Comprehensive Ocular and Systemic Safety Evaluation of Polysialic Acid-Decorated Immune Modulating Therapeutic Nanoparticles (PolySia-NPs) to Support Entry into First-in-Human Clinical Trials
Abstract
:1. Introduction
2. Results
2.1. PolySia-NPs Did Not Show Mutagenic Activity
2.2. PolySia-NPs Did Not Show Cytotoxicity In Vitro
2.3. PolySia-NPs Did Not Show Micronucleus Formation In Vivo after Intravenous (IV) Administration
2.4. Intravenous (IV) Administration of PolySia-NPs Did Not Show Signs of Toxicity in Mice and Rats
2.5. Intravitreal (IVT) Administration of PolySia-NPs Was Well-Tolerated in Rabbits
2.6. Intravitreal (IVT) Administration of PolySia-NPs Was Well-Tolerated in Non-Human Primates (NHPs)
3. Discussion
4. Materials and Methods
4.1. PolySia-NP Preparation Method
4.2. Bacterial Reverse Mutation Assay
4.3. In Vitro Micronucleus Assay
4.4. Clastogenic Activity Assessment after Administration by Intravenous (IV) on Mice
4.5. Toxicity Assessments of PolySia-NPs after Intravenous Administration (IV) in Mice and Rats
4.6. Toxicity Assessments of PolySia-NPs over 28 Days and the Potential Reversibility Following an Intravitreal (IVT) Injection to Dutch Belted Rabbits
4.7. Toxicity Study at High Concentrations of PolySia-NPs Following an Intravitreal (IVT) Injection to Dutch Belted Rabbits
4.8. In Vivo Toxicity Study in Non-Human Primates (NHPs) after Intravitreal (IVT) Administration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khanani, A.M.; Patel, S.S.; Staurenghi, G.; Tadayoni, R.; Danzig, C.J.; Eichenbaum, D.A.; Hsu, J.; Wykoff, C.C.; Heier, J.S.; Lally, D.R.; et al. Efficacy and safety of avacincaptad pegol in patients with geographic atrophy (GATHER2): 12-month results from a randomised, double-masked, phase 3 trial. Lancet 2023, 402, 1449–1458. [Google Scholar] [CrossRef]
- Heier, J.S.; Lad, E.M.; Holz, F.G.; Rosenfeld, P.J.; Guymer, R.H.; Boyer, D.; Grossi, F.; Baumal, C.R.; Korobelnik, J.F.; Slakter, J.S.; et al. Pegcetacoplan for the treatment of geographic atrophy secondary to age-related macular degeneration (OAKS and DERBY): Two multicentre, randomised, double-masked, sham-controlled, phase 3 trials. Lancet 2023, 402, 1434–1448. [Google Scholar] [CrossRef]
- Spaide, R.F.; Vavvas, D.G. Complement Inhibition for Geographic Atrophy: Review of Salient Functional Outcomes and Perspective. Retina 2023, 43, 1064–1069. [Google Scholar] [CrossRef]
- Tolentino, M.J.; Tolentino, A.J.; Tolentino, E.M.; Krishnan, A.; Genead, M.A. Sialic Acid Mimetic Microglial Sialic Acid-Binding Immunoglobulin-like Lectin Agonism: Potential to Restore Retinal Homeostasis and Regain Visual Function in Age-Related Macular Degeneration. Pharmaceuticals 2023, 16, 1735. [Google Scholar] [CrossRef]
