Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,616)

Search Parameters:
Keywords = polyphenol protection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8805 KiB  
Article
Effects of Inactive Yeast Biostimulants on Mechanical and Color Attributes of Wine Grape Cultivars
by Giovanni Gentilesco, Vittorio Alba, Giovanna Forte, Rosa Anna Milella, Giuseppe Roselli and Mauro Eugenio Maria D’Arcangelo
Sustainability 2025, 17(15), 6958; https://doi.org/10.3390/su17156958 (registering DOI) - 31 Jul 2025
Abstract
Background: Biostimulants naturally improve plant growth, stress tolerance, and nutrient use efficiency and activate defenses by increasing protective metabolites (phenols, anthocyanins) in grapes. In viticulture, especially when using inactive yeasts, they modulate genetic expression and improve the skin resistance, color, and aroma profile [...] Read more.
Background: Biostimulants naturally improve plant growth, stress tolerance, and nutrient use efficiency and activate defenses by increasing protective metabolites (phenols, anthocyanins) in grapes. In viticulture, especially when using inactive yeasts, they modulate genetic expression and improve the skin resistance, color, and aroma profile of wine grapes in line with sustainable practices. Methods: Two wine grape cultivars, Merlot and Cabernet Sauvignon, were sprayed with the inactive yeast Saccharomyces cerevisiae in a single treatment in pre-veraison or in a double treatment in pre-veraison and veraison. Berry weight, must, total polyphenols, anthocyanins, and mechanical and colorimetric properties were measured on fresh grapes. Results: Two-way ANOVA revealed that titratable acidity (TA), pH, and total polyphenol content (TPC) were not affected, while mean berry weight and anthocyanin content varied by cultivar, treatment, and interaction; total soluble solids (TSS) differed only by cultivar. Inactive yeasts reduced weight in the single-treatment thesis but stabilized it in the double-treatment one; anthocyanins decreased in Cabernet Sauvignon but increased in Merlot. Mechanical and colorimetric analyses showed cultivar-dependent responses, with significant improvements in elasticity, skin thickness, and hue of berries, especially in Merlot when the treatment was applied twice. Conclusions: Inactive yeasts (IYs) showed an effect on the weight of the berries, the anthocyanins, the mechanics, and the color; Merlot significantly improved skin thickness, elasticity, and hue; and Cabernet remained less reactive to treatments. Full article
Show Figures

Graphical abstract

14 pages, 1769 KiB  
Article
The Effect of Colors and Light Intensity on the Growth and Biochemical Compounds of the Chlorophyceae Nephroselmis sp.
by Ichrak Sekri, Wassim Guermazi, Mohamad El-khateeb, George N. Hotos and Habib Ayadi
J. Mar. Sci. Eng. 2025, 13(8), 1452; https://doi.org/10.3390/jmse13081452 - 29 Jul 2025
Viewed by 209
Abstract
Light intensity and spectral quality play crucial roles in microalgal growth and biochemical biosynthesis. This study investigates the effects of different light intensities (3000, 8000 and 15,000 lux) and colors (red, white, yellow and green) on the growth and metabolites of Nephroselmis sp. [...] Read more.
Light intensity and spectral quality play crucial roles in microalgal growth and biochemical biosynthesis. This study investigates the effects of different light intensities (3000, 8000 and 15,000 lux) and colors (red, white, yellow and green) on the growth and metabolites of Nephroselmis sp. Moderate intensity (8000 lux) of white light is sufficient to produce this microalga. The colors of light strongly affect the parameters of the growth of Nephroselmis under each light intensity (p < 0.05). The yellow and green light supported the highest growth rates for the three intensities. Blue and green light at 15,000 Lux stimulates high levels of chl-a corresponding to antenna size 2.80 and 2.46. Nephroselmis illuminated with red light synthesizes carotenoids reaching 13 µg mL−1 at 15,000 lux. This latter for each color stops the proliferation of Nephroselmis, and cells shift their metabolism towards the accumulation of protein. Nephroselmis accumulates more protein, followed by carbohydrates, lipids and polyphenols. Nephroselmis exhibited the highest protein (64% D.W) content when cultured under white light, and the green at 15,000 lux enhanced their production. Nephroselmis is rich in carbohydrates, which accounted for more than 20% D.W under all combinations of light intensities and colors. The accumulation of polyphenols and carotenoids under high-intensity red and white light may reflect an oxidative stress response, suggesting their role as protective antioxidants. The capacity of Nephroselmis sp. to thrive and synthesize valuable metabolites under variable light regimes underscores its potential as a robust candidate for the production of various molecules. Full article
(This article belongs to the Section Marine Aquaculture)
Show Figures

