Beneficial Effects of Resveratrol on Testicular Functions: Focus on Its Antioxidant Properties
Abstract
1. Introduction
2. ROS Generation and Their Physiological and Pathological Roles in the Testis
2.1. Role of ROS in Modulation of Testicular Physiological Functions
2.2. Role of ROS as Mediators of Pathological Effects in the Testis
3. Antioxidant Properties of RSV and Health Benefits
4. Antioxidant Activity of RSV in the Testis: In Vitro Studies
Testicular Cell Type | Experimental Model | RSV Dose | Antioxidant Mechanisms | Reference |
---|---|---|---|---|
Leydig | TM3 | 10 µM | ROS ↓ | [186] |
Leydig | TM3 | 10 µM | O2•− ↓ | [187] |
Leydig | TM3 | 10 µM | TAC ↑ | [188] |
Leydig | TM3 | 2–10–50 µM | MDA ↓ ROS ↓ SOD ↑ | [190] |
Sertoli | TM4 | 2.5 µM | CAT, GSH ↑ NRF2/HO-1 signaling pathway ↑ MDA ↓ ROS ↓ | [191] |
Spermatocytes | GC-2 | 30 µM | ROS ↓ SIRT1/TERT/PGC-1 a signaling ↑ | [192] |
Spermatozoa | Bovine | 10–25–50 µM | SOD, GSH ↑ | [193] |
Spermatozoa | Mouse | 15 µM | ROS ↓ LP ↓ | [194] |
Spermatozoa | Bovine | 20–50 µM | ROS ↓ TAC ↑ | [197] |
Spermatozoa | Human | 12 µM | ROS ↓ | [198] |
5. Antioxidant Activity of RSV in the Testis: In Vivo Studies
Animal Model | Animal Health Status | Testicular Toxicity by Compounds and/or Drugs | RSV Dose/Duration | Antioxidant Mechanism | Reference |
---|---|---|---|---|---|
Breeding boars | normal | 20 mg/kg/day for 14 days | SOD ↑ MDA ↓ | [199] | |
Adult Wistar rats | diabetic | 50 mg/kg/day for 4 weeks | H2O2 ↓ SOD, CAT, GPx, GSH ↑ | [182] | |
Wistar rats | diabetic | 150 mg/kg/day from 33 to 110 days postpartum | MDA ↓ LP ↓ | [201] | |
Adult rats | diabetic | 150 mg/kg/day for 21 days | SOD, CAT, GPx ↑ MDA ↓ | [202] | |
Wistar albino rats | normal | glyphosate | 20 mg/kg/day for 8 weeks | MDA ↓ GSH, SOD ↑ | [204] |
Wistar rats | normal | malathion | 2, 8, 20 mg/kg/day for 65 days | TAC ↑ LP ↓ MDA ↓ | [205] |
Adult Wistar Rats | normal | PVC | 20 mg/kg/day for 60 days | SOD, CAT ↑ LP ↓ | [206] |
Adult Sprague Dawley rats | normal | sulfoxaflor | 20 mg/kg/day for 28 days | MDA, GSSG, NO ↓ GSH ↑ | [179] |
Adult Wistar albino rats | normal | Fe2O3-NP | 20 mg/kg/day for 8 weeks | SOD, CAT, GPx, GSH ↑ MDA ↓ | [208] |
BALB/c mice | normal | morphine | 2, 8, 20 mg/kg/day for 2 weeks | NO ↓ | [211] |
Adult C57 BL/6 mice | normal | isoflurane | 50 and 100 mg/kg/day for 35 days | LP ↓ TAC ↑ | [53] |
Wistar albino rats | normal | metotrexate | 20 mg/kg/day for 5 days | TAS ↑ OSI, TOS ↓ | [180] |
Albino mice | normal | cisplatin | 1 mg/kg/day for 4 weeks | GSH, GPx, GST, SOD, CAT ↑ LP ↓ NO ↓ | [216] |
Wistar Rats | normal | cisplatin | 20 mg/kg/day for 45 days | SOD, CAT, GPx, GSH ↑ | [181] |
Adult Wistar albino rats | normal | finasteride | 20 mg/kg/day for 8 weeks | MDA ↓ SOD, GPx, CAT ↑ | [219] |
Adult C57 BL6/J mice | B16 melanoma | anti-PD-1 | 40 mg/kg/alternate day for 1 month | NRF2/SLC7 A11/GPX4 pathway ↑ LP ↓ ferroptosis ↓ | [220] |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
17β-HSD | 17 beta-hydroxysteroid dehydrogenase |
1O2 | singlet oxygen |
3β-HSD | 3 beta-hydroxysteroid dehydrogenase |
4-HNE | 4-hydroxynonenal |
8-OHdG | 8-hydroxi-2′-deoxyguanosine |
AIFM1 | apoptosis-inducing factor 1, mitochondrial isoform X2 |
AKT | protein-kinase B |
AMPK | adenosine monophosphate-activated protein kinase |
AR | acrosome reaction |
ARE | antioxidant response element |
ASC | apoptosis associated speck-like protein |
ASK1 | apoptosis signal-regulating kinase 1 |
ATP | adenosine triphosphate |
AZS | asthenozoospermia |
B(a)P | benzo(a)pyrene |
BAD | BCL2 associated agonist of cell death |
BAK | Bcl-2 homologous antagonist killer |
BAX | BCL2 associated x, apoptosis regulator |
BCL2 | B-cell lymphoma-2 protein |
BCL6 B | B-cell CLL/lymphoma 6 member B protein |
Bcl-xL | B-cell lymphoma-extra large |
BTB | blood-testis barrier |
cAMP | cyclic adenosine monophosphate |
CAs | carbonic anhydrases |
CAT | catalase |
cGMP | cyclic guanosine monophosphate |
CIS | cisplatin |
CYTc | cytochrome c |
CO2 | carbon monoxide |
CRISPR | clustered regularly interspaced short palindromic repeats |
DAG | diacylglycerol |
DAX1 | dosage sensitive sex reversal (DSS), adrenal hypoplasia congenita (AHC) critical region on the X chromosome, gene 1 |
DEHP | diethylhexylphthalate |
DHT | dihydrotestosterone |
DISC | death-inducing signaling complex |
EGG | ovum cell |
ERK | extracellular signal-regulated kinase |
ERS | endoplasmic reticulum stress |
ETC | mitochondrial electron transport chain |
FADD | Fas-associated death domain protein |
FAS | fas cell surface death receptor |
FGF2 | fibroblast growth factor 2 |
FOXO1 | forkhead box O protein 1 |
FOXOs | forkhead box O proteins |
FSH | follicle-stimulating hormone |
GJIC | gap junction intercellular communication |
GLF | glyphosate |
GDNF | neurotrophic factor derived from the glial cell line |
GnRH | gonadotropin-releasing hormone |
GPx | glutathione peroxidase |
GPX1 | glutathione peroxidase 1 |
GPX4 | glutathione peroxidase 4 |
GSH | glutathione |
GSSG | glutathione disulfide |
GSS | glutathione synthetase |
GST | glutathione-S-transferase |
H+ | hydrogen ion |
H2O2 | hydrogen peroxide |
hCG | human chorionic gonadotropin |
HCO3− | hydrogen carbonate ion |
HO-1 | heme oxygenase-1 |
Hx/XO | hypoxanthine/xanthine oxidase |
ICIs | immune checkpoint inhibitors |
IL-10 | interleukin-10 |
IL-4 | interleukin-4 |
IL-6 | interleukin-6 |
JNK | c-jun n-terminal kinases |
KEAP1 | Kelch-like ECH-associated protein 1 |
LH | luteinizing hormone |
LP | lipid peroxidation |
MAPKs | mitogen-activated protein kinases |
MDA | malondialdehyde |
MMP | mitochondrial membrane potential |
mTOR | mechanistic target of rapamycin |
MTX | methotrexate |
NADPH | nicotinamide adenine dinucleotide phosphate |
NDUFA9 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9 |
NDUFS2 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 2 |
NDUFS8 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 8 |
SDHB | succinate dehydrogenase [ubiquinone] iron-sulfur subunit |
NFkB | nuclear factor kappa B |
NLRP3 | nucleotide oligomerization domain (NOD)-like receptor family pyrin domain containing 3 |
NO | nitric oxide |
NOS | nitric oxide synthase 1 |
NOX1 | NADPH oxidase 1 |
NOX5 | NADPH oxidase 5 |
NQO1 | NADPH-quinone oxidoreductase 1 |
NR5A1 | nuclear receptor subfamily 5 group A member 1 |
NRF2 | nuclear factor-erythroid 2-related factor 2 |
O2 | oxygen |
O2•− | superoxide anion radical |
OGG1 | 8-oxoguanine DNA glycosylase |
OH | hydroxy group |
OH• | hydroxyl radical |
ONOO− | peroxynitrite |
OS | oxidative stress |
OSI | oxidative stress index |
PAHs | polycyclic aromatic hydrocarbons |
PARP-1 | poly(ADP-ribose) polymerase 1 |
PD-1 | programmed cell death protein 1 |
pERK1/2 | extracellular signal-regulated kinase 1/2 |
PGC-1α | peroxisome proliferator-activated receptor-gamma coactivator 1-alpha |
PI3K | fosfoinositide-3-kinasi |
PIP2 | phosphatidylinositol-4,5-bisphosphate |
p-JNK | p-jun n terminal kinase |
PKA | protein kinase A |
PKC | protein kinase C |
PKG | protein kinase G |
PLA2 | phospholipase A2 |
PMN | polymorphonuclear leukocytes |
Prx4 | peroxiredoxin 4 |
p-SAPK | p-stress-activated protein kinase/jun-amino-terminal kinase |
PTEN | phosphatase and tensin homolog |
PTK | protein tyrosine kinase |
PTPase | phosphotyrosine phosphatase |
PUFAs | polyunsaturated fatty acids |
PVC | polyvinyl chloride |
RNS | reactive nitrogen species |
ROS | reactive oxygen species |
RS | round spermatids |
RSV | resveratrol |
RTK | receptor tyrosine kinase |
sAC | soluble adenylyl cyclase |
SC | Sertoli cells |
SF1 | steroidogenic factor 1 |
SFK | Src family kinase |
SIRT1 | sirtuin 1 |
SLC7A11 | solute carrier family 7 member 11 |
