitor to test whether polysialylation could be inhibited. Our results suggest that the interactions between the polysialyltransferase domain (PSTD) in polyST and CMP-Siaand the PSTD and polySia could be inhibited when the 3′-sialyllactose (3′-SL) or 6′-sialyllactose (6′-SL) concentration is about 0.5 mM or 6′-SL and 3 mM, respectively. The results also show that SLs (particularly for 3′-SL) are the ideal inhibitors compared with another two inhibitors, low-molecular-weight heparin (LMWH) and cytidine monophosphate (CMP), because 3’-SL can not only be used to inhibit NCAM polysialylation, but is also one of the best supplements for infant formula and the gut health system. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

16 pages, 2842 KiB  
Article
The Bifunctional Effects of Lactoferrin (LFcinB11) in Inhibiting Neural Cell Adhesive Molecule (NCAM) Polysialylation and the Release of Neutrophil Extracellular Traps (NETs)
by Bo Lu, Si-Ming Liao, Shi-Jie Liang, Li-Xin Peng, Jian-Xiu Li, Xue-Hui Liu, Ri-Bo Huang and Guo-Ping Zhou
Int. J. Mol. Sci. 2024, 25(9), 4641; https://doi.org/10.3390/ijms25094641 - 24 Apr 2024
Cited by 1 | Viewed by 1723
Abstract
The expression of polysialic acid (polySia) on the neuronal cell adhesion molecule (NCAM) is called NCAM-polysialylation, which is strongly related to the migration and invasion of tumor cells and aggressive clinical status. Thus, it is important to select a proper drug to block [...] Read more.
The expression of polysialic acid (polySia) on the neuronal cell adhesion molecule (NCAM) is called NCAM-polysialylation, which is strongly related to the migration and invasion of tumor cells and aggressive clinical status. Thus, it is important to select a proper drug to block tumor cell migration during clinical treatment. In this study, we proposed that lactoferrin (LFcinB11) may be a better candidate for inhibiting NCAM polysialylation when compared with CMP and low-molecular-weight heparin (LMWH), which were determined based on our NMR studies. Furthermore, neutrophil extracellular traps (NETs) represent the most dramatic stage in the cell death process, and the release of NETs is related to the pathogenesis of autoimmune and inflammatory disorders, with proposed involvement in glomerulonephritis, chronic lung disease, sepsis, and vascular disorders. In this study, the molecular mechanisms involved in the inhibition of NET release using LFcinB11 as an inhibitor were also determined. Based on these results, LFcinB11 is proposed as being a bifunctional inhibitor for inhibiting both NCAM polysialylation and the release of NETs. Full article
(This article belongs to the Special Issue Mechanisms of Small Molecule Inhibitors Targeting Cancer)
Show Figures