Figure 1

21 pages, 3048 KiB  
Article
Transfersome-Based Delivery of Optimized Black Tea Extract for the Prevention of UVB-Induced Skin Damage
by Nadia Benedetto, Maria Ponticelli, Ludovica Lela, Emanuele Rosa, Flavia Carriero, Immacolata Faraone, Carla Caddeo, Luigi Milella and Antonio Vassallo
Pharmaceutics 2025, 17(8), 952; https://doi.org/10.3390/pharmaceutics17080952 - 23 Jul 2025
Viewed by 257
Abstract
Background/Objectives: Ultraviolet B (UVB) radiation contributes significantly to skin aging and skin disorders by promoting oxidative stress, inflammation, and collagen degradation. Natural antioxidants such as theaflavins and thearubigins from Camellia sinensis L. (black tea) have shown photoprotective effects. This study aimed to optimize [...] Read more.
Background/Objectives: Ultraviolet B (UVB) radiation contributes significantly to skin aging and skin disorders by promoting oxidative stress, inflammation, and collagen degradation. Natural antioxidants such as theaflavins and thearubigins from Camellia sinensis L. (black tea) have shown photoprotective effects. This study aimed to optimize the extraction of theaflavins and thearubigins from black tea leaves and evaluate the efficacy of the extract against UVB-induced damage using a transfersome-based topical formulation. Methods: Extraction of theaflavins and thearubigins was optimized via response surface methodology (Box-Behnken Design), yielding an extract rich in active polyphenols. This extract was incorporated into transfersomes that were characterized for size, polydispersity, zeta potential, storage stability, and entrapment efficiency. Human dermal fibroblasts (NHDF) were used to assess cytotoxicity, protection against UVB-induced viability loss, collagen degradation, and expression of inflammatory (IL6, COX2, iNOS) and matrix-degrading (MMP1) markers. Cellular uptake of the extract’s bioactive marker compounds was measured via LC-MS/MS. Results: The transfersomes (~60 nm) showed a good stability and a high entrapment efficiency (>85%). The transfersomes significantly protected NHDF cells from UVB-induced cytotoxicity, restored collagen production, and reduced gene expression of MMP1, IL6, COX2, and iNOS. Cellular uptake of key extract’s polyphenols was markedly enhanced by the nanoformulation compared to the free extract. Conclusions: Black tea extract transfersomes effectively prevented UVB-induced oxidative and inflammatory damage in skin fibroblasts. This delivery system enhanced bioavailability of the extract and cellular protection, supporting the use of the optimized extract in cosmeceutical formulations targeting photoaging and UV-induced skin disorders. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

31 pages, 1902 KiB  
Review
Effects of Epigallocatechin-3-O-Gallate on Bone Health
by Patrycja Wróbel, Beata Czarczynska-Goslinska, Kyrylo Chornovolenko, Julia Liwarska, Jakub Kubiak, Tomasz Koczorowski, Agnieszka Malinska, Tomasz Goslinski and Magdalena Waszyk-Nowaczyk
Appl. Sci. 2025, 15(15), 8182; https://doi.org/10.3390/app15158182 - 23 Jul 2025
Viewed by 175
Abstract
Tea is one of the most consumed beverages in the world, belonging to the category of compounds known as tannins and flavonoids. One of the polyphenols found in large amounts in green tea leaves (Camellia sinensis) is epigallocatechin-3-O-gallate (EGCG). [...] Read more.
Tea is one of the most consumed beverages in the world, belonging to the category of compounds known as tannins and flavonoids. One of the polyphenols found in large amounts in green tea leaves (Camellia sinensis) is epigallocatechin-3-O-gallate (EGCG). Though EGCG has shown some pharmacological effects, to date, it has not been utilised as a therapeutic agent. This is attributed to the fact that EGCG lacks adequate stability, and it is known to degrade through epimerization or auto-oxidation processes, especially when it is exposed to light, temperature fluctuations, some pH values, or the presence of oxygen. Consuming green tea with EGCG can alleviate the effects of bone diseases, such as osteoporosis, and support faster bone regeneration in the case of fractures. Therefore, this review focuses on the current state of research, highlighting the effects of EGCG on bone biology, such as enhancing osteoblast differentiation, promoting bone mineralisation, improving bone microarchitecture, and inhibiting osteoclastogenesis through the modulation of the RANK/RANKL/OPG pathway. Additionally, EGCG exerts antioxidant, anti-inflammatory, and dose-dependent effects on bone cells. It also downregulates inflammatory markers (TNF-α, IL-1β, and COX-2) and reduces oxidative stress via the inhibition of reactive oxygen species generation and the activation of protective signalling pathways (e.g., MAPK and NF-κB). Studies in animal models confirm that EGCG supplementation leads to increased bone mass and strength. These findings collectively support the further exploration of EGCG as an adjunct in the treatment and prevention of metabolic bone diseases. The authors aim to present the relationship between EGCG and bone health, highlighting issues for future research and clinical applications. Full article
Show Figures

