Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = polymer photonic crystal fiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 12984 KiB  
Article
A PCF Sensor Design Using Biocompatible PDMS for Biosensing
by Yanxin Yang, Jinze Li, Hao Sun, Jiawei Xi, Li Deng, Xin Liu and Xiang Li
Polymers 2024, 16(8), 1042; https://doi.org/10.3390/polym16081042 - 10 Apr 2024
Cited by 2 | Viewed by 2243
Abstract
A novel photonic crystal fiber (PCF) sensor for refractive index detection based on polydimethylsiloxane (PDMS) is presented in this research, as well as designs for single-channel and dual-channel structures for this PDMS-PCF sensor. The proposed structures can be used to develop sensors with [...] Read more.
A novel photonic crystal fiber (PCF) sensor for refractive index detection based on polydimethylsiloxane (PDMS) is presented in this research, as well as designs for single-channel and dual-channel structures for this PDMS-PCF sensor. The proposed structures can be used to develop sensors with biocompatible polymers. The performance of the single-channel PDMS-PCF sensor was studied, and it was found that adjusting parameters such as pore diameter, lattice constant, distance between the D-shaped structure and the fiber core, and the radius of gold nanoparticles can optimize the sensor’s performance. The findings indicate that the detection range of the single-channel photonic crystal is 1.21–1.27. The maximum wavelength sensitivity is 10,000 nm/RIU with a resolution of 1×105 RIU, which is gained when the refractive index is set to 1.27. Based on the results of the single-channel PCF, a dual-channel PDMS-PCF sensor is designed. The refractive index detection range of the proposed sensor is 1.2–1.28. The proposed sensor has a maximum wavelength sensitivity of 13,000 nm/RIU and a maximum resolution of 7.69×106 RIU at a refractive index of 1.28. The designed PDMS-PCF holds tremendous potential for applications in the analysis and detection of substances in the human body in the future. Full article
(This article belongs to the Special Issue Polymer-Based Sensors and Actuators)
Show Figures

Figure 1

16 pages, 11340 KiB  
Article
A New Method for Tungsten Oxide Nanopowder Deposition on Carbon-Fiber-Reinforced Polymer Composites for X-ray Attenuation
by Marian Mogildea, George Mogildea, Sorin I. Zgura, Doina Craciun, Natalia Mihăilescu, Petronela Prepelita, Laura Mihai, Marian C. Bazavan, Vasile Bercu, Leonard Constantin Gebac, Raluca Maier, Bogdan S. Vasile and Valentin Craciun
Nanomaterials 2023, 13(23), 3071; https://doi.org/10.3390/nano13233071 - 3 Dec 2023
Cited by 1 | Viewed by 2484
Abstract
A new method for the synthesis and deposition of tungsten oxide nanopowders directly on the surface of a carbon-fiber-reinforced polymer composite (CFRP) is presented. The CFRP was chosen because this material has very good thermal and mechanical properties and chemical resistance. Also, CFRPs [...] Read more.
A new method for the synthesis and deposition of tungsten oxide nanopowders directly on the surface of a carbon-fiber-reinforced polymer composite (CFRP) is presented. The CFRP was chosen because this material has very good thermal and mechanical properties and chemical resistance. Also, CFRPs have low melting points and are transparent under ionized radiation. The synthesis is based on the direct interaction between high-power-density microwaves and metallic wires to generate a high-temperature plasma in an oxygen-containing atmosphere, which afterward condenses as metallic oxide nanoparticles on the CFRP. During microwave discharge, the value of the electronic temperature of the plasma, estimated from Boltzmann plots, reached up to 4 eV, and tungsten oxide crystals with a size between 5 nm and 100 nm were obtained. Transmission electron microscopy (TEM) analysis of the tungsten oxide nanoparticles showed they were single crystals without any extended defects. Scanning electron microscopy (SEM) analysis showed that the surface of the CFRP sample does not degrade during microwave plasma deposition. The X-ray attenuation of CFRP samples covered with tungsten oxide nanopowder layers of 2 µm and 21 µm thickness was measured. The X-ray attenuation analysis indicated that the thin film with 2 µm thickness attenuated 10% of the photon flux with 20 to 29 KeV of energy, while the sample with 21 µm thickness attenuated 60% of the photon flux. Full article
(This article belongs to the Special Issue New Trends in Plasma Technology for Nanomaterials and Applications)
Show Figures