SOD | superoxide dismutase |
SPG | spermatogonia |
SPT | spermatocytes |
SPZ | spermatozoa |
SRC | proto-oncogene tyrosine-protein kinase Src |
Srx | sulforidoxins |
SSCs | spermatogonial stem cells |
StAR | steroidogenic acute regulatory protein |
STZ | streptozotocin |
T | testosterone |
TAC | total antioxidant capacity |
TAS | total antioxidant status |
TMEM225 | transmembrane protein 225 |
TERT | telomerase reverse transcriptase |
TFEB | transcription factor EB |
TNF-α | tumor necrosis factor-alpha |
TNF-R1 | tumor necrosis factor receptor 1 |
TOS | total oxidant status |
TRAIL-R1/2 | tumor necrosis factor-related apoptosis-inducing ligand receptor 1/2 |
Trx | thioredoxin |
ZEN | zearalenone |
References
- Eisenberg, M.L.; Esteves, S.C.; Lamb, D.J.; Hotaling, J.M.; Giwercman, A.; Hwang, K.; Cheng, Y.S. Male infertility. Nat. Rev. Dis. Prim. 2023, 9, 49. [Google Scholar] [CrossRef]
- Agarwal, A.; Baskaran, S.; Parekh, N.; Cho, C.-L.; Henkel, R.; Vij, S.; Arafa, M.; Panner Selvam, M.K.; Shah, R. Male infertility. Lancet 2021, 397, 319–333. [Google Scholar] [CrossRef]
- Longhi, E.V. Couples, Infertility, and the Cost of His Failure. In Framing Sexual Dysfunctions and Diseases During Fertility Treatment: A Guide for Healthcare Providers; Longhi, E.V., Ed.; Springer Nature: Cham, Switzerland, 2024; pp. 85–91. [Google Scholar]
- Imran, M.; Zia, R.; Arshad, M.; Fayyaz, F.; Haider, T.; Tabraiz, A.; Arshad, I.; Sharif, M.A.; Javed, B. Exploration of the genetic and environmental determinants of male infertility: A comprehensive review. Egypt. J. Med. Hum. Genet. 2025, 26, 68. [Google Scholar] [CrossRef]
- Belladelli, F.; Muncey, W.; Seranio, N.; Eisenberg, M.L. Counseling for the man with severe male infertility. Curr. Opin. Urol. 2023, 33, 5–9. [Google Scholar] [CrossRef]
- Bhattacharya, I.; Sharma, S.S.; Majumdar, S.S. Etiology of Male Infertility: An Update. Reprod. Sci. 2024, 31, 942–965. [Google Scholar] [CrossRef]
- Ferrero, G.; Festa, R.; Follia, L.; Lettieri, G.; Tarallo, S.; Notari, T.; Giarra, A.; Marinaro, C.; Pardini, B.; Marano, A.; et al. Small noncoding RNAs and sperm nuclear basic proteins reflect the environmental impact on germ cells. Mol. Med. 2024, 30, 12. [Google Scholar] [CrossRef]
- Aitken, R.J. Possible redox regulation of sperm motility activation. J. Androl. 2000, 21, 491–496. [Google Scholar] [CrossRef]
- Davies, R.; Minhas, S.; Jayasena, C.N. The role of seminal reactive oxygen species assessment in the setting of infertility and early pregnancy loss. World J. Urol. 2023, 41, 3257–3265. [Google Scholar] [CrossRef]
- Das, A.; Roychoudhury, S. Reactive Oxygen Species in the Reproductive System: Sources and Physiological Roles. Adv. Exp. Med. Biol. 2022, 1358, 9–40. [Google Scholar] [CrossRef]
- Sengupta, P.; Pinggera, G.M.; Calogero, A.E.; Agarwal, A. Oxidative stress affects sperm health and fertility-Time to apply facts learned at the bench to help the patient: Lessons for busy clinicians. Reprod. Med. Biol. 2024, 23, e12598. [Google Scholar] [CrossRef]
- Becatti, M.; Cito, G.; Argento, F.R.; Fini, E.; Bettiol, A.; Borghi, S.; Mannucci, A.; Fucci, R.; Giachini, C.; Picone, R.; et al. Blood Leukocyte ROS Production Reflects Seminal Fluid Oxidative Stress and Spermatozoa Dysfunction in Idiopathic Infertile Men. Antioxidants 2023, 12, 479. [Google Scholar] [CrossRef]
- Fisher, H.M.; Aitken, R.J. Comparative analysis of the ability of precursor germ cells and epididymal spermatozoa to generate reactive oxygen metabolites. J. Exp. Zool. 1997, 277, 390–400. [Google Scholar] [CrossRef]
- Agarwal, A.; Virk, G.; Ong, C.; du Plessis, S.S. Effect of oxidative stress on male reproduction. World J. Men’s Health 2014, 32, 1–17. [Google Scholar] [CrossRef]
- Gil-Guzman, E.; Ollero, M.; Lopez, M.C.; Sharma, R.K.; Alvarez, J.G.; Thomas, A.J., Jr.; Agarwal, A. Differential production of reactive oxygen species by subsets of human spermatozoa at different stages of maturation. Hum. Reprod. 2001, 16, 1922–1930. [Google Scholar] [CrossRef]
- Aitken, R.J. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol. Reprod. Dev. 2017, 84, 1039–1052. [Google Scholar] [CrossRef] [PubMed]
- Ford, W.C. Regulation of sperm function by reactive oxygen species. Hum. Reprod. Update 2004, 10, 387–399. [Google Scholar] [CrossRef] [PubMed]
- Bromfield, E.G.; Walters, J.L.H.; Cafe, S.L.; Bernstein, I.R.; Stanger, S.J.; Anderson, A.L.; Aitken, R.J.; McLaughlin, E.A.; Dun, M.D.; Gadella, B.M.; et al. Differential cell death decisions in the testis: Evidence for an exclusive window of ferroptosis in round spermatids. Mol. Hum. Reprod. 2019, 25, 241–256. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J. Impact of oxidative stress on male and female germ cells: Implications for fertility. Reproduction 2020, 159, R189–R201. [Google Scholar] [CrossRef]
- Du Plessis, S.S.; Agarwal, A.; Halabi, J.; Tvrda, E. Contemporary evidence on the physiological role of reactive oxygen species in human sperm function. J. Assist. Reprod. Genet. 2015, 32, 509–520. [Google Scholar] [CrossRef]
- Li, X.; Ni, M.; Xing, S.; Yu, Y.; Zhou, Y.; Yang, S.; Li, H.; Zhu, R.; Han, M. Reactive Oxygen Species Secreted by Leukocytes in Semen Induce Self-Expression of Interleukin-6 and Affect Sperm Quality. Am. J. Men’s Health 2020, 14, 1557988320970053. [Google Scholar] [CrossRef]
- Mai, Z.; Yang, D.; Wang, D.; Zhang, J.; Zhou, Q.; Han, B.; Sun, Z. A narrative review of mitochondrial dysfunction and male infertility. Transl. Androl. Urol. 2024, 13, 2134–2145. [Google Scholar] [CrossRef]
- Vahedi Raad, M.; Firouzabadi, A.M.; Tofighi Niaki, M.; Henkel, R.; Fesahat, F. The impact of mitochondrial impairments on sperm function and male fertility: A systematic review. Reprod. Biol. Endocrinol. 2024, 22, 83. [Google Scholar] [CrossRef]
- Lopez-Botella, A.; Velasco, I.; Acien, M.; Saez-Espinosa, P.; Todoli-Torro, J.L.; Sanchez-Romero, R.; Gomez-Torres, M.J. Impact of Heavy Metals on Human Male Fertility—An Overview. Antioxidants 2021, 10, 1473. [Google Scholar] [CrossRef]
- Ribeiro, I.M.; Viana, A.G.A.; Carvalho, R.P.R.; Waddington, B.; Machado-Neves, M. Could metal exposure affect sperm parameters of domestic ruminants? A meta-analysis. Anim. Reprod. Sci. 2022, 244, 107050. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Dong, T.; Han, Y.; Yue, Z.; Zhang, P.; Ren, J.; Wang, Y.; Wu, W.; Yang, H.; Guo, H.; et al. Identifying the dose response relationship between seminal metal at low levels and semen quality using restricted cubic spline function. Chemosphere 2022, 295, 133805. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, A. The Role of the Natural Antioxidant Mechanism in Sperm Cells. Reprod. Sci. 2022, 29, 1387–1394. [Google Scholar] [CrossRef]
- Sengupta, P.; Roychoudhury, S.; Nath, M.; Dutta, S. Oxidative Stress and Idiopathic Male Infertility. Adv. Exp. Med. Biol. 2022, 1358, 181–204. [Google Scholar] [CrossRef] [PubMed]
- Mannucci, A.; Argento, F.R.; Fini, E.; Coccia, M.E.; Taddei, N.; Becatti, M.; Fiorillo, C. The Impact of Oxidative Stress in Male Infertility. Front. Mol. Biosci. 2021, 8, 799294. [Google Scholar] [CrossRef]
- Skoracka, K.; Eder, P.; Lykowska-Szuber, L.; Dobrowolska, A.; Krela-Kazmierczak, I. Diet and Nutritional Factors in Male (In)fertility-Underestimated Factors. J. Clin. Med. 2020, 9, 1400. [Google Scholar] [CrossRef]
- Pecora, G.; Sciarra, F.; Gangitano, E.; Venneri, M.A. How Food Choices Impact on Male Fertility. Curr. Nutr. Rep. 2023, 12, 864–876. [Google Scholar] [CrossRef]