Figure 1

19 pages, 2710 KiB  
Article
PolySialic Acid Nanoparticles Actuate Complement-Factor-H-Mediated Inhibition of the Alternative Complement Pathway: A Safer Potential Therapy for Age-Related Macular Degeneration
by Sheri L. Peterson, Anitha Krishnan, Diyan Patel, Ali Khanehzar, Amit Lad, Jutamas Shaughnessy, Sanjay Ram, David Callanan, Derek Kunimoto, Mohamed A. Genead and Michael J. Tolentino
Pharmaceuticals 2024, 17(4), 517; https://doi.org/10.3390/ph17040517 - 17 Apr 2024
Cited by 6 | Viewed by 2561
Abstract
The alternative pathway of the complement system is implicated in the etiology of age-related macular degeneration (AMD). Complement depletion with pegcetacoplan and avacincaptad pegol are FDA-approved treatments for geographic atrophy in AMD that, while effective, have clinically observed risks of choroidal neovascular (CNV) [...] Read more.
The alternative pathway of the complement system is implicated in the etiology of age-related macular degeneration (AMD). Complement depletion with pegcetacoplan and avacincaptad pegol are FDA-approved treatments for geographic atrophy in AMD that, while effective, have clinically observed risks of choroidal neovascular (CNV) conversion, optic neuritis, and retinal vasculitis, leaving room for other equally efficacious but safer therapeutics, including Poly Sialic acid (PSA) nanoparticle (PolySia-NP)-actuated complement factor H (CFH) alternative pathway inhibition. Our previous paper demonstrated that PolySia-NP inhibits pro-inflammatory polarization and cytokine release. Here, we extend these findings by investigating the therapeutic potential of PolySia-NP to attenuate the alternative complement pathway. First, we show that PolySia-NP binds CFH and enhances affinity to C3b. Next, we demonstrate that PolySia-NP treatment of human serum suppresses alternative pathway hemolytic activity and C3b deposition. Further, we show that treating human macrophages with PolySia-NP is non-toxic and reduces markers of complement activity. Finally, we describe PolySia-NP-treatment-induced decreases in neovascularization and inflammatory response in a laser-induced CNV mouse model of neovascular AMD. In conclusion, PolySia-NP suppresses alternative pathway complement activity in human serum, human macrophage, and mouse CNV without increasing neovascularization. Full article
(This article belongs to the Special Issue Novel Treatments and Technologies for Retinal Diseases)
Show Figures

Figure 1

21 pages, 5377 KiB  
Article
Comprehensive Ocular and Systemic Safety Evaluation of Polysialic Acid-Decorated Immune Modulating Therapeutic Nanoparticles (PolySia-NPs) to Support Entry into First-in-Human Clinical Trials
by Anitha Krishnan, David G. Callanan, Victor G. Sendra, Amit Lad, Sunny Christian, Ravinder Earla, Ali Khanehzar, Andrew J. Tolentino, Valory Anne Sarmiento Vailoces, Michelle K. Greene, Christopher J. Scott, Derek Y. Kunimoto, Tarek S. Hassan, Mohamed A. Genead and Michael J. Tolentino
Pharmaceuticals 2024, 17(4), 481; https://doi.org/10.3390/ph17040481 - 9 Apr 2024
Cited by 5 | Viewed by 1969
Abstract
An inflammation-resolving polysialic acid-decorated PLGA nanoparticle (PolySia-NP) has been developed to treat geographic atrophy/age-related macular degeneration and other conditions caused by macrophage and complement over-activation. While PolySia-NPs have demonstrated pre-clinical efficacy, this study evaluated its systemic and intraocular safety. PolySia-NPs were evaluated in [...] Read more.
An inflammation-resolving polysialic acid-decorated PLGA nanoparticle (PolySia-NP) has been developed to treat geographic atrophy/age-related macular degeneration and other conditions caused by macrophage and complement over-activation. While PolySia-NPs have demonstrated pre-clinical efficacy, this study evaluated its systemic and intraocular safety. PolySia-NPs were evaluated in vitro for mutagenic activity using Salmonella strains and E. coli, with and without metabolic activation; cytotoxicity was evaluated based on its interference with normal mitosis. PolySia-NPs were administered intravenously in CD-1 mice and Sprague Dawley rats and assessed for survival and toxicity. Intravitreal (IVT) administration in Dutch Belted rabbits and non-human primates was assessed for ocular or systemic toxicity. In vitro results indicate that PolySia-NPs did not induce mutagenicity or cytotoxicity. Intravenous administration did not show clastogenic activity, effects on survival, or toxicity. A single intravitreal (IVT) injection and two elevated repeat IVT doses of PolySia-NPs separated by 7 days in rabbits showed no signs of systemic or ocular toxicity. A single IVT inoculation of PolySia-NPs in non-human primates demonstrated no adverse clinical or ophthalmological effects. The demonstration of systemic and ocular safety of PolySia-NPs supports its advancement into human clinical trials as a promising therapeutic approach for systemic and retinal degenerative diseases caused by chronic immune activation. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