Figure 1

15 pages, 4283 KiB  
Article
Designing of Hollow Core Grapefruit Fiber Using Cyclo Olefin Polymer for the Detection of Fuel Adulteration in Terahertz Region
by Sakawat Hossain, Md. Aslam Mollah, Md. Kamal Hosain, Md. Shofiqul Islam and Abdulhameed Fouad Alkhateeb
Polymers 2023, 15(1), 151; https://doi.org/10.3390/polym15010151 - 29 Dec 2022
Cited by 7 | Viewed by 2047
Abstract
A grapefruit-shape hollow-core liquid infiltrated photonic crystal fiber (LI-PCF) is proposed and evaluated to identify the percentage of kerosene in adulterated petrol. The proposed hollow-fiber sensor is designed with Cyclo Olefin Polymer (Zeonex) and likely to be filled with different samples of petrol [...] Read more.
A grapefruit-shape hollow-core liquid infiltrated photonic crystal fiber (LI-PCF) is proposed and evaluated to identify the percentage of kerosene in adulterated petrol. The proposed hollow-fiber sensor is designed with Cyclo Olefin Polymer (Zeonex) and likely to be filled with different samples of petrol which is adulated by the kerosene up to 100%. Considering the electromagnetic radiation in THz band, the sensing properties are thoroughly investigated by adopting finite element method (FEM) based COMSOL Multiphysics software. However, the proposed sensor offers a very high relative sensitivity (RS) of 97.27% and confinement loss (CL) less than 10−10 dB/m, and total loss under 0.07 dB/cm, at 2 THz operating frequency. Besides that, the sensor also possesses a low effective material loss (EML), high numerical aperture (NA), and large Marcuse spot size (MSS). The sensor structure is fabrication feasible through existing fabrication methodologies consequently making this petrol adulteration sensor a propitious aspirant for real-life applications of petrol adulteration measurements in commercial and industrial sensing. Full article
Show Figures

Figure 1

10 pages, 2851 KiB  
Article
Thermal Sensor Based on Polydimethylsiloxane Polymer Deposited on Low-Index-Contrast Dielectric Photonic Crystal Structure
by Yousuf Khan, Muhammad A. Butt, Svetlana N. Khonina and Nikolay L. Kazanskiy
Photonics 2022, 9(10), 770; https://doi.org/10.3390/photonics9100770 - 14 Oct 2022
Cited by 10 | Viewed by 2613
Abstract
In this work, a dielectric photonic crystal-based thermal sensor is numerically investigated for the near-infrared spectral range. An easy-to-fabricate design is chosen with a waveguide layer deposited on a silicon dioxide substrate with air holes drilled across it. To sense the ambient temperature, [...] Read more.
In this work, a dielectric photonic crystal-based thermal sensor is numerically investigated for the near-infrared spectral range. An easy-to-fabricate design is chosen with a waveguide layer deposited on a silicon dioxide substrate with air holes drilled across it. To sense the ambient temperature, a functional layer of polydimethylsiloxane biguanide polymer is deposited on the top, the optical properties of which vary with changes in the temperature. An open-source finite-difference time-domain-based software, MEEP, is used for design and numerical simulation. The design of the sensor, spectral properties, and proposed fabrication method are part of the discussion. The performance of the sensor is investigated for an ambient temperature range of 10 to 90 °C, for which the device offers a sensitivity value in the range of 0.109 nm/°C and a figure-of-merit of 0.045 °C−1. Keeping in mind the high-temperature tolerance, inert chemical properties, low material cost, and easy integration with optical fiber, the device can be proposed for a wide range of thermal sensing applications. Full article
Show Figures