- Krishnan, A.; Sendra, V.G.; Patel, D.; Lad, A.; Greene, M.K.; Smyth, P.; Gallaher, S.A.; Herron, U.M.; Scott, C.J.; Genead, M.; et al. PolySialic acid-nanoparticles inhibit macrophage mediated inflammation through Siglec agonism: A potential treatment for age related macular degeneration. Front. Immunol. 2023, 14, 1237016. [Google Scholar] [CrossRef]
- Tolentino, A.J.; Tolentino, E.M.; Krishnan, A.; Genead, M.A. SIGLECs the Main Self-Pattern Recognition Receptors of the Immune System. A Promising Target for Inflammatory Modulation. Am. J. Biomed. Sci. Res. 2023, 20, 360. [Google Scholar] [CrossRef]
- Spence, S.; Greene, M.K.; Fay, F.; Hams, E.; Saunders, S.P.; Hamid, U.; Fitzgerald, M.; Beck, J.; Bains, B.K.; Smyth, P.; et al. Targeting Siglecs with a sialic acid-decorated nanoparticle abrogates inflammation. Sci. Transl. Med. 2015, 7, 303ra140. [Google Scholar] [CrossRef]
- Varki, A. Since there are PAMPs and DAMPs, there must be SAMPs? Glycan “self-associated molecular patterns” dampen innate immunity, but pathogens can mimic them. Glycobiology 2011, 21, 1121–1124. [Google Scholar] [CrossRef]
- Fernandes, R.A.; Su, L.; Nishiga, Y.; Ren, J.; Bhuiyan, A.M.; Cheng, N.; Kuo, C.J.; Picton, L.K.; Ohtsuki, S.; Majzner, R.G.; et al. Immune receptor inhibition through enforced phosphatase recruitment. Nature 2020, 586, 779–784. [Google Scholar] [CrossRef]
- Marasco, M.; Berteotti, A.; Weyershaeuser, J.; Thorausch, N.; Sikorska, J.; Krausze, J.; Brandt, H.J.; Kirkpatrick, J.; Rios, P.; Schamel, W.W.; et al. Molecular mechanism of SHP2 activation by PD-1 stimulation. Sci. Adv. 2020, 6, eaay4458. [Google Scholar] [CrossRef]
- Fialho, S.L.; Rego, M.B.; Siqueira, R.C.; Jorge, R.; Haddad, A.; Rodrigues, A.L.; Maia-Filho, A.; Silva-Cunha, A. Safety and pharmacokinetics of an intravitreal biodegradable implant of dexamethasone acetate in rabbit eyes. Curr. Eye Res. 2006, 31, 525–534. [Google Scholar] [CrossRef]
- Christensen, G.; Barut, L.; Urimi, D.; Schipper, N.; Paquet-Durand, F. Investigating Ex Vivo Animal Models to Test the Performance of Intravitreal Liposomal Drug Delivery Systems. Pharmaceutics 2021, 13, 1013. [Google Scholar] [CrossRef]
- Kelley, R.A.; Conley, S.M.; Makkia, R.; Watson, J.N.; Han, Z.; Cooper, M.J.; Naash, M.I. DNA nanoparticles are safe and nontoxic in non-human primate eyes. Int. J. Nanomed. 2018, 13, 1361–1379. [Google Scholar] [CrossRef]
- Villanueva-Cabello, T.M.; Gutierrez-Valenzuela, L.D.; Salinas-Marin, R.; Lopez-Guerrero, D.V.; Martinez-Duncker, I. Polysialic Acid in the Immune System. Front. Immunol. 2021, 12, 823637. [Google Scholar] [CrossRef]
- Kuperkar, K.; Atanase, L.I.; Bahadur, A.; Crivei, I.C.; Bahadur, P. Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates. Polymers 2024, 16, 206. [Google Scholar] [CrossRef]