Figure 1

15 pages, 7497 KiB  
Article
Hydrogel-Shielded Ellagic Acid Nanoparticles Prolong Colonic Retention and Mitigate DSS-Induced Colitis via Reactive Oxygen Species Scavenging
by Ximei Ye, Tao Chen, Lihang Chen, Di Wu, Yinan Du and Jiangning Hu
Foods 2025, 14(15), 2559; https://doi.org/10.3390/foods14152559 - 22 Jul 2025
Viewed by 238
Abstract
Inflammatory bowel disease (IBD) is characterized by oxidative stress imbalance and intestinal barrier disruption. Reducing excessive ROS has become a promising therapeutic strategy. Compared with conventional polyphenols, nanomaterials offer greater stability and bioavailability for ROS scavenging. Here, ellagic acid (EA) was converted into [...] Read more.
Inflammatory bowel disease (IBD) is characterized by oxidative stress imbalance and intestinal barrier disruption. Reducing excessive ROS has become a promising therapeutic strategy. Compared with conventional polyphenols, nanomaterials offer greater stability and bioavailability for ROS scavenging. Here, ellagic acid (EA) was converted into uniform nanoparticles (EAs) with reactive oxygen scavenging capacity through horseradish peroxidase (HRP)-mediated oxidative polymerization and subsequently encapsulated in the anti-gastric acid hydrogel F-DP to obtain the hybrid system F-DP@EAs. EAs reduced ROS, MDA, NO, IL-1β, and TNF-α levels in vitro, while increasing IL-4 and IL-10 expression, thus alleviating inflammation. Herein, F-DP@EAs prolonged intestinal retention time and exerted superior protective effects in the DSS-induced colitis model. Oral F-DP@EAs lowered DAI, preserved colon length, increased glutathione (GSH) and superoxide dismutase (SOD), decreased NO and MDA, restored zonula occludens-1 (ZO-1), and reduced mucosal lesions. These findings demonstrate that combining nanoparticle and hydrogel technologies markedly enhances the preventive and protective efficacy of EA, highlighting F-DP@EAs as a promising candidate for future IBD therapy. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