- Salas-Huetos, A.; James, E.R.; Aston, K.I.; Jenkins, T.G.; Carrell, D.T. Diet and sperm quality: Nutrients, foods and dietary patterns. Reprod. Biol. 2019, 19, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Mai, H.; Ke, J.; Zheng, Z.; Luo, J.; Li, M.; Qu, Y.; Jiang, F.; Cai, S.; Zuo, L. Association of diet and lifestyle factors with semen quality in male partners of Chinese couples preparing for pregnancy. Reprod. Health 2023, 20, 173. [Google Scholar] [CrossRef]
- Ferramosca, A.; Zara, V. Diet and Male Fertility: The Impact of Nutrients and Antioxidants on Sperm Energetic Metabolism. Int. J. Mol. Sci. 2022, 23, 2542. [Google Scholar] [CrossRef]
- Dabagh, M.; Jahangiri, N.; Taheri Madah, A.; Rostami, S.; Amidi, F.; Khodarahmian, M.; Tavoosian, A.; Shabani Nashtaei, M.; Vatannejad, A. Association of dietary total antioxidant capacity, alternative healthy eating index, and dietary inflammatory index with semen quality in men seeking infertility treatment. Front. Nutr. 2023, 10, 1284379. [Google Scholar] [CrossRef]
- Petre, G.C.; Francini-Pesenti, F.; Di Nisio, A.; De Toni, L.; Grande, G.; Mingardi, A.; Cusmano, A.; Spinella, P.; Ferlin, A.; Garolla, A. Observational Cross-Sectional Study on Mediterranean Diet and Sperm Parameters. Nutrients 2023, 15, 4989. [Google Scholar] [CrossRef]
- Caruso, P.; Caputo, M.; Cirillo, P.; Scappaticcio, L.; Longo, M.; Maiorino, M.I.; Bellastella, G.; Esposito, K. Effects of Mediterranean diet on semen parameters in healthy young adults: A randomized controlled trial. Minerva Endocrinol. 2020, 45, 280–287. [Google Scholar] [CrossRef]
- Corsetti, V.; Notari, T.; Montano, L. Effects of the low-carb organic Mediterranean diet on testosterone levels and sperm DNA fragmentation. Curr. Res. Food Sci. 2023, 7, 100636. [Google Scholar] [CrossRef]
- Ricci, E.; Bravi, F.; Noli, S.; Ferrari, S.; De Cosmi, V.; La Vecchia, I.; Cavadini, M.; La Vecchia, C.; Parazzini, F. Mediterranean diet and the risk of poor semen quality: Cross-sectional analysis of men referring to an Italian Fertility Clinic. Andrology 2019, 7, 156–162. [Google Scholar] [CrossRef]
- Talebi, S.; Arab, A.; Sorraya, N. The Association Between Dietary Antioxidants and Semen Parameters: A Cross-Sectional Study Among Iranian Infertile Men. Biol. Trace Elem. Res. 2022, 200, 3957–3964. [Google Scholar] [CrossRef] [PubMed]
- Di Giacomo, M.; Zara, V.; Bergamo, P.; Ferramosca, A. Crosstalk between mitochondrial metabolism and oxidoreductive homeostasis: A new perspective for understanding the effects of bioactive dietary compounds. Nutr. Res. Rev. 2020, 33, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Zubair, M.; Partyka, A.; Martyniuk, C.J. Polyphenols as a strategy for improving male reproductive system. Mol. Biol. Rep. 2025, 52, 132. [Google Scholar] [CrossRef]
- Chimento, A.; De Amicis, F.; Sirianni, R.; Sinicropi, M.S.; Puoci, F.; Casaburi, I.; Saturnino, C.; Pezzi, V. Progress to Improve Oral Bioavailability and Beneficial Effects of Resveratrol. Int. J. Mol. Sci. 2019, 20, 1381. [Google Scholar] [CrossRef]
- Pasquariello, R.; Verdile, N.; Brevini, T.A.L.; Gandolfi, F.; Boiti, C.; Zerani, M.; Maranesi, M. The Role of Resveratrol in Mammalian Reproduction. Molecules 2020, 25, 4554. [Google Scholar] [CrossRef] [PubMed]
- Mongioi, L.M.; Perelli, S.; Condorelli, R.A.; Barbagallo, F.; Crafa, A.; Cannarella, R.; La Vignera, S.; Calogero, A.E. The Role of Resveratrol in Human Male Fertility. Molecules 2021, 26, 2495. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.Y.; Wang, N.M.; Wu, T.; Ge, Q.; Chen, L. Antioxidative Stress Mechanisms behind Resveratrol: A Multidimensional Analysis. J. Food Qual. 2021, 2021, 5571733. [Google Scholar] [CrossRef]
- Garcez, M.E.; Branco, C.D.; Lara, L.V.; Pasqualotto, F.F.; Salvador, M. Effects of resveratrol supplementation on cryopreservation medium of human semen. Fertil. Steril. 2010, 94, 2118–2121. [Google Scholar] [CrossRef] [PubMed]
- Collodel, G.; Federico, M.G.; Geminiani, M.; Martini, S.; Bonechi, C.; Rossi, C.; Figura, N.; Moretti, E. Effect of trans-resveratrol on induced oxidative stress in human sperm and in rat germinal cells. Reprod. Toxicol. 2011, 31, 239–246. [Google Scholar] [CrossRef]
- Nashtaei, M.S.; Amidi, F.; Gilani, M.A.S.; Aleyasin, A.; Bakhshalizadeh, S.; Naji, M.; Nekoonam, S. Protective features of resveratrol on human spermatozoa cryopreservation may be mediated through 5′ AMP-activated protein kinase activation. Andrology 2017, 5, 313–326. [Google Scholar] [CrossRef]
- Illiano, E.; Trama, F.; Zucchi, A.; Iannitti, R.G.; Fioretti, B.; Costantini, E. Resveratrol-Based Multivitamin Supplement Increases Sperm Concentration and Motility in Idiopathic Male Infertility: A Pilot Clinical Study. J. Clin. Med. 2020, 9, 4017. [Google Scholar] [CrossRef]
- Branco, C.S.; Garcez, M.E.; Pasqualotto, F.F.; Erdtman, B.; Salvador, M. Resveratrol and ascorbic acid prevent DNA damage induced by cryopreservation in human semen. Cryobiology 2010, 60, 235–237. [Google Scholar] [CrossRef]
- Nashtaei, M.S.; Nekoonam, S.; Naji, M.; Bakhshalizadeh, S.; Amidi, F. Cryoprotective effect of resveratrol on DNA damage and crucial human sperm messenger RNAs, possibly through 5′ AMP-activated protein kinase activation. Cell Tissue Bank. 2018, 19, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, Z.; Alaee, S.; Namavar, M.R.; Khodabandeh, Z.; Ahmadi, N.; Rashidipour, N.; Karami-Mohajeri, S. The antioxidant properties of resveratrol on sperm parameters, testicular tissue, antioxidant capacity, and lipid peroxidation in isoflurane-induced toxicity in mice. Hum. Exp. Toxicol. 2023, 42, 09603271231215036. [Google Scholar] [CrossRef] [PubMed]
- Jena, A.B.; Samal, R.R.; Bhol, N.K.; Duttaroy, A.K. Cellular Red-Ox system in health and disease: The latest update. Biomed. Pharmacother. 2023, 162, 114606. [Google Scholar] [CrossRef] [PubMed]
- Martemucci, G.; Costagliola, C.; Mariano, M.; D’andrea, L.; Napolitano, P.; D’Alessandro, A.G. Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen 2022, 2, 48–78. [Google Scholar] [CrossRef]
- Heinke, L. Mitochondrial ROS drive cell cycle progression. Nat. Rev. Mol. Cell Biol. 2022, 23, 581. [Google Scholar] [CrossRef]
- Tumilaar, S.G.; Hardianto, A.; Dohi, H.; Kurnia, D. A Comprehensive Review of Free Radicals, Oxidative Stress, and Antioxidants: Overview, Clinical Applications, Global Perspectives, Future Directions, and Mechanisms of Antioxidant Activity of Flavonoid Compounds. J. Chem. 2024, 2024, 5594386. [Google Scholar] [CrossRef]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta-Mol. Cell Res. 2016, 1863, 2977–2992. [Google Scholar] [CrossRef]
- Ornatowski, W.; Lu, Q.; Yegambaram, M.; Garcia, A.E.; Zemskov, E.A.; Maltepe, E.; Fineman, J.R.; Wang, T.; Black, S.M. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol. 2020, 36, 101679. [Google Scholar] [CrossRef]
- Dutta, S.; Majzoub, A.; Agarwal, A. Oxidative stress and sperm function: A systematic review on evaluation and management. Arab. J. Urol. 2019, 17, 87–97. [Google Scholar] [CrossRef]
- Nowicka-Bauer, K.; Nixon, B. Molecular Changes Induced by Oxidative Stress that Impair Human Sperm Motility. Antioxidants 2020, 9, 134. [Google Scholar] [CrossRef]
- Huang, C.; Cao, X.; Pang, D.; Li, C.; Luo, Q.; Zou, Y.; Feng, B.; Li, L.; Cheng, A.; Chen, Z. Is male infertility associated with increased oxidative stress in seminal plasma? A-meta analysis. Oncotarget 2018, 9, 24494–24513. [Google Scholar] [CrossRef]
- Aitken, R.J.; West, K.M. Analysis of the relationship between reactive oxygen species production and leucocyte infiltration in fractions of human semen separated on Percoll gradients. Int. J. Androl. 1990, 13, 433–451. [Google Scholar] [CrossRef] [PubMed]
- Darbandi, M.; Darbandi, S.; Agarwal, A.; Sengupta, P.; Durairajanayagam, D.; Henkel, R.; Sadeghi, M.R. Reactive oxygen species and male reproductive hormones. Reprod. Biol. Endocrinol. 2018, 16, 87. [Google Scholar] [CrossRef] [PubMed]