16 pages, 7414 KiB  
Article
Effects of In Vitro Fermentation of Polysialic Acid and Sialic Acid on Gut Microbial Community Composition and Metabolites in Healthy Humans
by Zhongwei Yin, Li Zhu, Minjie Gao, Dan Yu, Zijian Zhang, Ling Zhu and Xiaobei Zhan
Foods 2024, 13(3), 481; https://doi.org/10.3390/foods13030481 - 2 Feb 2024
Cited by 1 | Viewed by 2144
Abstract
The influence of polysialic acid (PSA) and sialic acid (SA) on the gut microbial community composition and metabolites in healthy humans was investigated using a bionic gastrointestinal reactor. The results indicated that PSA and SA significantly changed the gut microbiota and metabolites to [...] Read more.
The influence of polysialic acid (PSA) and sialic acid (SA) on the gut microbial community composition and metabolites in healthy humans was investigated using a bionic gastrointestinal reactor. The results indicated that PSA and SA significantly changed the gut microbiota and metabolites to different degrees. PSA can increase the relative abundances of Faecalibacterium and Allisonella, whereas SA can increase those of Bifidobacterium and Megamonas. Both can significantly increase the content of short-chain fatty acids. The results of metabolome analysis showed that PSA can upregulate ergosterol peroxide and gallic acid and downregulate the harmful metabolite N-acetylputrescine. SA can upregulate 4-pyridoxic acid and lipoic acid. PSA and SA affect gut microbiota and metabolites in different ways and have positive effects on human health. These results will provide a reference for the further development of PSA- and SA-related functional foods and health products. Full article
(This article belongs to the Topic Microbes and Their Products for Sustainable Human Life)
Show Figures

Graphical abstract

12 pages, 6979 KiB  
Article
Terminal-Enhanced Polymerization in the Biosynthesis of Polysialic Acid
by Chongchuan Wang, Huanan Chang, Xiaomeng Liu, Haiyang Zhao, Jianing Guo, Shuo Peng, Wenhao Wang, Deqiang Zhu and Xinli Liu
Fermentation 2024, 10(1), 64; https://doi.org/10.3390/fermentation10010064 - 17 Jan 2024
Cited by 1 | Viewed by 2008
Abstract
Plasmids are commonly used tools in microbiology and molecular biology and have important and wide-ranging applications in the study of gene function, protein expression, and compound synthesis. The complex relationship between necessary antibiotic addition, compatibility between multiple plasmids, and the growth burden of [...] Read more.
Plasmids are commonly used tools in microbiology and molecular biology and have important and wide-ranging applications in the study of gene function, protein expression, and compound synthesis. The complex relationship between necessary antibiotic addition, compatibility between multiple plasmids, and the growth burden of host bacteria has plagued the wider use of compatibility plasmids. In this study, we constructed the terminal polymerization pathway of PSA by exogenously expressing the neuA, neuD, and neuS genes after the knockdown of Eschesrichia coli BL21 (DE3). Duet series vectors were utilized to regulate the expression level of neuA, neuD, and neuS genes to study the gene expression level, plasmid copy number growth burden, pressure of antibiotic addition, stability of compatible plasmids, and the level of expression stability of exogenous genes, as well as the effect on the biological reaction process. The results showed that the three genes, neuA, neuD, and neuS, were enhanced in the recombinant strain E. coli NA-05, with low copy, medium copy, and high copy, respectively. The effect of PSA synthesis under standard antibiotic pressure was remarkable. The results of this thesis suggest the use of a Duet series of compatible expression vectors to achieve the stable existence and co-expression of multiple genes in recombinant bacteria, which is a good reason for further research. Full article
(This article belongs to the Special Issue Polysaccharides Fermentation)
Show Figures