- Hoshyar, N.; Gray, S.; Han, H.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 2016, 11, 673–692. [Google Scholar] [CrossRef]
- Mazayen, Z.M.; Ghoneim, A.M.; Elbatanony, R.S.; Basalious, E.B.; Bendas, E.R. Pharmaceutical nanotechnology: From the bench to the market. Futur. J. Pharm. Sci. 2022, 8, 12. [Google Scholar] [CrossRef]
- Yang, C.-J.; Nguyen, D.D.; Lai, J.-Y. Poly(l-Histidine)-Mediated On-Demand Therapeutic Delivery of Roughened Ceria Nanocages for Treatment of Chemical Eye Injury. Adv. Sci. 2023, 10, 2302174. [Google Scholar] [CrossRef]
- Khiev, D.; Mohamed, Z.A.; Vichare, R.; Paulson, R.; Bhatia, S.; Mohapatra, S.; Lobo, G.P.; Valapala, M.; Kerur, N.; Passaglia, C.L.; et al. Emerging Nano-Formulations and Nanomedicines Applications for Ocular Drug Delivery. Nanomaterials 2021, 11, 173. [Google Scholar] [CrossRef]
- Tolentino, M.J.; Tolentino, A.J. Investigational drugs in clinical trials for macular degeneration. Expert. Opin. Investig. Drugs 2022, 31, 1067–1085. [Google Scholar] [CrossRef]
- Adamis, A.P.; Shima, D.T.; Tolentino, M.J.; Gragoudas, E.S.; Ferrara, N.; Folkman, J.; D’Amore, P.A.; Miller, J.W. Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate. Arch. Ophthalmol. 1996, 114, 66–71. [Google Scholar] [CrossRef]
- Li, Y.; Doak, S.H.; Yan, J.; Chen, D.H.; Zhou, M.; Mittelstaedt, R.A.; Chen, Y.; Li, C.; Chen, T. Factors affecting the in vitro micronucleus assay for evaluation of nanomaterials. Mutagenesis 2017, 32, 151–159. [Google Scholar] [CrossRef]
- Kazimirova, A.; Magdolenova, Z.; Barancokova, M.; Staruchova, M.; Volkovova, K.; Dusinska, M. Genotoxicity testing of PLGA-PEO nanoparticles in TK6 cells by the comet assay and the cytokinesis-block micronucleus assay. Mutat. Res. 2012, 748, 42–47. [Google Scholar] [CrossRef]
- Pandey, A.K.; Kumar, R.; Shafiq, N.; Kondel, R.; Garg, S.; Negi, H.; Arora, S.K.; Varma, N.; Malhotra, S. In vitro and in vivo evaluation of clastogenicity of second-line antitubercular drug loaded PLGA nanoparticles. Hum. Exp. Toxicol. 2021, 40, 1064–1073. [Google Scholar] [CrossRef]
- Liang, Q.; Zhang, P.; Zhang, L.; Luan, H.; Li, X.; Xiang, H.; Jing, S.; Song, X. Development of tetracycline-modified nanoparticles for bone-targeted delivery of anti-tubercular drug. Front. Bioeng. Biotechnol. 2023, 11, 1207520. [Google Scholar] [CrossRef]
- Karami, Z.; Mehrzad, J.; Akrami, M.; Hosseinkhani, S. Anti-inflammation-based treatment of atherosclerosis using Gliclazide-loaded biomimetic nanoghosts. Sci. Rep. 2023, 13, 13880. [Google Scholar] [CrossRef]
- Dandamudi, M.; McLoughlin, P.; Behl, G.; Rani, S.; Coffey, L.; Chauhan, A.; Kent, D.; Fitzhenry, L. Chitosan-Coated PLGA Nanoparticles Encapsulating Triamcinolone Acetonide as a Potential Candidate for Sustained Ocular Drug Delivery. Pharmaceutics 2021, 13, 1590. [Google Scholar] [CrossRef]