- Cooper, T.G. The epididymis, cytoplasmic droplets and male fertility. Asian J. Androl. 2011, 13, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Reis, J.; Gorgulla, C.; Massari, M.; Marchese, S.; Valente, S.; Noce, B.; Basile, L.; Torner, R.; Cox, H., 3rd; Viennet, T.; et al. Targeting ROS production through inhibition of NADPH oxidases. Nat. Chem. Biol. 2023, 19, 1540–1550. [Google Scholar] [CrossRef]
- Costa, J.; Braga, P.C.; Rebelo, I.; Oliveira, P.F.; Alves, M.G. Mitochondria Quality Control and Male Fertility. Biology 2023, 12, 827. [Google Scholar] [CrossRef]
- Nolfi-Donegan, D.; Braganza, A.; Shiva, S. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 2020, 37, 101674. [Google Scholar] [CrossRef]
- Chianese, R.; Pierantoni, R. Mitochondrial Reactive Oxygen Species (ROS) Production Alters Sperm Quality. Antioxidants 2021, 10, 92. [Google Scholar] [CrossRef]
- Ayad, B.; Omolaoye, T.S.; Louw, N.; Ramsunder, Y.; Skosana, B.T.; Oyeipo, P.I.; Du Plessis, S.S. Oxidative Stress and Male Infertility: Evidence From a Research Perspective. Front. Reprod. Health 2022, 4, 822257. [Google Scholar] [CrossRef]
- Ayala, A.; Munoz, M.F.; Arguelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Gibb, Z.; Griffin, R.A.; Aitken, R.J.; De Iuliis, G.N. Functions and effects of reactive oxygen species in male fertility. Anim. Reprod. Sci. 2020, 220, 106456. [Google Scholar] [CrossRef]
- Wang, X.; Sharma, R.K.; Sikka, S.C.; Thomas, A.J., Jr.; Falcone, T.; Agarwal, A. Oxidative stress is associated with increased apoptosis leading to spermatozoa DNA damage in patients with male factor infertility. Fertil. Steril. 2003, 80, 531–535. [Google Scholar] [CrossRef]
- Liu, T.; Han, Y.; Zhou, T.; Zhang, R.; Chen, H.; Chen, S.; Zhao, H. Mechanisms of ROS-induced mitochondria-dependent apoptosis underlying liquid storage of goat spermatozoa. Aging 2019, 11, 7880–7898. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.L.; Weng, S.-L.; Fox, P.; Duran, E.; Morshedi, M.; Oehninger, S.; Beebe, S. Somatic cell apoptosis markers and pathways in human ejaculated sperm: Potential utility as indicators of sperm quality. Mol. Hum. Reprod. 2004, 10, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Boguenet, M.; Bouet, P.-E.; Spiers, A.; Reynier, P.; May-Panloup, P. Mitochondria: Their role in spermatozoa and in male infertility. Hum. Reprod. Update 2021, 27, 697–719. [Google Scholar] [CrossRef] [PubMed]
- Kagan, V.E.; Bayir, H.A.; Belikova, N.A.; Kapralov, O.; Tyurina, Y.Y.; Tyurin, V.A.; Jiang, J.; Stoyanovsky, D.A.; Wipf, P.; Kochanek, P.M.; et al. Cytochrome c/cardiolipin relations in mitochondria: A kiss of death. Free Radic. Biol. Med. 2009, 46, 1439–1453. [Google Scholar] [CrossRef]
- Ferreira, G.; Costa, C.; Bassaizteguy, V.; Santos, M.; Cardozo, R.; Montes, J.; Settineri, R.; Nicolson, G.L. Incubation of human sperm with micelles made from glycerophospholipid mixtures increases sperm motility and resistance to oxidative stress. PLoS ONE 2018, 13, e0197897. [Google Scholar] [CrossRef]
- Treulen, F.; Uribe, P.; Boguen, R.; Villegas, J.V. Mitochondrial permeability transition increases reactive oxygen species production and induces DNA fragmentation in human spermatozoa. Hum. Reprod. 2015, 30, 767–776. [Google Scholar] [CrossRef]
- Paasch, U.; Grunewald, S.; Dathe, S.; Glander, H.J. Mitochondria of human spermatozoa are preferentially susceptible to apoptosis. Ann. N. Y. Acad. Sci. 2004, 1030, 403–409. [Google Scholar] [CrossRef]
- Kotwicka, M.; Filipiak, K.; Jedrzejczak, P.; Warchol, J.B. Caspase-3 activation and phosphatidylserine membrane translocation in human spermatozoa: Is there a relationship? Reprod. Biomed. Online 2008, 16, 657–663. [Google Scholar] [CrossRef]
- Yan, W.; Suominen, J.; Samson, M.; Jégou, B.; Toppari, J. Involvement of Bcl-2 family proteins in germ cell apoptosis during testicular development in the rat and pro-survival effect of stem cell factor on germ cells in vitro. Mol. Cell. Endocrinol. 2000, 165, 115–129. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-J.; Jo, J.-H.; Uwamahoro, C.; Jang, S.-I.; Jung, E.-J.; Bae, J.-W.; Moon, J.; Kim, D.-H.; Yi, J.K.; Ha, J.J.; et al. Role of PI3K/AKT signaling pathway during capacitation. Theriogenology 2025, 235, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Koppers, A.J.; Mitchell, L.A.; Wang, P.; Lin, M.; Aitken, R.J. Phosphoinositide 3-kinase signalling pathway involvement in a truncated apoptotic cascade associated with motility loss and oxidative DNA damage in human spermatozoa. Biochem. J. 2011, 436, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wu, S.D.; Shen, L.J.; Zhao, T.X.; Wei, Y.; Tang, X.L.; Long, C.L.; Zhou, Y.; He, D.W.; Lin, T.; et al. Spermatogenesis dysfunction induced by PM(2.5) from automobile exhaust via the ROS-mediated MAPK signaling pathway. Ecotoxicol. Environ. Saf. 2019, 167, 161–168. [Google Scholar] [CrossRef]
- Al-Kandari, N.; Fadel, F.; Al-Saleh, F.; Khashab, F.; Al-Maghrebi, M. The Thioredoxin System is Regulated by the ASK-1/JNK/p38/Survivin Pathway During Germ Cell Apoptosis. Molecules 2019, 24, 3333. [Google Scholar] [CrossRef]
- Sharma, P.; Kaushal, N.; Saleth, L.R.; Ghavami, S.; Dhingra, S.; Kaur, P. Oxidative stress-induced apoptosis and autophagy: Balancing the contrary forces in spermatogenesis. Biochim. Biophys. Acta-Mol. Basis Dis. 2023, 1869, 166742. [Google Scholar] [CrossRef]
- Wang, M.; Su, P. The role of the Fas/FasL signaling pathway in environmental toxicant-induced testicular cell apoptosis: An update. Syst. Biol. Reprod. Med. 2018, 64, 93–102. [Google Scholar] [CrossRef]
- Suede, S.H.; Malik, A.; Sapra, A. Histology, Spermatogenesis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Song, H.W.; Wilkinson, M.F. Transcriptional control of spermatogonial maintenance and differentiation. Semin Cell Dev Biol. 2014, 30, 14–26. [Google Scholar] [CrossRef]
- Morimoto, H.; Kanastu-Shinohara, M.; Ogonuki, N.; Kamimura, S.; Ogura, A.; Yabe-Nishimura, C.; Mori, Y.; Morimoto, T.; Watanabe, S.; Otsu, K.; et al. ROS amplification drives mouse spermatogonial stem cell self-renewal. Life Sci. Alliance 2019, 2, e201900374. [Google Scholar] [CrossRef]
- Baskaran, S.; Finelli, R.; Agarwal, A.; Henkel, R. Reactive oxygen species in male reproduction: A boon or a bane? Andrologia 2021, 53, e13577. [Google Scholar] [CrossRef]
- Jin, S.K.; Yang, W.X. Factors and pathways involved in capacitation: How are they regulated? Oncotarget 2017, 8, 3600–3627. [Google Scholar] [CrossRef]
- Naresh, S.; Atreja, S.K. The protein tyrosine phosphorylation during in vitro capacitation and cryopreservation of mammalian spermatozoa. Cryobiology 2015, 70, 211–216. [Google Scholar] [CrossRef]
- Takei, G.L.; Tourzani, D.A.; Paudel, B.; Visconti, P.E. Activation of cAMP-dependent phosphorylation pathways is independent of ROS production during mouse sperm capacitation. Mol. Reprod. Dev. 2021, 88, 544–557. [Google Scholar] [CrossRef]
- de Lamirande, E.; Gagnon, C. Human sperm hyperactivation and capacitation as parts of an oxidative process. Free Radic. Biol. Med. 1993, 14, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J.; Paterson, M.; Fisher, H.; Buckingham, D.W.; van Duin, M. Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J. Cell Sci. 1995, 108, 2017–2025. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, J.G.; Touchstone, J.C.; Blasco, L.; Storey, B.T. Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity. J. Androl. 1987, 8, 338–348. [Google Scholar] [CrossRef] [PubMed]
- O’Flaherty, C. Redox regulation of mammalian sperm capacitation. Asian J. Androl. 2015, 17, 583–590. [Google Scholar] [CrossRef]