Figure 1

24 pages, 6316 KiB  
Review
Sialic Acid Mimetic Microglial Sialic Acid-Binding Immunoglobulin-like Lectin Agonism: Potential to Restore Retinal Homeostasis and Regain Visual Function in Age-Related Macular Degeneration
by Michael J. Tolentino, Andrew J. Tolentino, Elizabeth M. Tolentino, Anitha Krishnan and Mohamed A. Genead
Pharmaceuticals 2023, 16(12), 1735; https://doi.org/10.3390/ph16121735 - 16 Dec 2023
Cited by 6 | Viewed by 2938
Abstract
Age-related macular degeneration (AMD), a leading cause of visual loss and dysfunction worldwide, is a disease initiated by genetic polymorphisms that impair the negative regulation of complement. Proteomic investigation points to altered glycosylation and loss of Siglec-mediated glyco-immune checkpoint parainflammatory and inflammatory homeostasis [...] Read more.
Age-related macular degeneration (AMD), a leading cause of visual loss and dysfunction worldwide, is a disease initiated by genetic polymorphisms that impair the negative regulation of complement. Proteomic investigation points to altered glycosylation and loss of Siglec-mediated glyco-immune checkpoint parainflammatory and inflammatory homeostasis as the main determinant for the vision impairing complications of macular degeneration. The effect of altered glycosylation on microglial maintained retinal para-inflammatory homeostasis and eventual recruitment and polarization of peripheral blood monocyte-derived macrophages (PBMDMs) into the retina can explain the phenotypic variability seen in this clinically heterogenous disease. Restoring glyco-immune checkpoint control with a sialic acid mimetic agonist targeting microglial/macrophage Siglecs to regain retinal para-inflammatory and inflammatory homeostasis is a promising therapeutic that could halt the progression of and improve visual function in all stages of macular degeneration. Full article
(This article belongs to the Special Issue Microglia and Astrocytes as Drug Targets)
Show Figures

Figure 1

17 pages, 3481 KiB  
Article
Combination of Engineered Expression of Polysialic Acid on Transplanted Schwann Cells and in Injured Rat Spinal Cord Promotes Significant Axonal Growth and Functional Recovery
by Fangyou Gao, Yi Zhang, Dongsheng Wu, Juan Luo, Svetlana Gushchina and Xuenong Bo
Neuroglia 2023, 4(4), 222-238; https://doi.org/10.3390/neuroglia4040016 - 23 Sep 2023
Viewed by 1731
Abstract
Providing cellular support and modifying the glial scar around the lesion are two key strategies for promoting axonal regeneration after spinal cord injury. We showed previously that over-expressing polysialic acid (PSA) on Schwann cells (SCs) by lentiviral vector (LV)-mediated expression of polysialyltransferase (PST) [...] Read more.
Providing cellular support and modifying the glial scar around the lesion are two key strategies for promoting axonal regeneration after spinal cord injury. We showed previously that over-expressing polysialic acid (PSA) on Schwann cells (SCs) by lentiviral vector (LV)-mediated expression of polysialyltransferase (PST) facilitated their integration and migration in the injured spinal cord. We also showed that PSA over-expression in the injured spinal cord modified the glial scar and promoted the growth of ascending sensory axons. In this study, we combined the PST/SC transplantation with LV/PST injection in spinal cords after dorsal column transection and found the combined treatments led to faster and more profound locomotor functional recovery compared with animals receiving combined GFP/SC transplantation with LV/GFP injection. Histological examination showed significantly more injured corticospinal axons growing close to the lesion/transplant borders and into the caudal spinal cord in the PST group than in the GFP group. We also found over -expressing PSA around the lesion site did not cause allodynia and hyperalgesia in our injury model. These results demonstrate the promising therapeutic benefit of over-expressing PSA in transplanted SCs and spinal cord in promoting axonal growth and restoring motor function. Full article
(This article belongs to the Special Issue Exclusive Papers Collection of Editorial Board Members in Neuroglia)
Show Figures