29 pages, 15018 KiB  
Article
Investigating the Osteoregenerative Properties of Juglans regia L. Extract on Mesenchymal Stem Cells and Osteoblasts Through Evaluation of Bone Markers: A Pilot Study
by Alina Hanga-Fărcaș, Gabriela Adriana Filip, Simona Valeria Clichici, Laura Grațiela Vicaș, Olga Şoritău, Otilia Andercou, Luminița Fritea and Mariana Eugenia Mureșan
J. Funct. Biomater. 2025, 16(7), 268; https://doi.org/10.3390/jfb16070268 - 21 Jul 2025
Viewed by 420
Abstract
Bone tissue regeneration is a complex process that takes place at the level of osteoblasts derived from mesenchymal cells and occurs under the action of multiple signaling pathways and through the expression of osteoregenerative markers. The leaf extract of Juglans regia L. (JR) [...] Read more.
Bone tissue regeneration is a complex process that takes place at the level of osteoblasts derived from mesenchymal cells and occurs under the action of multiple signaling pathways and through the expression of osteoregenerative markers. The leaf extract of Juglans regia L. (JR) is rich in polyphenols with demonstrated osteoregeneration effects. In the present study, we investigated the extract’s effects on three types of cells with various stages of differentiation: adult mesenchymal stem cells (MSCs), osteoblasts at low passage (O6) and osteoblasts at advanced passage (O10). To assess the efficacy of the walnut leaf extract, in vitro treatments were performed in comparison with ellagic acid (EA) and catechin (CAT). The osteoregenerative properties of the leaf extract were evaluated in terms of cell viability, bone mineralization (by staining with alizarin red) and the expression of osteogenesis markers such as osteocalcin (OC), osteopontin (OPN), dentin matrix acidic phosphoprotein 1 (DMP1) and collagen type 1A. Another compound implicated in oxidative stress response, but also a bone homeostasis regulator, nuclear factor erythroid 2-related factor 2 (NRF2), was studied by immunocytochemistry. Together with collagen amount, alkaline phosphatase (ALP) activity and NF-kB levels were measured in cell lysates and supernatants. The obtained results demonstrate that JR treatment induced osteogenic differentiation and bone mineralization, and it showed protective effects against oxidative stress. Full article
(This article belongs to the Special Issue Functional Biomaterial for Bone Regeneration)
Show Figures

Figure 1

31 pages, 865 KiB  
Review
Beneficial Effects of Resveratrol on Testicular Functions: Focus on Its Antioxidant Properties
by Adele Chimento, Arianna De Luca, Massimo Venditti, Francesca De Amicis and Vincenzo Pezzi
Cells 2025, 14(14), 1122; https://doi.org/10.3390/cells14141122 - 21 Jul 2025
Viewed by 450
Abstract
Male infertility is a pathological condition that affects many subjects and for which a progressive increase in cases has been observed in recent years. The mechanisms underlying male reproductive system dysfunction are not fully understood and the specific drugs use has not produced [...] Read more.
Male infertility is a pathological condition that affects many subjects and for which a progressive increase in cases has been observed in recent years. The mechanisms underlying male reproductive system dysfunction are not fully understood and the specific drugs use has not produced optimal results. Therefore, the focus on developing new therapeutic options to prevent or treat this dysfunction is continuously growing. Defective sperm function has been associated with oxidative stress (OS) due to reactive oxygen species (ROS) excessive production. OS is related to mitochondrial dysfunction, lipid peroxidation, DNA damage and fragmentation, and ultimately sperm cell death. Many defense mechanisms to protect from ROS injuries have been developed; natural antioxidants, such as vitamin C and E are able to interact with oxidizing radicals, neutralizing them. Interestingly, resveratrol (RSV), a natural polyphenol with proven health-promoting actions, has been found to be an effective free radical scavenger in several in vitro and in vivo models, providing protection against OS. In this review, we discussed mechanisms related to the modulation of redox homeostasis in the testis and how the alteration of these processes can determine a damage in testicular function; particularly, we focused on the antioxidant properties of RSV that could give beneficial effects in preserving male fertility. Full article
Show Figures