- Villegas, J.; Kehr, K.; Soto, L.; Henkel, R.; Miska, W.; Sanchez, R. Reactive oxygen species induce reversible capacitation in human spermatozoa. Andrologia 2003, 35, 227–232. [Google Scholar] [CrossRef]
- Lewis, B.; Aitken, R.J. A redox-regulated tyrosine phosphorylation cascade in rat spermatozoa. J. Androl. 2001, 22, 611–622. [Google Scholar] [CrossRef]
- Ecroyd, H.W.; Jones, R.C.; Aitken, R.J. Endogenous redox activity in mouse spermatozoa and its role in regulating the tyrosine phosphorylation events associated with sperm capacitation. Biol. Reprod. 2003, 69, 347–354. [Google Scholar] [CrossRef]
- O’Flaherty, C.; Breininger, E.; Beorlegui, N.; Beconi, M.T. Acrosome reaction in bovine spermatozoa: Role of reactive oxygen species and lactate dehydrogenase C4. Biochim. Biophys. Acta. 2005, 1726, 96–101. [Google Scholar] [CrossRef]
- Baumber, J.; Sabeur, K.; Vo, A.; Ball, B.A. Reactive oxygen species promote tyrosine phosphorylation and capacitation in equine spermatozoa. Theriogenology 2003, 60, 1239–1247. [Google Scholar] [CrossRef]
- Awda, B.J.; Mackenzie-Bell, M.; Buhr, M.M. Reactive oxygen species and boar sperm function. Biol. Reprod. 2009, 81, 553–561. [Google Scholar] [CrossRef]
- Buffone, M.G.; Wertheimer, E.V.; Visconti, P.E.; Krapf, D. Central role of soluble adenylyl cyclase and cAMP in sperm physiology. Biochim. Biophys. Acta 2014, 1842, 2610–2620. [Google Scholar] [CrossRef] [PubMed]
- Battistone, M.A.; Da Ros, V.G.; Salicioni, A.M.; Navarrete, F.A.; Krapf, D.; Visconti, P.E.; Cuasnicu, P.S. Functional human sperm capacitation requires both bicarbonate-dependent PKA activation and down-regulation of Ser/Thr phosphatases by Src family kinases. Mol. Hum. Reprod. 2013, 19, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Lefievre, L.; Jha, K.N.; de Lamirande, E.; Visconti, P.E.; Gagnon, C. Activation of protein kinase A during human sperm capacitation and acrosome reaction. J. Androl. 2002, 23, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Travis, A.J.; Kopf, G.S. The role of cholesterol efflux in regulating the fertilization potential of mammalian spermatozoa. J. Clin. Investig. 2002, 110, 731–736. [Google Scholar] [CrossRef]
- de Lamirande, E.; Gagnon, C. The extracellular signal-regulated kinase (ERK) pathway is involved in human sperm function and modulated by the superoxide anion. Mol. Hum. Reprod. 2002, 8, 124–135. [Google Scholar] [CrossRef]
- Varano, G.; Lombardi, A.; Cantini, G.; Forti, G.; Baldi, E.; Luconi, M. Src activation triggers capacitation and acrosome reaction but not motility in human spermatozoa. Hum. Reprod. 2008, 23, 2652–2662. [Google Scholar] [CrossRef]
- Gualtieri, R.; Kalthur, G.; Barbato, V.; Longobardi, S.; Di Rella, F.; Adiga, S.K.; Talevi, R. Sperm Oxidative Stress during In Vitro Manipulation and Its Effects on Sperm Function and Embryo Development. Antioxidants 2021, 10, 1025. [Google Scholar] [CrossRef]
- Suarez, S.S. Control of hyperactivation in sperm. Hum. Reprod. Update 2008, 14, 647–657. [Google Scholar] [CrossRef]
- Cordero-Martinez, J.; Jimenez-Gutierrez, G.E.; Aguirre-Alvarado, C.; Alacantara-Farfan, V.; Chamorro-Cevallos, G.; Roa-Espitia, A.L.; Hernandez-Gonzalez, E.O.; Rodriguez-Paez, L. Participation of signaling proteins in sperm hyperactivation. Syst. Biol. Reprod. Med. 2022, 68, 315–330. [Google Scholar] [CrossRef] [PubMed]
- Durairajanayagam, D. Chapter 1.8—Physiological Role of Reactive Oxygen Species in Male Reproduction. In Oxidants, Antioxidants and Impact of the Oxidative Status in Male Reproduction; Henkel, R., Samanta, L., Agarwal, A., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 65–78. [Google Scholar]
- Brini, M.; Carafoli, E. The plasma membrane Ca2+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb. Perspect. Biol. 2011, 3, a004168. [Google Scholar] [CrossRef]
- Bernardino, R.L.; Carrageta, D.F.; Sousa, M.; Alves, M.G.; Oliveira, P.F. pH and male fertility: Making sense on pH homeodynamics throughout the male reproductive tract. Cell. Mol. Life Sci. 2019, 76, 3783–3800. [Google Scholar] [CrossRef] [PubMed]
- Wandernoth, P.M.; Mannowetz, N.; Szczyrba, J.; Grannemann, L.; Wolf, A.; Becker, H.M.; Sly, W.S.; Wennemuth, G. Normal Fertility Requires the Expression of Carbonic Anhydrases II and IV in Sperm. J. Biol. Chem. 2015, 290, 29202–29216. [Google Scholar] [CrossRef]
- Delgado-Bermúdez, A.; Yeste, M.; Bonet, S.; Pinart, E. A Review on the Role of Bicarbonate and Proton Transporters during Sperm Capacitation in Mammals. Int. J. Mol. Sci. 2022, 23, 6333. [Google Scholar] [CrossRef] [PubMed]
- Ickowicz, D.; Finkelstein, M.; Breitbart, H. Mechanism of sperm capacitation and the acrosome reaction: Role of protein kinases. Asian J. Androl. 2012, 14, 816–821. [Google Scholar] [CrossRef]
- Rivlin, J.; Mendel, J.; Rubinstein, S.; Etkovitz, N.; Breitbart, H. Role of Hydrogen Peroxide in Sperm Capacitation and Acrosome Reaction. Biol. Reprod. 2004, 70, 518–522. [Google Scholar] [CrossRef]
- de Lamirande, E.; O’Flaherty, C. Sperm activation: Role of reactive oxygen species and kinases. Biochim. Biophys. Acta-Proteins Proteom. 2008, 1784, 106–115. [Google Scholar] [CrossRef]
- Revelli, A.; Soldati, G.; Costamagna, C.; Pellerey, O.; Aldieri, E.; Massobrio, M.; Bosia, A.; Ghigo, D. Follicular fluid proteins stimulate nitric oxide (NO) synthesis in human sperm: A possible role for NO in acrosomal reaction. J. Cell. Physiol. 1999, 178, 85–92. [Google Scholar] [CrossRef]
- Celino, F.T.; Yamaguchi, S.; Miura, C.; Ohta, T.; Tozawa, Y.; Iwai, T.; Miura, T. Tolerance of spermatogonia to oxidative stress is due to high levels of Zn and Cu/Zn superoxide dismutase. PLoS ONE 2011, 6, e16938. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, X.; Li, H. Mechanisms of oxidative stress-induced sperm dysfunction. Front. Endocrinol. 2025, 16, 1520835. [Google Scholar] [CrossRef] [PubMed]
- Durairajanayagam, D.; Agarwal, A.; Ong, C. Causes, effects and molecular mechanisms of testicular heat stress. Reprod. Biomed. Online 2015, 30, 14–27. [Google Scholar] [CrossRef]
- Guo, C.; Wang, Q.; Shuai, P.; Wang, T.; Wu, W.; Li, Y.; Huang, S.; Yu, J.; Yi, L. Radiation and male reproductive system: Damage and protection. Chemosphere 2024, 357, 142030. [Google Scholar] [CrossRef]
- Lin, Y.; Xu, W.; Yang, L.; Chen, Z.; Zhai, J.; Zhu, Q.; Guo, Z.; Wang, N.; Zhang, C.; Deng, H.; et al. Mechanism of testicular injury induced by Di-ethylhexyl phthalate and its protective agents. Chem. Biol. Interact. 2023, 381, 110575. [Google Scholar] [CrossRef] [PubMed]
- Ha, M.; Guan, X.; Wei, L.; Li, P.; Yang, M.; Liu, C. Di-(2-ethylhexyl) phthalate inhibits testosterone level through disturbed hypothalamic-pituitary-testis axis and ERK-mediated 5alpha-Reductase 2. Sci. Total Environ. 2016, 563–564, 566–575. [Google Scholar] [CrossRef] [PubMed]
- Kulaksiz, D.; Toprak, T.; Tokat, E.; Yilmaz, M.; Ramazanoglu, M.A.; Garayev, A.; Sulukaya, M.; Degirmentepe, R.B.; Allahverdiyev, E.; Gul, M.; et al. Sperm concentration and semen volume increase after smoking cessation in infertile men. Int. J. Impot. Res. 2022, 34, 614–619. [Google Scholar] [CrossRef]
- Saleh, R.A.; Agarwal, A.; Sharma, R.K.; Nelson, D.R.; Thomas, A.J., Jr. Effect of cigarette smoking on levels of seminal oxidative stress in infertile men: A prospective study. Fertil. Steril. 2002, 78, 491–499. [Google Scholar] [CrossRef]
- Guthauser, B.; Boitrelle, F.; Plat, A.; Thiercelin, N.; Vialard, F. Chronic excessive alcohol consumption and male fertility: A case report on reversible azoospermia and a literature review. Alcohol Alcohol. 2014, 49, 42–44. [Google Scholar] [CrossRef]
- Nguyen-Thanh, T.; Hoang-Thi, A.P.; Anh Thu, D.T. Investigating the association between alcohol intake and male reproductive function: A current meta-analysis. Heliyon 2023, 9, e15723. [Google Scholar] [CrossRef]