Figure 1

14 pages, 2155 KiB  
Article
Small Organic Compounds Mimicking the Effector Domain of Myristoylated Alanine-Rich C-Kinase Substrate Stimulate Female-Specific Neurite Outgrowth
by Monica Tschang, Suneel Kumar, Wise Young, Melitta Schachner and Thomas Theis
Int. J. Mol. Sci. 2023, 24(18), 14271; https://doi.org/10.3390/ijms241814271 - 19 Sep 2023
Viewed by 1629
Abstract
Myristoylated alanine-rich C-kinase substrate (MARCKS) is a critical member of a signaling cascade that influences disease-relevant neural functions such as neural growth and plasticity. The effector domain (ED) of MARCKS interacts with the extracellular glycan polysialic acid (PSA) through the cell membrane to [...] Read more.
Myristoylated alanine-rich C-kinase substrate (MARCKS) is a critical member of a signaling cascade that influences disease-relevant neural functions such as neural growth and plasticity. The effector domain (ED) of MARCKS interacts with the extracellular glycan polysialic acid (PSA) through the cell membrane to stimulate neurite outgrowth in cell culture. We have shown that a synthetic ED peptide improves functional recovery after spinal cord injury in female but not male mice. However, peptides themselves are unstable in therapeutic applications, so we investigated more pharmacologically relevant small organic compounds that mimic the ED peptide to maximize therapeutic potential. Using competition ELISAs, we screened small organic compound libraries to identify molecules that structurally and functionally mimic the ED peptide of MARCKS. Since we had shown sex-specific effects of MARCKS on spinal cord injury recovery, we assayed neuronal viability as well as neurite outgrowth from cultured cerebellar granule cells of female and male mice separately. We found that epigallocatechin, amiodarone, sertraline, tegaserod, and nonyloxytryptamine bind to a monoclonal antibody against the ED peptide, and compounds stimulate neurite outgrowth in cultured cerebellar granule cells of female mice only. Therefore, a search for compounds that act in males appears warranted. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

2 pages, 172 KiB  
Abstract
Regulation of Extrasynaptic Glutamatergic Signaling by Polysialylated NCAM in Health and Disease
by Alexander Dityatev
Biol. Life Sci. Forum 2023, 21(1), 30; https://doi.org/10.3390/blsf2023021030 - 3 Apr 2023
Viewed by 1226
Abstract
The neural cell adhesion molecule NCAM is known to mediate cell–to–cell and cell–to–extracellular matrix (ECM) adhesion via homophilic and heterophilic interactions. During brain development, NCAM and the associated glycan, polysialic acid (polySia), play important roles in cell migration proliferation, neurite outgrowth and fasciculation, [...] Read more.
The neural cell adhesion molecule NCAM is known to mediate cell–to–cell and cell–to–extracellular matrix (ECM) adhesion via homophilic and heterophilic interactions. During brain development, NCAM and the associated glycan, polysialic acid (polySia), play important roles in cell migration proliferation, neurite outgrowth and fasciculation, and synaptogenesis. In the adult rodent brain, NCAM regulates synaptic plasticity, learning, and memory. Dysregulated cortical expression of NCAM and polySia has been reported in Alzheimer’s disease and schizophrenia. Our data demonstrate i) the importance of polySia–NCAM in the balancing of signaling through synaptic/extrasynaptic NMDA receptors and ii) the therapeutic value of short defined-length polySia fragments to restrain GluN2B-mediated signaling in several animal models of neurological and psychiatric diseases. Full article
12 pages, 2763 KiB  
Article
Dual Effect of Chemo-PDT with Tumor Targeting Nanoparticles Containing iRGD Peptide
by Gye Lim Kim, Byeongmin Park, Eun Hyang Jang, Jaeun Gu, Seo Ra Seo, Hyein Cheung, Hyo Jung Lee, Sangmin Lee and Jong-Ho Kim
Pharmaceutics 2023, 15(2), 614; https://doi.org/10.3390/pharmaceutics15020614 - 11 Feb 2023
Cited by 6 | Viewed by 2740
Abstract
Nanotechnology, including self-aggregated nanoparticles, has shown high effectiveness in the treatment of solid tumors. To overcome the limitations of conventional cancer therapies and promote therapeutic efficacy, a combination of PDT and chemotherapy can be considered an effective strategy for cancer treatment. This study [...] Read more.
Nanotechnology, including self-aggregated nanoparticles, has shown high effectiveness in the treatment of solid tumors. To overcome the limitations of conventional cancer therapies and promote therapeutic efficacy, a combination of PDT and chemotherapy can be considered an effective strategy for cancer treatment. This study presents the development of tumor-targeting polysialic acid (PSA) nanoparticles for chemo-PDT to increase the cellular uptake and cytotoxic effect in cancer cells. Chlorin e6 (Ce6), a photosensitizer, and the iRGD peptide (sequence; cCRGDKGPDC) were conjugated to the amine of N-deacetylated PSA. They generate reactive oxygen species (ROS), especially singlet oxygen (1O2), and target integrin αvβ3 on the cancer cell surface. To offer a chemotherapeutic effect, doxorubicin (Dox) was assembled into the core of hydrophobically modified PSA by connecting it with Ce6; this was followed by its sustained release from the nanoparticles. These nanoparticles are able to generate ROS under 633 nm visible-light irradiation, resulting in the strong cytotoxicity of Dox with anticancer effects in HCT116 cells. PSA nanoparticles with the dual effect of chemo-PDT improve conventional PDT, which has a poor ability to deliver photosensitizers to cancer cells. Using their combination with Dox chemotherapy, rapid removal of cancer cells can be expected. Full article
(This article belongs to the Special Issue Functionalized Nanoparticles in Cancer Therapeutics)
Show Figures