- Yao, H.; Xu, H.; Wu, M.; Lei, W.; Li, L.; Liu, D.; Wang, Z.; Ran, H.; Ma, H.; Zhou, X. Targeted long-term noninvasive treatment of choroidal neovascularization by biodegradable nanoparticles. Acta Biomater. 2023, 166, 536–551. [Google Scholar] [CrossRef]
- Ottonelli, I.; Bighinati, A.; Adani, E.; Loll, F.; Caraffi, R.; Vandelli, M.A.; Boury, F.; Tosi, G.; Duskey, J.T.; Marigo, V.; et al. Optimization of an Injectable Hydrogel Depot System for the Controlled Release of Retinal-Targeted Hybrid Nanoparticles. Pharmaceutics 2022, 15, 25. [Google Scholar] [CrossRef]
- Wu, Y.; Vora, L.K.; Wang, Y.; Adrianto, M.F.; Tekko, I.A.; Waite, D.; Donnelly, R.F.; Thakur, R.R.S. Long-acting nanoparticle-loaded bilayer microneedles for protein delivery to the posterior segment of the eye. Eur. J. Pharm. Biopharm. 2021, 165, 306–318. [Google Scholar] [CrossRef]
- Qiu, F.; Meng, T.; Chen, Q.; Zhou, K.; Shao, Y.; Matlock, G.; Ma, X.; Wu, W.; Du, Y.; Wang, X.; et al. Fenofibrate-Loaded Biodegradable Nanoparticles for the Treatment of Experimental Diabetic Retinopathy and Neovascular Age-Related Macular Degeneration. Mol. Pharm. 2019, 16, 1958–1970. [Google Scholar] [CrossRef]
- Rajesh, B.; Zarranz-Ventura, J.; Fung, A.T.; Busch, C.; Sahoo, N.K.; Rodriguez-Valdes, P.J.; Sarao, V.; Mishra, S.K.; Saatci, A.O.; Udaondo Mirete, P.; et al. Safety of 6000 intravitreal dexamethasone implants. Br. J. Ophthalmol. 2020, 104, 39–46. [Google Scholar] [CrossRef]
- Lobanovskaya, N.; Zharkovsky, A. A role of PSA-NCAM in the survival of retinal ganglion cells (RGCs) after kainic acid damage. Neurotoxicology 2019, 72, 101–106. [Google Scholar] [CrossRef]
- Karlstetter, M.; Kopatz, J.; Aslanidis, A.; Shahraz, A.; Caramoy, A.; Linnartz-Gerlach, B.; Lin, Y.; Lückoff, A.; Fauser, S.; Düker, K.; et al. Polysialic acid blocks mononuclear phagocyte reactivity, inhibits complement activation, and protects from vascular damage in the retina. EMBO Mol. Med. 2017, 9, 154–166. [Google Scholar] [CrossRef]
- Langmann, T.; Fauser, S. Polysialic Acid for Immunomodulation in an Animal Model for Wet Age-Related Macular Degeneration (AMD). Klin. Monbl. Augenheilkd. 2017, 234, 657–661. [Google Scholar] [CrossRef]
- Kier, L.; Brusick, D.; Auletta, A.; Von Halle, E.; Brown, M.; Simmon, V.; Dunkel, V.; McCann, J.; Mortelmans, K.; Prival, M. The Salmonella typhimurium/mammalian microsomal assay: A report of the US Environmental Protection Agency Gene-Tox Program. Mutat. Res./Rev. Genet. Toxicol. 1986, 168, 69–240. [Google Scholar] [CrossRef]
- Heddle, J.A.; Hite, M.; Kirkhart, B.; Mavournin, K.; MacGregor, J.T.; Newell, G.W.; Salamone, M.F. The induction of micronuclei as a measure of genotoxicity. A report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat. Res. 1983, 123, 61–118. [Google Scholar] [CrossRef]