- Genchi, V.A.; Cignarelli, A.; Sansone, A.; Yannas, D.; Dalla Valentina, L.; Renda Livraghi, D.; Spaggiari, G.; Santi, D. Understanding the Role of Alcohol in Metabolic Dysfunction and Male Infertility. Metabolites 2024, 14, 626. [Google Scholar] [CrossRef]
- Wu, D.; Cederbaum, A.I. Alcohol, oxidative stress, and free radical damage. Alcohol Res. Health 2003, 27, 277–284. [Google Scholar]
- Omolaoye, T.S.; Skosana, B.T.; Ferguson, L.M.; Ramsunder, Y.; Ayad, B.M.; Du Plessis, S.S. Implications of Exposure to Air Pollution on Male Reproduction: The Role of Oxidative Stress. Antioxidants 2024, 13, 64. [Google Scholar] [CrossRef] [PubMed]
- Moritz, L.; Hammoud, S.S. The Art of Packaging the Sperm Genome: Molecular and Structural Basis of the Histone-To-Protamine Exchange. Front. Endocrinol. 2022, 13, 895502. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, H.; Zou, S.; Yu, X.; Li, J. Perspective in the Mechanisms for Repairing Sperm DNA Damage. Reprod. Sci. 2025, 32, 41–51. [Google Scholar] [CrossRef]
- Drevet, J.R.; Aitken, R.J. Oxidative Damage to Sperm DNA: Attack and Defense. In Genetic Damage in Human Spermatozoa; Baldi, E., Muratori, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 107–117. [Google Scholar]
- AbuArrah, M.; Yuli Setianto, B.; Faisal, A.; Hamim Sadewa, A. 8-Hydroxy-2-Deoxyguanosine as Oxidative DNA Damage Biomarker of Medical Ionizing Radiation: A Scoping Review. J. Biomed. Phys. Eng. 2021, 11, 389–402. [Google Scholar] [CrossRef] [PubMed]
- Ribas-Maynou, J.; Benet, J. Single and Double Strand Sperm DNA Damage: Different Reproductive Effects on Male Fertility. Genes 2019, 10, 105. [Google Scholar] [CrossRef]
- González-Díaz, C.A.; Suárez-Souto, M.A.; Pérez-Soto, E.; Gómez-López, M.; Munguía-Cervantes, J.E.; Pérez-Vielma, N.M.; Sánchez-Monroy, V. The Human 8-oxoG DNA Glycosylase 1 (OGG1) Ser326Cys Polymorphism in Infertile Men. Biomedicines 2024, 12, 2286. [Google Scholar] [CrossRef]
- Collodel, G.; Moretti, E.; Noto, D.; Corsaro, R.; Signorini, C. Oxidation of Polyunsaturated Fatty Acids as a Promising Area of Research in Infertility. Antioxidants 2022, 11, 1002. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, Y.J.; Kang, B.H.; Yun, Y.S.; Park, C.K. The relationship between acrosome reaction and polyunsaturated fatty acid composition in boar sperm. Reprod. Domest. Anim. 2020, 55, 624–631. [Google Scholar] [CrossRef]
- O’Flaherty, C.; Matsushita-Fournier, D. Reactive oxygen species and protein modifications in spermatozoa. Biol. Reprod. 2017, 97, 577–585. [Google Scholar] [CrossRef]
- Sharma, R.; Agarwal, A.; Mohanty, G.; Hamada, A.J.; Gopalan, B.; Willard, B.; Yadav, S.; du Plessis, S. Proteomic analysis of human spermatozoa proteins with oxidative stress. Reprod. Biol. Endocrinol. 2013, 11, 48. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhang, Y.; Li, Y.; Sun, S.; Zhang, J.; Xie, Q.; Dong, Y.; Zhou, S.; Sha, X.; Li, K.; et al. Adenylate kinase phosphate energy shuttle underlies energetic communication in flagellar axonemes. Sci. China Life Sci. 2024, 67, 1697–1714. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Ling, P.; He, Q.; Chen, D.; Zheng, L.; Tang, L.; Jiang, S.-W. Low acrosin activity is associated with decreased Spam1/acrosin expression and GSH deficiency-caused premature acrosome release of human sperm cells. Cell Tissue Res. 2023, 394, 529–545. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, T.; Rashed, L.; Nabil, N.; Amin, R. Seminal BAX and BCL2 gene and protein expressions in infertile men with varicocele. Urology 2014, 84, 590–595. [Google Scholar] [CrossRef]
- Agarwal, A.; Said, T.M. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum. Reprod. Update 2003, 9, 331–345. [Google Scholar] [CrossRef]
- Kaltsas, A.; Markou, E.; Kyrgiafini, M.A.; Zikopoulos, A.; Symeonidis, E.N.; Dimitriadis, F.; Zachariou, A.; Sofikitis, N.; Chrisofos, M. Oxidative-Stress-Mediated Epigenetic Dysregulation in Spermatogenesis: Implications for Male Infertility and Offspring Health. Genes 2025, 16, 93. [Google Scholar] [CrossRef]
- Zhu, H.; Cheng, Y.; Wang, X.; Yang, X.; Liu, M.; Liu, J.; Liu, S.; Wang, H.; Zhang, A.; Li, R.; et al. Gss deficiency causes age-related fertility impairment via ROS-triggered ferroptosis in the testes of mice. Cell Death Dis. 2023, 14, 845. [Google Scholar] [CrossRef]
- Lv, Z.; Sun, L.; Xie, X.; Yao, X.; Tian, S.; Wang, C.; Wang, F.; Liu, J. TMEM225 Is Essential for Sperm Maturation and Male Fertility by Modifying Protein Distribution of Sperm in Mice. Mol. Cell. Proteom. 2024, 23, 100720. [Google Scholar] [CrossRef]
- Iuchi, Y.; Okada, F.; Tsunoda, S.; Kibe, N.; Shirasawa, N.; Ikawa, M.; Okabe, M.; Ikeda, Y.; Fujii, J. Peroxiredoxin 4 knockout results in elevated spermatogenic cell death via oxidative stress. Biochem. J. 2009, 419, 149–158. [Google Scholar] [CrossRef]
- Selvaratnam, J.; Robaire, B. Overexpression of catalase in mice reduces age-related oxidative stress and maintains sperm production. Exp. Gerontol. 2016, 84, 12–20. [Google Scholar] [CrossRef]
- Chimento, A.; D’Amico, M.; De Luca, A.; Conforti, F.L.; Pezzi, V.; De Amicis, F. Resveratrol, Epigallocatechin Gallate and Curcumin for Cancer Therapy: Challenges from Their Pro-Apoptotic Properties. Life 2023, 13, 261. [Google Scholar] [CrossRef]
- Chimento, A.; Santarsiero, A.; Iacopetta, D.; Ceramella, J.; De Luca, A.; Infantino, V.; Parisi, O.I.; Avena, P.; Bonomo, M.G.; Saturnino, C.; et al. A Phenylacetamide Resveratrol Derivative Exerts Inhibitory Effects on Breast Cancer Cell Growth. Int. J. Mol. Sci. 2021, 22, 5255. [Google Scholar] [CrossRef]
- Vikal, A.; Maurya, R.; Bhowmik, S.; Khare, S.; Raikwar, S.; Patel, P.; Das Kurmi, B. Resveratrol: A comprehensive review of its multifaceted health benefits, mechanisms of action, and potential therapeutic applications in chronic disease. Pharmacol. Res.-Nat. Prod. 2024, 3, 100047. [Google Scholar] [CrossRef]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhao, G.; Chen, L.; Ding, Y.; Lian, J.; Hong, G.; Lu, Z. Resveratrol protects mice from paraquat-induced lung injury: The important role of SIRT1 and NRF2 antioxidant pathways. Mol. Med. Rep. 2016, 13, 1833–1838. [Google Scholar] [CrossRef] [PubMed]
- Price, N.L.; Gomes, A.P.; Ling, A.J.; Duarte, F.V.; Martin-Montalvo, A.; North, B.J.; Agarwal, B.; Ye, L.; Ramadori, G.; Teodoro, J.S.; et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012, 15, 675–690. [Google Scholar] [CrossRef]
- Ye, M.J.; Meng, N. Resveratrol acts via the mitogen-activated protein kinase (MAPK) pathway to protect retinal ganglion cells from apoptosis induced by hydrogen peroxide. Bioengineered 2021, 12, 4878–4886. [Google Scholar] [CrossRef]
- Inglés, M.; Gambini, J.; Miguel, M.G.; Bonet-Costa, V.; Abdelaziz, K.M.; El Alami, M.; Viña, J.; Borrás, C. PTEN Mediates the Antioxidant Effect of Resveratrol at Nutritionally Relevant Concentrations. BioMed Res. Int. 2014, 2014, 580852. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, J.; Zhou, M.; Zhang, Y.; Liu, Y.; Hou, P.; Zeng, X.; Yi, L.; Mi, M. Resveratrol attenuates endothelial oxidative injury by inducing autophagy via the activation of transcription factor EB. Nutr. Metab. 2019, 16, 42. [Google Scholar] [CrossRef]
- Rosiak, N.; Cielecka-Piontek, J.; Skibiński, R.; Lewandowska, K.; Bednarski, W.; Zalewski, P. Antioxidant Potential of Resveratrol as the Result of Radiation Exposition. Antioxidants 2022, 11, 2097. [Google Scholar] [CrossRef]
- Abolfazli, S.; Karav, S.; Johnston, T.P.; Sahebkar, A. Regulatory effects of resveratrol on nitric oxide signaling in cardiovascular diseases. Pharmacol. Rep. 2025, 77, 355–374. [Google Scholar] [CrossRef] [PubMed]