Figure 1

14 pages, 1264 KiB  
Article
Comparative Genomics Revealed a Potential Threat of Aeromonas rivipollensis G87 Strain and Its Antibiotic Resistance
by Esther Ubani K. Fono-Tamo, Ilunga Kamika, John Barr Dewar and Kgaugelo Edward Lekota
Antibiotics 2023, 12(1), 131; https://doi.org/10.3390/antibiotics12010131 - 9 Jan 2023
Cited by 4 | Viewed by 2676
Abstract
Aeromonas rivipollensis is an emerging pathogen linked to a broad range of infections in humans. Due to the inability to accurately differentiate Aeromonas species using conventional techniques, in-depth comparative genomics analysis is imperative to identify them. This study characterized 4 A. rivipollensis strains [...] Read more.
Aeromonas rivipollensis is an emerging pathogen linked to a broad range of infections in humans. Due to the inability to accurately differentiate Aeromonas species using conventional techniques, in-depth comparative genomics analysis is imperative to identify them. This study characterized 4 A. rivipollensis strains that were isolated from river water in Johannesburg, South Africa, by whole-genome sequencing (WGS). WGS was carried out, and taxonomic classification was employed to profile virulence and antibiotic resistance (AR). The AR profiles of the A. rivipollensis genomes consisted of betalactams and cephalosporin-resistance genes, while the tetracycline-resistance gene (tetE) was only determined to be in the G87 strain. A mobile genetic element (MGE), transposons TnC, was determined to be in this strain that mediates tetracycline resistance MFS efflux tetE. A pangenomic investigation revealed the G87 strain’s unique characteristic, which included immunoglobulin A-binding proteins, extracellular polysialic acid, and exogenous sialic acid as virulence factors. The identified polysialic acid and sialic acid genes can be associated with antiphagocytic and antibactericidal properties, respectively. MGEs such as transposases introduce virulence and AR genes in the A. rivipollensis G87 genome. This study showed that A. rivipollensis is generally resistant to a class of beta-lactams and cephalosporins. MGEs pose a challenge in some of the Aeromonas species strains and are subjected to antibiotics resistance and the acquisition of virulence genes in the ecosystem. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and Environmental Health)
Show Figures

Figure 1

Back to TopTop