- Kirsch-Volders, M.; Sofuni, T.; Aardema, M.; Albertini, S.; Eastmond, D.; Fenech, M.; Ishidate, M., Jr.; Kirchner, S.; Lorge, E.; Morita, T.; et al. Report from the in vitro micronucleus assay working group. Mutat. Res. 2003, 540, 153–163. [Google Scholar] [CrossRef]
- Sobol, Z.; Homiski, M.L.; Dickinson, D.A.; Spellman, R.A.; Li, D.; Scott, A.; Cheung, J.R.; Coffing, S.L.; Munzner, J.B.; Sanok, K.E.; et al. Development and validation of an in vitro micronucleus assay platform in TK6 cells. Mutat. Res. 2012, 746, 29–34. [Google Scholar] [CrossRef]
- Wojciechowski, J.P.; Gleason, C.R.; Roberts, D.J.; Custer, L.L. Novel statistical approach for evaluating flow cytometric in vitro micronucleus data. Environ. Mol. Mutagen. 2016, 57, 623–629. [Google Scholar] [CrossRef]
Without Metabolic Activation | ||||||
Strain | Test Item | Dose Level per Plate | Mean Revertants per Plate | Standard Deviation | Ratio Treated | Individual Revertant Colony Counts |
TA100 | %10 Sucrose | 100 µL | 79.3 | 3.2 | - | 78,77,83 |
PolySia-NP | 1 | 97 | 0 | 1.2 | 97 | |
5 | 72 | 0 | 0.9 | 72 | ||
10 | 69 | 0 | 0.9 | 69 | ||
50 | 97 | 0 | 1.2 | 97 | ||
100 | 84 | 0 | 1.1 | 84 | ||
500 | 102 | 0 | 1.3 | 102 | ||
1000 | 83 | 0 | 1 | 83 | ||
5000 | 77 | 0 | 1 | 77 | ||
WP2uvrA | %10 Sucrose | 100 µL | 44.7 | 15 | - | 62,37,35 |
PolySia-NP | 1 | 44 | 0 | 1 | 44 | |
5 | 72 | 0 | 1.6 | 72 | ||
10 | 51 | 0 | 1.1 | 51 | ||
50 | 54 | 0 | 1.2 | 54 | ||
100 | 61 | 0 | 1.4 | 61 | ||
500 | 69 | 0 | 1.5 | 69 | ||
1000 | 72 | 0 | 1.6 | 72 | ||
5000 | 50 | 0 | 1.1 | 50 | ||
With Metabolic Activation | ||||||
Strain | Test Item | Dose Level per Plate | Mean Revertants per Plate | Standard Deviation | Ratio Treated | Individual Revertant Colony Counts |
TA100 | %10 Sucrose | 100 µL | 85 | 17.8 | - | 91,65,99 |
PolySia-NP | 1 | 90 | 0 | 1.1 | 90 | |
5 | 113 | 0 | 1.3 | 113 | ||
10 | 76 | 0 | 0.9 | 76 | ||
50 | 111 | 0 | 1.3 | 111 | ||
100 | 70 | 0 | 0.8 | 70 | ||
500 | 71 | 0 | 0.8 | 71 | ||
1000 | 88 | 0 | 1 | 88 | ||
5000 | 99 | 0 | 1.2 | 99 | ||
WP2uvrA | %10 Sucrose | 100 µL | 57.7 | 21.9 | - | 33,65,75 |
PolySia-NP | 1 | 64 | 0 | 1.1 | 64 | |
5 | 52 | 0 | 0.9 | 52 | ||
10 | 54 | 0 | 0.9 | 54 | ||
50 | 71 | 0 | 1.2 | 71 | ||
100 | 43 | 0 | 0.7 | 43 | ||
500 | 69 | 0 | 1.2 | 69 | ||
1000 | 43 | 0 | 0.7 | 43 | ||
5000 | 57 | 0 | 1 | 57 |
Mutagenesis Assay with Metabolic Activation | ||||||
---|---|---|---|---|---|---|
Strain | Test Item | Dose Level per plate | Mean Revertants per Plate | Standard Deviation | Ratio Treated/Solvent | Individual Revertant Colony Counts |
TA98 | %10 Sucrose | 61.3 µL | 26 | 6.2 | - | 19,28,31 |
PolySia-NP | 31 | 25 | 3 | 1 | 25,22,28 | |
93 | 23 | 3.5 | 0.9 | 27,21,21 | ||
278 | 26.7 | 1.5 | 1 | 25,27,28 | ||