Graphical abstract

23 pages, 739 KiB  
Review
Dietary Nitrogen and Its Role in the Gut Microbiome and Inflammatory Bowel Disease: A Narrative Review
by Matthew Herrera and Lauri O. Byerley
Nutrients 2025, 17(14), 2373; https://doi.org/10.3390/nu17142373 - 20 Jul 2025
Cited by 1 | Viewed by 565
Abstract
In recent years, gut microbiota has emerged as a critical regulator of gastrointestinal health and disease, with its role in inflammatory bowel disease (IBD)—including Crohn’s disease and ulcerative colitis—being particularly significant. Among the many factors influencing the gut microbiota, dietary components such as [...] Read more.
In recent years, gut microbiota has emerged as a critical regulator of gastrointestinal health and disease, with its role in inflammatory bowel disease (IBD)—including Crohn’s disease and ulcerative colitis—being particularly significant. Among the many factors influencing the gut microbiota, dietary components such as fibers, fats, and polyphenols have received substantial attention. However, nitrogen-containing compounds, such as amino acids, nitrates, urea, and even nucleic acids, such as purines, remain underexplored despite their integral role in shaping microbial ecology, host metabolism, and immune responses. Some of these compounds are metabolized by gut bacteria into bioactive molecules such as short-chain fatty acids, ammonia, and nitric oxide, which exert diverse effects on mucosal integrity and inflammation. IBD pathophysiology is characterized by chronic inflammation, microbial dysbiosis, and compromised epithelial barriers. Nitrogen metabolism contributes significantly to these processes by influencing microbial composition, metabolite production, and host immune pathways. The breakdown of various nitrogen-containing compounds in the body leads to the production of byproducts, such as ammonia and hydrogen sulfide, which have been implicated in mucosal damage and immune dysregulation. At the same time, nitrogen-derived molecules, such as short-chain fatty acids and nitric oxide, exhibit protective effects, underscoring the dual role of dietary nitrogen in health and disease. This narrative review highlights the complex interactions between dietary nitrogen sources, gut microbiota, and IBD pathogenesis. We summarize the mechanisms by which nitrogen compounds influence microbial dynamics, identify their contributions to inflammation and barrier dysfunction, and explore their therapeutic potential. Multidisciplinary approaches integrating clinical, metabolomic, and microbiome research are essential to unravel the full scope of nitrogen’s role in gut health and identify novel therapeutic targets. Full article
(This article belongs to the Special Issue Diet–Microbiome Interaction in Gastrointestinal Disorders)
Show Figures

Figure 1

34 pages, 4518 KiB  
Article
Spent Hop (Humulus lupulus L.) Extract and Its Flaxseed Polysaccharide-Based Encapsulates Attenuate Inflammatory Bowel Diseases Through the Nuclear Factor-Kappa B, Extracellular Signal-Regulated Kinase, and Protein Kinase B Signalling Pathways
by Miłosz Caban, Katarzyna Owczarek, Justyna Rosicka-Kaczmarek, Karolina Miśkiewicz, Joanna Oracz, Wojciech Pawłowski, Karolina Niewinna and Urszula Lewandowska
Cells 2025, 14(14), 1099; https://doi.org/10.3390/cells14141099 - 17 Jul 2025
Viewed by 428
Abstract
The treatment of inflammatory bowel diseases (IBDs), particularly ulcerative colitis and Crohn’s disease, remains a challenge. As the available therapeutic options have limited efficacy and various side effect, there is a need to identify new inflammatory modulators that can influence IBD. Natural polyphenols [...] Read more.
The treatment of inflammatory bowel diseases (IBDs), particularly ulcerative colitis and Crohn’s disease, remains a challenge. As the available therapeutic options have limited efficacy and various side effect, there is a need to identify new inflammatory modulators that can influence IBD. Natural polyphenols and polyphenol-rich extracts have been found to have preventive and therapeutic potential, including various anti-inflammatory effects. In this study, the inhibition of the formation of mediators associated with intestinal inflammation, remodelling, and angiogenesis by the spent hop extract (SHE), a polyphenol-rich extract from Humulus lupulus L., and its flaxseed polysaccharide-based encapsulates was examined using tumour necrosis factor alpha (TNF-α)-stimulated human small intestinal epithelial (HIEC-6) and large intestinal epithelial (CCD841CoN) cells. Also, we assessed the activity of the tested agents after in the vitro-simulated gastrointestinal digestion process. SHE strongly inhibited the expression of pro-inflammatory cytokines, mainly IL-1β and TNF-α, as well as the expression and activity of type IV collagenases (MMP-2 and MMP-9); these effects resulted from the suppression of NF-κB, ERK and Akt signalling pathways. We also proved the protective effect of encapsulation process against the reduction in the bioaccessibility of SHE, observed under the influence of digestion process. Our results provide initial evidence on the potential utility of SHE and its encapsulates in IBD. Full article
(This article belongs to the Special Issue Natural Products and Their Derivatives Against Human Disease)
Show Figures