- Truong, L.; Jun, M.; Jeong, W.-S. Role of resveratrol in regulation of cellular defense systems against oxidative stress: Cellular Defense Systems Against Oxidative Stress. BioFactors 2017, 44, 36–49. [Google Scholar] [CrossRef]
- Farkhondeh, T.; Folgado, S.L.; Pourbagher-Shahri, A.M.; Ashrafizadeh, M.; Samarghandian, S. The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathway. Biomed. Pharmacother. 2020, 127, 110234. [Google Scholar] [CrossRef]
- Ruderman, N.B.; Xu, X.J.; Nelson, L.; Cacicedo, J.M.; Saha, A.K.; Lan, F.; Ido, Y. AMPK and SIRT1: A long-standing partnership? Am. J. Physiol. Endocrinol. Metab. 2010, 298, E751–E760. [Google Scholar] [CrossRef] [PubMed]
- Manna, S.K.; Mukhopadhyay, A.; Aggarwal, B.B. Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kappa B, activator protein-1, and apoptosis: Potential role of reactive oxygen intermediates and lipid peroxidation. J. Immunol. 2000, 164, 6509–6519. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Tian, Y.; Wu, H.; Cao, Y.; Li, R.; Zou, K.; Xu, W.; Lu, L. Protective Effect of Resveratrol on Immortalized Duck Intestinal Epithelial Cells Exposed to H2O2. Molecules 2022, 27, 3542. [Google Scholar] [CrossRef]
- Hussain, T.; Kandeel, M.; Metwally, E.; Murtaza, G.; Kalhoro, D.H.; Yin, Y.; Tan, B.; Chughtai, M.I.; Yaseen, A.; Afzal, A.; et al. Unraveling the harmful effect of oxidative stress on male fertility: A mechanistic insight. Front. Endocrinol. 2023, 14, 1070692. [Google Scholar] [CrossRef]
- Lahimer, M.; Abou Diwan, M.; Montjean, D.; Cabry, R.; Bach, V.; Ajina, M.; Ben Ali, H.; Benkhalifa, M.; Khorsi-Cauet, H. Endocrine disrupting chemicals and male fertility: From physiological to molecular effects. Front. Public Health 2023, 11, 1232646. [Google Scholar] [CrossRef]
- de Oliveira, F.A.; Costa, W.S.; FJ, B.S.; Gregorio, B.M. Resveratrol attenuates metabolic, sperm, and testicular changes in adult Wistar rats fed a diet rich in lipids and simple carbohydrates. Asian J. Androl. 2019, 21, 201–207. [Google Scholar] [CrossRef]
- Pavuluri, H.; Bakhtiary, Z.; Panner Selvam, M.K.; Hellstrom, W.J.G. Oxidative Stress-Associated Male Infertility: Current Diagnostic and Therapeutic Approaches. Medicina 2024, 60, 1008. [Google Scholar] [CrossRef]
- Cannarella, R.; Mehta, P.; Garofalo, V.; Kaiyal, R.S.; Kuroda, S.; Calogero, A.E.; Rajender, S. Resveratrol and male infertility: A systematic review of the literature. Minerva Endocrinol. 2024. [Google Scholar] [CrossRef]
- Italiano, E.; Ceccarelli, G.; Italiano, G.; Piazza, F.; Iannitti, R.G.; Puglisi, T. Positive Effects of a Resveratrol-Based Nutraceutical in Association with Surgical Scleroembolization: A Pilot Retrospective Clinical Trial. J. Clin. Med. 2024, 13, 2925. [Google Scholar] [CrossRef]
- Zhang, X.; Yi, R.; Liu, Y.; Ma, J.; Xu, J.; Tian, Q.; Yan, X.; Wang, S.; Yang, G. Resveratrol: Potential application in safeguarding testicular health. EPMA J. 2024, 15, 643–657. [Google Scholar] [CrossRef] [PubMed]
- Said, N.I.; Abd-Elrazek, A.M.; El-Dash, H.A. The protective role of resveratrol against sulfoxaflor-induced toxicity in testis of adult male rats. Environ. Toxicol. 2021, 36, 2105–2115. [Google Scholar] [CrossRef]
- Sarman, E.; Gulle, K.; Ilhan, I. Histochemical, Immunohistochemical, and Biochemical Investigation of the Effect of Resveratrol on Testicular Damage Caused by Methotrexate (MTX). Reprod. Sci. 2023, 30, 3315–3324. [Google Scholar] [CrossRef]
- Shati, A.A. Resveratrol improves sperm parameter and testicular apoptosis in cisplatin-treated rats: Effects on ERK1/2, JNK, and Akt pathways. Syst. Biol. Reprod. Med. 2019, 65, 236–249. [Google Scholar] [CrossRef] [PubMed]
- Aly, H.A.A. Mitochondria-Mediated Apoptosis Induced Testicular Dysfunction in Diabetic Rats: Ameliorative Effect of Resveratrol. Endocrinology 2021, 162, bqab018. [Google Scholar] [CrossRef] [PubMed]
- Hajipour, E.; Mashayekhi, F.J.; Mosayebi, G.; Baazm, M.; Zendedel, A. Resveratrol decreases apoptosis and NLRP3 complex expressions in experimental varicocele rat model. Iran. J. Basic Med. Sci. 2018, 21, 225–229. [Google Scholar] [CrossRef]
- Monageng, E.; Offor, U.; Takalani, N.B.; Mohlala, K.; Opuwari, C.S. A Review on the Impact of Oxidative Stress and Medicinal Plants on Leydig Cells. Antioxidants 2023, 12, 1559. [Google Scholar] [CrossRef]
- Abidi, P.; Zhang, H.; Zaidi, S.M.; Shen, W.J.; Leers-Sucheta, S.; Cortez, Y.; Han, J.; Azhar, S. Oxidative stress-induced inhibition of adrenal steroidogenesis requires participation of p38 mitogen-activated protein kinase signaling pathway. J. Endocrinol. 2008, 198, 193–207. [Google Scholar] [CrossRef]
- Banerjee, B.; Chakraborty, S.; Chakraborty, P.; Ghosh, D.; Jana, K. Protective Effect of Resveratrol on Benzo(a)Pyrene Induced Dysfunctions of Steroidogenesis and Steroidogenic Acute Regulatory Gene Expression in Leydig Cells. Front. Endocrinol. 2019, 10, 272. [Google Scholar] [CrossRef] [PubMed]
- Greifova, H.; Jambor, T.; Tokarova, K.; Spevakova, I.; Knizatova, N.; Lukac, N. Resveratrol attenuates hydrogen peroxide-induced oxidative stress in TM3 Leydig cells in vitro. J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng. 2020, 55, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Greifová, H.; Jambor, T.; Tokárová, K.; Štefunková, N.; Lukac, N. In Vitro Effect of Resveratrol Supplementation on Oxidative Balance and Intercellular Communication of Leydig Cells Subjected to Induced Oxidative Stress. Folia Biol. 2022, 70, 19–32. [Google Scholar] [CrossRef]
- Leone, A.; Longo, C.; Trosko, J.E. The chemopreventive role of dietary phytochemicals through gap junctional intercellular communication. Phytochem. Rev. 2012, 11, 285–307. [Google Scholar] [CrossRef]
- Liu, S.; Sun, Y.; Li, Z. Resveratrol protects Leydig cells from nicotine-induced oxidative damage through enhanced autophagy. Clin. Exp. Pharmacol. Physiol. 2018, 45, 573–580. [Google Scholar] [CrossRef]
- Xu, W.; Zheng, H.; Fu, Y.; Gu, Y.; Zou, H.; Yuan, Y.; Gu, J.; Liu, Z.; Bian, J. Role of PI3K/Akt-Mediated Nrf2/HO-1 Signaling Pathway in Resveratrol Alleviation of Zearalenone-Induced Oxidative Stress and Apoptosis in TM4 Cells. Toxins 2022, 14, 733. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, G.; Jiang, F.; Zeng, Y.; Zou, P.; An, H.; Chen, Q.; Ling, X.; Han, F.; Liu, W.; et al. BPDE and B[a]P induce mitochondrial compromise by ROS-mediated suppression of the SIRT1/TERT/PGC-1α pathway in spermatogenic cells both in vitro and in vivo. Toxicol. Appl. Pharmacol. 2019, 376, 17–37. [Google Scholar] [CrossRef]
- Tvrda, E.; Kovacik, A.; Tusimova, E.; Massanyi, P.; Lukac, N. Resveratrol offers protection to oxidative stress induced by ferrous ascorbate in bovine spermatozoa. J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng. 2015, 50, 1440–1451. [Google Scholar] [CrossRef]
- Mojica-Villegas, M.A.; Izquierdo-Vega, J.A.; Chamorro-Cevallos, G.; Sánchez-Gutiérrez, M. Protective effect of resveratrol on biomarkers of oxidative stress induced by iron/ascorbate in mouse spermatozoa. Nutrients 2014, 6, 489–503. [Google Scholar] [CrossRef]
- Assunção, C.M.; Mendes, V.R.A.; Brandão, F.Z.; Batista, R.; Souza, E.D.; Carvalho, B.C.; Quintão, C.C.R.; Raposo, N.R.B.; Camargo, L.S.A. Effects of resveratrol in bull semen extender on post-thaw sperm quality and capacity for fertilization and embryo development. Anim. Reprod. Sci. 2021, 226, 106697. [Google Scholar] [CrossRef]
- Xie, Q.; Jiang, X.; Zhao, M.; Xie, Y.; Fan, Y.; Suo, L.; Kuang, Y. Effect of freezing and thawing on ejaculated sperm and subsequent pregnancy and neonatal outcomes in IVF. Front. Endocrinol. 2024, 15, 1408662. [Google Scholar] [CrossRef]