833 | 24.3 | 8.5 | 0.9 | 34,18,21 | ||
2500 | 13.3 | 1.5 | 0.5 | 15,12,13 | ||
2AA | 2.5 | 1742 | 184.1 | 67 | 186,115,301,835 | |
TA100 | %10 Sucrose | 61.3 µL | 118.3 | 2.1 | - | 116,119,120 |
PolySia-NP | 31 | 90.3 | 6 | 0.8 | 91,84,96 | |
93 | 110.3 | 15 | 0.9 | 127,106,98 | ||
278 | 93.7 | 11.7 | 0.8 | 81,96,104 | ||
833 | 112.3 | 21.2 | 0.9 | 95,106,136 | ||
2500 | 146 | 6.9 | 1.2 | 154,142,142 | ||
2AA | 2.5 | 1615.7 | 545.9 | 13.7 | 168,110,402,126 | |
TA1535 | %10 Sucrose | 61.3 µL | 9 | 2 | - | 11,9,7 |
PolySia-NP | 31 | 14.3 | 3.2 | 1.6 | 13,18,12 | |
93 | 12.3 | 1.5 | 1.4 | 11,14,12 | ||
278 | 9 | 2.6 | 1 | 7,12,8 | ||
833 | 12.7 | 2.9 | 1.4 | 11,16,11 | ||
2500 | 13.3 | 2.1 | 1.5 | 14,11,15 | ||
2AA | 2.5 | 161.3 | 9.1 | 17.9 | 168,165,151 | |
TA1537 | %10 Sucrose | 61.3 µL | 8 | 4.6 | - | 7,13,4 |
PolySia-NP | 31 | 8.7 | 4.7 | 1.1 | 7,5,14 | |
93 | 6.7 | 2.5 | 0.8 | 9,7,4 | ||
278 | 4.3 | 4.5 | 0.5 | 4,9,0 | ||
833 | 8.3 | 3.5 | 1 | 12,5,8 | ||
2500 | 6.7 | 5.1 | 0.8 | 8,11,1 | ||
2AA | 2.5 | 98.3 | 13.3 | 12.3 | 87,113,95 | |
WP2uvrA | %10 Sucrose | 61.3 µL | 39 | 11.3 | - | 26,46,45 |
PolySia-NP | 31 | 37 | 9.2 | 0.9 | 27,39,45 | |
93 | 44.3 | 17.6 | 1.1 | 26,46,61 | ||
278 | 49 | 8.7 | 1.3 | 55,53,39 | ||
833 | 42.3 | 14.2 | 1.1 | 26,49,52 | ||
2500 | 44.7 | 11.7 | 1.1 | 32,55,47 | ||
2AA | 10 | 396.7 | 136.4 | 10.2 | 500,448,242 |
Mutagenesis Assay without Metabolic Activation | ||||||
---|---|---|---|---|---|---|
Strain | Test Item | Dose Level per Plate | Mean Revertants per Plate | Standard Deviation | Ratio Treated/Solvent | Individual Revertant Colony Counts |
TA98 | %10 Sucrose | 61.3 µL | 22 | 4.4 | - | 20,27,19 |
AVD-104 31 | 21 | 5 | 1 | 21,26,16 | ||
93 | 15.7 | 4.7 | 0.7 | 12,21,14 | ||
278 | 19.7 | 0.6 | 0.9 | 20,19,20 | ||
833 | 8.3 | 2.5 | 0.4 | 6,11,8 | ||
2500 | 15.3 | 2.5 | 0.7 | 13,18,15 | ||
2NF | 2.5 | 603.3 | 78.2 | 27.4 | 549,568,693 | |
TA100 | %10 Sucrose | 61.3 µL | 119 | 5 | - | 114,119,124 |
AVD-104 | 31 | 104.7 | 16.8 | 0.9 | 94,96,124 | |
93 | 131.3 | 13.3 | 1.1 | 139,139,116 | ||
278 | 127.7 | 11.1 | 1.1 | 138,116,129 | ||
833 | 129.7 | 13.8 | 1.1 | 140,114,135 | ||
2500 | 105.3 | 17.6 | 0.9 | 91,125,100 | ||
SA | 1 | 619.3 | 152.2 | 5.2 | 776,472,610 | |
TA1535 | %10 Sucrose | 61.3 µL | 11.7 | 0.6 | - | 12,12,11 |
AVD-104 | 31 | 9.7 | 3.8 | 0.8 | 8,7,14 | |
93 | 9.3 | 5.1 | 0.8 | 5,8,15 | ||
278 | 12 | 1 | 1 | 11,12,13 | ||
833 | 7.7 | 1.5 | 0.7 | 9,6,8 | ||
2500 | 9.7 | 1.2 | 0.8 | 9,9,11 | ||
SA | 1 | 639.7 | 17.6 | 54.8 | 656,621,642 | |
TA1537 | %10 Sucrose | 61.3 µL | 5.7 | 2.1 | - | 5,8,4 |
AVD-104 | 31 | 3.3 | 2.1 | 0.6 | 1,5,4 | |
93 | 7 | 1 | 1.2 | 6,8,7 | ||
278 | 10 | 1.7 | 1.8 | 12,9,9 | ||
833 | 6.3 | 1.2 | 1.1 | 7,5,7 | ||
2500 | 7 | 1 | 1.2 | 8,7,6 | ||