Graphical abstract

23 pages, 1102 KiB  
Review
Protective Potential of Satureja montana-Derived Polyphenols in Stress-Related Central Nervous System Disorders, Including Dementia
by Stela Dragomanova, Lyubka Tancheva, Silviya Abarova, Valya B. Grigorova, Valentina Gavazova, Dana Stanciu, Svetlin Tzonev, Vladimir Prandjev and Reni Kalfin
Curr. Issues Mol. Biol. 2025, 47(7), 556; https://doi.org/10.3390/cimb47070556 - 17 Jul 2025
Viewed by 282
Abstract
Satureja montana (SM) is acknowledged as a highly pharmacologically important species within the vast Lamiaceae family, indigenous to the Balkan area. Traditionally, this plant has been employed as a culinary spice, especially in Bulgarian gastronomy. Additionally, it is widely recognized that mental [...] Read more.
Satureja montana (SM) is acknowledged as a highly pharmacologically important species within the vast Lamiaceae family, indigenous to the Balkan area. Traditionally, this plant has been employed as a culinary spice, especially in Bulgarian gastronomy. Additionally, it is widely recognized that mental health is affected by the nature and quality of dietary consumption. Results: Ethnopharmacological research underscores the potential of SM in influencing various chronic ailments, including depression and anxiety. This plant is distinguished by a rich variety of secondary metabolites that display a broad spectrum of biological activities, such as antioxidant, antidiabetic, anti-inflammatory, analgesic, antibacterial, antiviral, and antifungal effects. Particularly, two of its active phenolic compounds, rosmarinic acid and carvacrol, reveal notable anxiolytic and antidepressive properties. This review aims to explore the capacity of SM to improve mental health through its plentiful phenolic components. Recent studies indicate their efficacy in addressing Alzheimer’s-type dementia. A notable correlation exists among depression, anxiety, and cognitive decline, which includes dementia. Considering that Alzheimer’s disease (AD) is a multifaceted condition, it requires multi-targeted therapeutic strategies for both prevention and management. Conclusions: Satureja montana is recognized as potential candidate for both the prevention and management of various mental health disorders, including dementia. Full article
Show Figures

Graphical abstract

20 pages, 1579 KiB  
Article
Functional Evaluation of Fucus vesiculosus Extract: Bioactivity Retention After In Vitro Digestion and Anti-Inflammatory Effects on Murine Peritoneal Macrophages
by Sara Frazzini, Nicoletta Rizzi, Anna Paola Fifi, Eleonora Fusi, Salvatore Roberto Pilu and Luciana Rossi
Appl. Sci. 2025, 15(14), 7911; https://doi.org/10.3390/app15147911 - 16 Jul 2025
Viewed by 367
Abstract
Background: Nowadays, to improve animal production sustainably, the zootechnical sector is exploring novel, functional ingredients, such as seaweed. This study investigated the functional properties of Fucus vesiculosus and their persistence after simulated digestion. Methods: F. vesiculosus was nutritionally characterized (AOAC methods) and digested [...] Read more.
Background: Nowadays, to improve animal production sustainably, the zootechnical sector is exploring novel, functional ingredients, such as seaweed. This study investigated the functional properties of Fucus vesiculosus and their persistence after simulated digestion. Methods: F. vesiculosus was nutritionally characterized (AOAC methods) and digested in vitro through the INFOGEST protocol. The polyphenol, flavonoid, and phlorotannin contents of the samples were analyzed through colorimetric assays. The antioxidant properties were evaluated using ABTS assay and the growth inhibition capacity against Escherichia coli using the microdilution method. The cytotoxic activity and anti-inflammatory properties were evaluated on mouse peritoneal macrophages using crystal violet assay and the gene expression of IL-1β, IL-6, TNF-α, and iNOS. Results: F. vesiculosus demonstrated high levels of dietary fiber (47.36%) and protein (13.99%). Significant levels of polyphenols (6428.98 µg TAE/g), flavonoids (5171.31 µg CE/g), and phlorotannins (2.10 mg PGE/g) were detected. These bioactive compounds allowed for strong antioxidant activity (85.96% ABTS+ scavenging) and E. coli growth inhibition (17%). Simulated digestion minimally impacted the content of bioactive compounds and their associated functional properties. F. vesiculosus exhibited a protective effect against oxidative stress in macrophages, downregulating pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α). Conclusions: These findings support the potential of F. vesiculosus as a functional feed ingredient for livestock, maintaining its beneficial properties even after digestion. Full article
Show Figures