- Correa, F.; Ceballos, E.; Rojano, B.; Restrepo, G.; Usuga, A. Quality and redox state of bovine sperm cryopreserved with resveratrol use of resveratrol in bovine semen. Reprod. Domest. Anim. 2024, 59, e14517. [Google Scholar] [CrossRef]
- Delli Muti, N.; Di Paolo, A.; Salvio, G.; Membrino, V.; Ciarloni, A.; Alia, S.; Salvolini, E.; Vignini, A.; Balercia, G. Effect of resveratrol on sperm motility in subjects affected by idiopathic asthenozoospermia: An in vitro study. Tissue Cell 2025, 95, 102857. [Google Scholar] [CrossRef]
- Guo, S.; Liu, C.; Wang, Y.; Chen, F.; Zhu, J.; Li, S.; Li, E. Effect of resveratrol on spermatogenesis in breeding boars and the proteomic analysis for testes. Reprod. Biol. 2024, 24, 100930. [Google Scholar] [CrossRef]
- Badejogbin, O.C.; Chijioke-Agu, O.E.; Olubiyi, M.V.; Agunloye, M.O. Pathogenesis of testicular dysfunction in diabetes: Exploring the mechanism and therapeutic interventions. J. Assist. Reprod. Genet. 2025, 42, 367–379. [Google Scholar] [CrossRef]
- Simas, J.N.; Mendes, T.B.; Fischer, L.W.; Vendramini, V.; Miraglia, S.M. Resveratrol improves sperm DNA quality and reproductive capacity in type 1 diabetes. Andrology 2021, 9, 384–399. [Google Scholar] [CrossRef] [PubMed]
- Elsawy, H.; Famurewa, A.C.; Sedky, A. Resveratrol Mitigates Diabetic Testicular Dysfunction, Endocrine Deficits, and Insulin Resistance via Suppression of Sperm-Endocrine Aberrations and Oxidative Inflammation in Rats. Andrologia 2023, 2023, 6385767. [Google Scholar] [CrossRef]
- Uwamahoro, C.; Jo, J.-H.; Jang, S.-I.; Jung, E.-J.; Lee, W.-J.; Bae, J.-W.; Kwon, W.-S. Assessing the Risks of Pesticide Exposure: Implications for Endocrine Disruption and Male Fertility. Int. J. Mol. Sci. 2024, 25, 6945. [Google Scholar] [CrossRef] [PubMed]
- Avdatek, F.; Birdane, Y.O.; Türkmen, R.; Demirel, H.H. Ameliorative effect of resveratrol on testicular oxidative stress, spermatological parameters and DNA damage in glyphosate-based herbicide-exposed rats. Andrologia 2018, 50, e13036. [Google Scholar] [CrossRef]
- Jalili, C.; Roshankhah, S.; Salahshoor, M.R.; Mohammadi, M.M. Resveratrol Attenuates Malathion Induced Damage in Some Reproductive Parameters by Decreasing Oxidative Stress and Lipid Peroxidation in Male Rats. J. Fam. Reprod. Health 2019, 13, 70–79. [Google Scholar] [CrossRef]
- Archana, D.; Supriya, C.; Girish, B.P.; Kishori, B.; Reddy, P.S. Alleviative effect of resveratrol on polyvinyl chloride-induced reproductive toxicity in male Wistar rats. Food Chem. Toxicol. 2018, 116, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Pourmadadi, M.; Rahmani, E.; Shamsabadipour, A.; Mahtabian, S.; Ahmadi, M.; Rahdar, A.; Díez-Pascual, A.M. Role of Iron Oxide (Fe2O3) Nanocomposites in Advanced Biomedical Applications: A State-of-the-Art Review. Nanomaterials 2022, 12, 3873. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Hussein, M.M.A.; Saber, T.; Abd-Elhakim, Y.M. Palliative Effect of Resveratrol against Nanosized Iron Oxide-Induced Oxidative Stress and Steroidogenesis-Related Genes Dysregulation in Testicular Tissue of Adult Male Rats. Int. J. Environ. Res. Public Health 2022, 19, 8171. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi-Esmailabad, S.; Talebi, A.H.; Talebi, A.R.; Amiri, S.; Moshrefi, M.; Pourentezari, M. The effects of morphine abuse on sperm parameters, chromatin integrity and apoptosis in men. JBRA Assist. Reprod. 2022, 26, 444–449. [Google Scholar] [CrossRef]
- Wang, L.J.; Wang, X.H.; Sun, H.J.; Xu, B. Effects of inhalation anaesthetics on human sperm motility and vitality in vitro. Br. J. Anaesth. 2008, 101, 883–884. [Google Scholar] [CrossRef]
- Jalili, C.; Salahshoor, M.R.; Jalili, F.; Kakebaraei, S.; Akrami, A.; Sohrabi, M.; Ahookhash, M.; Ghanbari, A. Therapeutic Effect of Resveratrol on Morphine-Induced Damage in Male Reproductive System of Mice by Reducing Nitric Oxide Serum Level. Int. J. Morphol. 2017, 35, 1342–1347. [Google Scholar] [CrossRef]
- Zanin, M.; Varela Junior, A.S.; Bonel Acosta, I.; Anastacio Da Silva, E.; Gehrcke, M.I.; Corcini, C.D. Acute exposure to isoflurane impairs sperm parameters in mice. Drug Chem. Toxicol. 2024, 47, 330–337. [Google Scholar] [CrossRef]
- da Cunha de Medeiros, P.; Nascimento, C.C.; Perobelli, J.E. Antineoplastic drugs in environmentally relevant concentrations cause endocrine disruption and testicular dysfunction in experimental conditions. Environ. Toxicol. Pharmacol. 2023, 100, 104122. [Google Scholar] [CrossRef]
- van den Boogaard, W.M.C.; Komninos, D.S.J.; Vermeij, W.P. Chemotherapy Side-Effects: Not All DNA Damage Is Equal. Cancers 2022, 14, 627. [Google Scholar] [CrossRef]
- Ismail, H.Y.; Shaker, N.A.; Hussein, S.; Tohamy, A.; Fathi, M.; Rizk, H.; Wally, Y.R. Cisplatin-induced azoospermia and testicular damage ameliorated by adipose-derived mesenchymal stem cells. Biol. Res. 2023, 56, 2. [Google Scholar] [CrossRef]
- Singh, I.; Goyal, Y.; Ranawat, P. Potential chemoprotective role of resveratrol against cisplatin induced testicular damage in mice. Chem. Biol. Interact. 2017, 273, 200–211. [Google Scholar] [CrossRef] [PubMed]
- McLachlan, R.I.; O’Donnell, L.; Meachem, S.J.; Stanton, P.G.; de Kretser, D.M.; Pratis, K.; Robertson, D.M. Identification of specific sites of hormonal regulation in spermatogenesis in rats, monkeys, and man. Recent Prog. Horm. Res. 2002, 57, 149–179. [Google Scholar] [CrossRef] [PubMed]
- Asanad, K.; Sholklapper, T.; Samplaski, M.K.; Cacciamani, G.E. Global online interest in finasteride sexual side effects. Int. J. Impot. Res. 2024, 36, 408–413. [Google Scholar] [CrossRef]
- Shalaby, A.M.; Alabiad, M.A.; El Shaer, D.F. Resveratrol Ameliorates the Seminiferous Tubules Damages Induced by Finasteride in Adult Male Rats. Microsc. Microanal. 2020, 26, 1176–1186. [Google Scholar] [CrossRef] [PubMed]
- Tuerxun, H.; Zhao, Y.; Li, Y.; Liu, X.; Wen, S.; Zhao, Y. Resveratrol alleviates testicular toxicity induced by anti-PD-1 through regulating the NRF2-SLC7A11-GPX4 pathway. Front. Immunol. 2025, 16, 1529991. [Google Scholar] [CrossRef]
- Martinez, A.M.; Sordia-Hernández, L.H.; Morales, J.A.; Merino, M.; Vidal, O.; Garza, M.R.G.; Valdés, O. A randomized clinical study assessing the effects of the antioxidants, resveratrol or SG1002, a hydrogen sulfide prodrug, on idiopathic oligoasthenozoospermia. Asian Pac. J. Reprod. 2015, 4, 106–111. [Google Scholar] [CrossRef]
- Walle, T.; Hsieh, F.; DeLegge, M.H.; Oatis, J.E., Jr.; Walle, U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 2004, 32, 1377–1382. [Google Scholar] [CrossRef]
- Gambini, J.; Inglés, M.; Olaso, G.; Lopez-Grueso, R.; Bonet-Costa, V.; Gimeno-Mallench, L.; Mas-Bargues, C.; Abdelaziz, K.M.; Gomez-Cabrera, M.C.; Vina, J.; et al. Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans. Oxid. Med. Cell. Longev. 2015, 2015, 837042. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chimento, A.; De Luca, A.; Venditti, M.; De Amicis, F.; Pezzi, V. Beneficial Effects of Resveratrol on Testicular Functions: Focus on Its Antioxidant Properties. Cells 2025, 14, 1122. https://doi.org/10.3390/cells14141122
Chimento A, De Luca A, Venditti M, De Amicis F, Pezzi V. Beneficial Effects of Resveratrol on Testicular Functions: Focus on Its Antioxidant Properties. Cells. 2025; 14(14):1122. https://doi.org/10.3390/cells14141122
Chicago/Turabian StyleChimento, Adele, Arianna De Luca, Massimo Venditti, Francesca De Amicis, and Vincenzo Pezzi. 2025. "Beneficial Effects of Resveratrol on Testicular Functions: Focus on Its Antioxidant Properties" Cells 14, no. 14: 1122. https://doi.org/10.3390/cells14141122
APA StyleChimento, A., De Luca, A., Venditti, M., De Amicis, F., & Pezzi, V. (2025). Beneficial Effects of Resveratrol on Testicular Functions: Focus on Its Antioxidant Properties. Cells, 14(14), 1122. https://doi.org/10.3390/cells14141122