ICR | 0.5 | 118.3 | 6.7 | 20.9 | 126,115,114 | |
WP2uvrA | %10 Sucrose | 61.3 µL | 29.3 | 9.5 | - | 40,22,26 |
AVD-104 | 31 | 30.7 | 2.5 | 1 | 31,33,28 | |
93 | 30.7 | 11.2 | 1 | 35,18,39 | ||
278 | 33 | 9 | 1.1 | 24,33,42 | ||
833 | 30 | 10.1 | 1 | 21,28,41 | ||
2500 | 42.3 | 14.8 | 1.4 | 26,55,46 | ||
NQNO | 2 | 907.3 | 85.6 | 30.9 | 929,980,813 |
Treatment (µg/mL) | Cytotoxicity RICC (%) | MN (%) | z′ |
---|---|---|---|
10% Sucrose (2.6%) | 0 | 0.89 | NA |
CP 4.7 µg/mL | 50 | 5.58 | 0.79 * |
CP 11.9 µg/mL | 82 | 15.58 | 0.91 * |
PolySia-NP | |||
31.3 | −5 | 0.51 | <0 |
62.5 | −12 | 0.51 | <0 |
125 | −14 | 0.58 | <0 |
250 | −18 | 1.4 | <0 |
500 | 3 | 0.3 | 0.24 |
Treatment (µg/mL) | Cytotoxicity RICC (%) | MN (%) | z′ |
---|---|---|---|
10% Sucrose (2.6%) | 0 | 0.3 | NA |
MMC 0.0625 µg/mL | 50 | 3.47 | 0.78 * |
MMC 0.125 µg/mL | 63 | 8.7 | 0.88 * |
PolySia-NP | |||
31.3 | 0 | 0.3 | a |
62.5 | −10 | 0.26 | <0 |
125 | −2 | 0.42 | <0 |
250 | −23 | 0.39 | <0 |
500 | −4 | 0.35 | <0 |
Treatment (µg/mL) | Cytotoxicity RICC (%) | MN (%) | z′ |
---|---|---|---|
10% Sucrose (2.6%) | 0 | 0.37 | NA |
VIN 2.5 ng/mL | 46 | 4.19 | 0.79 * |
VIN 3.0 ng/mL | 57 | 5.4 | 0.83 * |
PolySia-NP | |||
31.3 | −6 | 0.29 | <0 |
62.5 | −2 | 0.32 | <0 |
125 | −3 | 0.28 | <0 |
250 | 3 | 0.36 | <0 |
500 | 1 | 0.37 | <0 |
Sex: Male | |||
---|---|---|---|
Treatment Group | Sampling Time (Hours) | PCE Percentage (Mean ± SD, %) | MN-PCE Frequency (Mean ± SD, %) |
Group 1 | 1 (0.5–1.5) | 56.3 ± 6.2 | 2.0 ± 0.8 |
Negative Control Article | |||
Dose | |||
(0 mg/kg/day) | |||
Group 2 | 1 (0.5–1.5) | 58.9 ± 9.7 | 2.5 ± 0.4 |
AVD-104 | |||
Dose | |||
(208.75 mg/kg/day) | |||
Group 3 | 1 (0.5–1.5) | 56.9 ± 2.4 | 2.5 ± 0.3 |
AVD-104 | |||
Dose | |||
(417.5 mg/kg/day) | |||
Group 4 | 1 (0.5–1.5) | 57.4 ± 3.6 | 1.9 ± 0.7 |
AVD-104 | |||
Dose | |||
(835 mg/kg/day) | |||
Group 5 | 22 (20~24) | 47.7 ± 8.7 | 49.5 ± 16.6 * |
(CP, 75 mg/kg) |
Summary of Microscopic Findings–Terminal Euthanasia (Day 29) | ||||||||
---|---|---|---|---|---|---|---|---|
Males | Females | |||||||
Group | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
Dose (mg/eye) | 0 | 0.05 | 0.15 | 0.5 | 0 | 0.05 | 0.15 | 0.5 |
No. Animals per Group | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Eyes (No. Examined) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Right: Infiltration, mononuclear cell, vitreous chamber | (0) a | 0 | 2 | 3 | 0 | 0 | 2 | 3 |
Minimal Mild | 0 | 0 | 2 | 1 | 0 | 0 | 2 | 1 |
Mild | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2 |
Left: Infiltration, mononuclear cell, vitreous chamber | 0 | 0 | 3 | 3 | 0 | 0 | 2 | 3 |
Minimal | 0 | 0 | 3 | 1 | 0 | 0 | 2 | 2 |
Mild | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 |
a Numbers in parentheses represent the number of animals with the finding | ||||||||