Figure 1

15 pages, 9834 KiB  
Article
Rosmarinic Acid Protects Against Acetaminophen-Induced Hepatotoxicity by Suppressing Ferroptosis and Oxidative Stress Through Nrf2/HO-1 Activation in Mice
by Liqin Wu, Li Lv, Yifei Xiang, Dandan Yi, Qiuling Liang, Min Ji, Zhaoyou Deng, Lanqian Qin, Lingyi Ren, Zhengmin Liang and Jiakang He
Mar. Drugs 2025, 23(7), 287; https://doi.org/10.3390/md23070287 - 14 Jul 2025
Viewed by 563
Abstract
Liver injury caused by the irrational use of acetaminophen (APAP) represents a significant challenge in the field of public health. In clinical treatment, apart from N—acetylcysteine (NAC), the only approved antidote, there are extremely limited effective intervention measures for APAP-induced hepatotoxicity. Therefore, exploring [...] Read more.
Liver injury caused by the irrational use of acetaminophen (APAP) represents a significant challenge in the field of public health. In clinical treatment, apart from N—acetylcysteine (NAC), the only approved antidote, there are extremely limited effective intervention measures for APAP-induced hepatotoxicity. Therefore, exploring novel liver-protecting drugs and elucidating their mechanisms of action is of great scientific significance and clinical value. Rosmarinic acid (RA), as a natural polyphenolic compound, has been proven to have significant antioxidant activity. Previous studies have shown that it has a protective effect against drug-induced liver injury. Nevertheless, the precise protective mechanism of RA in APAP-induced acute liver injury (AILI) has not been fully defined. This study was based on an AILI mouse model to systematically explore the liver-protecting effect of RA and its underlying molecular mechanisms. The research results showed that pretreatment with RA could notably mitigate liver pathological injury. It could decrease the activities of ALT and AST in the serum, suppress the liver inflammatory reaction, and reverse the decline in the levels of CAT, T-AOC, SOD, and GSH caused by APAP. Meanwhile, RA could enhance antioxidant defense capabilities by activating the Keap1/Nrf2/HO-1 signaling pathway, regulate the xCT/GPX4 axis to inhibit lipid peroxidation, and thus block the process of ferroptosis. In conclusion, this study confirmed that RA exerts a protective effect against AILI by regulating the Keap1/Nrf2/HO-1 axis to enhance antioxidant capacity and inhibit ferroptosis through the xCT/GPX4 pathway. Our research provides a theoretical basis for RA as a potential therapeutic agent for APAP-induced liver injury. Full article
(This article belongs to the Special Issue Bioactive Specialized Metabolites from Marine Plants)
Show Figures

Figure 1

12 pages, 3941 KiB  
Article
Integrated Metabolomic and Transcriptomic Analysis Reveals the Regulatory Effects of Curcumin on Bovine Ovarian Granulosa Cells
by Bingfei Zhang, Le Chen, Liping Mei, Xianbo Jia, Shiyi Chen, Jie Wang, Hengwei Yu, Songjia Lai and Wenqiang Sun
Int. J. Mol. Sci. 2025, 26(14), 6713; https://doi.org/10.3390/ijms26146713 - 12 Jul 2025
Viewed by 394
Abstract
Curcumin is a natural polyphenolic compound known to alleviate follicular developmental abnormalities associated with ovarian dysfunction. However, its precise molecular mechanisms remain to be fully elucidated. In this study, we systematically investigated the regulatory effects of curcumin on bovine ovarian granulosa cells through [...] Read more.
Curcumin is a natural polyphenolic compound known to alleviate follicular developmental abnormalities associated with ovarian dysfunction. However, its precise molecular mechanisms remain to be fully elucidated. In this study, we systematically investigated the regulatory effects of curcumin on bovine ovarian granulosa cells through integrated transcriptomic and metabolomic analyses. A total of 503 and 200 significantly altered metabolites were identified in the positive and negative ion modes, respectively, with enrichment in key pathways such as glutathione metabolism, fatty acid biosynthesis, and the phosphatidylinositol signaling pathway. Transcriptomic profiling revealed 1168 differentially expressed genes (582 upregulated and 586 downregulated) which were significantly enriched in pathways related to glutathione metabolism and cellular senescence. Joint multi-omics analysis further demonstrated that curcumin significantly influenced pathways related to glutathione metabolism, cysteine, and methionine metabolism, as well as multiple forms of programmed cell death, including apoptosis, necroptosis, and ferroptosis. Collectively, these findings suggest that curcumin may enhance the antioxidant capacity and survival of granulosa cells by maintaining redox homeostasis and modulating cell fate. This work provides new insights into the potential cellular mechanisms underlying the protective effects of curcumin on granulosa cell function. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