Summary of Microscopic Findings–Recovery Euthanasia (Day 43) | ||||||||
Males | Females | |||||||
Group | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
Dose (mg/eye) | 0 | 0.05 | 0.15 | 0.5 | 0 | 0.05 | 0.15 | 0.5 |
No. Animals per Group | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Eyes (No. Examined) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Right: Infiltration, mononuclear cell, vitreous chamber | (0) a | 0 | 1 | 2 | 0 | 0 | 1 | 2 |
Minimal Mild | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
Mild | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
Left: Infiltration, mononuclear cell, vitreous chamber | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2 |
Minimal | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 |
Mild | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
a Numbers in parentheses represent the number of animals with the finding |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krishnan, A.; Callanan, D.G.; Sendra, V.G.; Lad, A.; Christian, S.; Earla, R.; Khanehzar, A.; Tolentino, A.J.; Vailoces, V.A.S.; Greene, M.K.; et al. Comprehensive Ocular and Systemic Safety Evaluation of Polysialic Acid-Decorated Immune Modulating Therapeutic Nanoparticles (PolySia-NPs) to Support Entry into First-in-Human Clinical Trials. Pharmaceuticals 2024, 17, 481. https://doi.org/10.3390/ph17040481
Krishnan A, Callanan DG, Sendra VG, Lad A, Christian S, Earla R, Khanehzar A, Tolentino AJ, Vailoces VAS, Greene MK, et al. Comprehensive Ocular and Systemic Safety Evaluation of Polysialic Acid-Decorated Immune Modulating Therapeutic Nanoparticles (PolySia-NPs) to Support Entry into First-in-Human Clinical Trials. Pharmaceuticals. 2024; 17(4):481. https://doi.org/10.3390/ph17040481
Chicago/Turabian StyleKrishnan, Anitha, David G. Callanan, Victor G. Sendra, Amit Lad, Sunny Christian, Ravinder Earla, Ali Khanehzar, Andrew J. Tolentino, Valory Anne Sarmiento Vailoces, Michelle K. Greene, and et al. 2024. "Comprehensive Ocular and Systemic Safety Evaluation of Polysialic Acid-Decorated Immune Modulating Therapeutic Nanoparticles (PolySia-NPs) to Support Entry into First-in-Human Clinical Trials" Pharmaceuticals 17, no. 4: 481. https://doi.org/10.3390/ph17040481
APA StyleKrishnan, A., Callanan, D. G., Sendra, V. G., Lad, A., Christian, S., Earla, R., Khanehzar, A., Tolentino, A. J., Vailoces, V. A. S., Greene, M. K., Scott, C. J., Kunimoto, D. Y., Hassan, T. S., Genead, M. A., & Tolentino, M. J. (2024). Comprehensive Ocular and Systemic Safety Evaluation of Polysialic Acid-Decorated Immune Modulating Therapeutic Nanoparticles (PolySia-NPs) to Support Entry into First-in-Human Clinical Trials. Pharmaceuticals, 17(4), 481. https://doi.org/10.3390/ph17040481