32 pages, 2172 KiB  
Review
Multifaceted Biological Properties of Verbascoside/Acteoside: Antimicrobial, Cytotoxic, Anti-Inflammatory, and Immunomodulatory Effects
by Mirjana Marčetić, Biljana Bufan, Milica Drobac, Jelena Antić Stanković, Nevena Arsenović Ranin, Marina T. Milenković and Dragana D. Božić
Antibiotics 2025, 14(7), 697; https://doi.org/10.3390/antibiotics14070697 - 11 Jul 2025
Viewed by 525
Abstract
Verbascoside is a polyphenolic compound that belongs to the phenylethanoid glucosides. It occurs in more than 220 plant species. The species with high content of this compound are used in folk medicine, and in modern phytotherapy, mostly based on its recognized anti-inflammatory and [...] Read more.
Verbascoside is a polyphenolic compound that belongs to the phenylethanoid glucosides. It occurs in more than 220 plant species. The species with high content of this compound are used in folk medicine, and in modern phytotherapy, mostly based on its recognized anti-inflammatory and antimicrobial effects. Studies conducted so far confirmed these effects, and also pointed to others (i.e., anti-cancer, neuro-, cardio-, hepato-, and nephro-protective). This review presents data on the chemistry, occurrence, and biosynthesis of verbascoside. Additionally, it focuses on the cytotoxic, antimicrobial, anti-inflammatory, and immunomodulatory effects, as well as the main cellular and molecular mechanisms of its action. Full article
(This article belongs to the Special Issue Antimicrobial Activity of Secondary Metabolites Produced in Nature)
Show Figures

Graphical abstract

19 pages, 1277 KiB  
Review
What a Modern Physician Should Know About microRNAs in the Diagnosis and Treatment of Diabetic Kidney Disease
by Małgorzata Rodzoń-Norwicz, Patryk Kogut, Magdalena Sowa-Kućma and Agnieszka Gala-Błądzińska
Int. J. Mol. Sci. 2025, 26(14), 6662; https://doi.org/10.3390/ijms26146662 - 11 Jul 2025
Viewed by 323
Abstract
Diabetic kidney disease (DKD) remains the leading cause of end-stage kidney disease (ESKD) globally. Despite advances in our understanding of its pathophysiology, current therapies are often insufficient to stop its progression. In recent years, microRNAs (miRNAs)—small, non-coding RNA molecules involved in post-transcriptional gene [...] Read more.
Diabetic kidney disease (DKD) remains the leading cause of end-stage kidney disease (ESKD) globally. Despite advances in our understanding of its pathophysiology, current therapies are often insufficient to stop its progression. In recent years, microRNAs (miRNAs)—small, non-coding RNA molecules involved in post-transcriptional gene regulation—have emerged as critical modulators of key pathogenic mechanisms in DKD, including fibrosis, inflammation, oxidative stress, and apoptosis. Numerous studies have identified specific miRNAs that either exacerbate or mitigate renal injury in DKD. Among them, miR-21, miR-192, miR-155, and miR-34a are associated with disease progression, while miR-126-3p, miR-29, miR-146a, and miR-215 demonstrate protective effects. These molecules are also detectable in plasma, urine, and renal tissue, making them attractive candidates for diagnostic and prognostic biomarkers. Advances in therapeutic technologies such as antagomiRs, mimics, locked nucleic acids, and nanoparticle-based delivery systems have opened new possibilities for targeting miRNAs in DKD. Additionally, conventional drugs, including SGLT2 inhibitors, metformin, and GLP-1 receptor agonists, as well as dietary compounds like polyphenols and sulforaphane, may exert nephroprotective effects by modulating miRNA expression. Recent evidence also highlights the role of gut microbiota in regulating miRNA activity, linking metabolic and immune pathways relevant to DKD progression. Further research is needed to define stage-specific miRNA signatures, improve delivery systems, and develop personalized therapeutic approaches. Modulation of miRNA expression represents a promising strategy to slow DKD progression and improve patient outcomes. Full article
Show Figures

Figure 1

Back to TopTop