Figure 1

6 pages, 1013 KiB  
Communication
Calculation of Bandwidth of Multimode Step-Index Polymer Photonic Crystal Fibers
by Branko Drljača, Svetislav Savović, Milan S. Kovačević, Ana Simović, Ljubica Kuzmanović, Alexandar Djordjevich and Rui Min
Polymers 2021, 13(23), 4218; https://doi.org/10.3390/polym13234218 - 1 Dec 2021
Cited by 5 | Viewed by 2363
Abstract
By solving the time-dependent power flow equation, we present a novel approach for evaluating the bandwidth in a multimode step-index polymer photonic crystal fiber (SI PPCF) with a solid core. The bandwidth of such fiber is determined for various layouts of air holes [...] Read more.
By solving the time-dependent power flow equation, we present a novel approach for evaluating the bandwidth in a multimode step-index polymer photonic crystal fiber (SI PPCF) with a solid core. The bandwidth of such fiber is determined for various layouts of air holes and widths of Gaussian launch beam distribution. We found that the lower the NA of SI PPCF, the larger the bandwidth. The smaller launch beam leads to a higher bandwidth for short fibers. The influence of the width of the launch beam distribution on bandwidth lessens as the fiber length increases. The bandwidth tends to its launch independent value at a particular fiber length. This length denotes the onset of the steady state distribution (SSD). This information is useful for multimode SI PPCF applications in telecommunications and optical fiber sensing applications. Full article
(This article belongs to the Special Issue Polymer Optical Fibers: Recent Developments and Applications)
Show Figures

Figure 1

23 pages, 2826 KiB  
Review
Molecular Imprinted Polymers Coupled to Photonic Structures in Biosensors: The State of Art
by Andrea Chiappini, Laura Pasquardini and Alessandra Maria Bossi
Sensors 2020, 20(18), 5069; https://doi.org/10.3390/s20185069 - 7 Sep 2020
Cited by 46 | Viewed by 6240
Abstract
Optical sensing, taking advantage of the variety of available optical structures, is a rapidly expanding area. Over recent years, whispering gallery mode resonators, photonic crystals, optical waveguides, optical fibers and surface plasmon resonance have been exploited to devise different optical sensing configurations. In [...] Read more.
Optical sensing, taking advantage of the variety of available optical structures, is a rapidly expanding area. Over recent years, whispering gallery mode resonators, photonic crystals, optical waveguides, optical fibers and surface plasmon resonance have been exploited to devise different optical sensing configurations. In the present review, we report on the state of the art of optical sensing devices based on the aforementioned optical structures and on synthetic receptors prepared by means of the molecular imprinting technology. Molecularly imprinted polymers (MIPs) are polymeric receptors, cheap and robust, with high affinity and selectivity, prepared by a template assisted synthesis. The state of the art of the MIP functionalized optical structures is critically discussed, highlighting the key progresses that enabled the achievement of improved sensing performances, the merits and the limits both in MIP synthetic strategies and in MIP coupling. Full article
Show Figures

Figure 1

13 pages, 6274 KiB  
Article
Polymer Nanoparticle Identification and Concentration Measurement Using Fiber-Enhanced Raman Spectroscopy
by Mark R. Pollard, Katia Sparnacci, Lars J. Wacker and Hugo Kerdoncuff
Chemosensors 2020, 8(1), 21; https://doi.org/10.3390/chemosensors8010021 - 14 Mar 2020
Cited by 6 | Viewed by 4143
Abstract
We present a measurement technique for chemical identification and concentration measurement of polymer nanoparticles in aqueous solution, which is achieved using Raman spectroscopy. This work delivers an improvement in measurement sensitivity of 40 times over conventional Raman measurements in cuvettes by loading polymer [...] Read more.
We present a measurement technique for chemical identification and concentration measurement of polymer nanoparticles in aqueous solution, which is achieved using Raman spectroscopy. This work delivers an improvement in measurement sensitivity of 40 times over conventional Raman measurements in cuvettes by loading polymer nanoparticles into the hollow core of a microstructured optical fiber. We apply this “fiber-enhanced” system to measure the concentration of two separate samples of polystyrene particles (diameters of 60 nm and 120 nm respectively) with concentrations in the range from 0.07 to 0.5 mg/mL. The nanoliter volume formed by the fiber presents unique experimental conditions where nanoparticles are confined within the fiber core and prevented from diffusing outside the incident electromagnetic field, thereby enhancing their interaction. Our results suggest an upper limit on the size of particle that can be measured using the hollow-core photonic crystal fiber, as the increasing angular distribution of scattered light with particle size exceeds the acceptance angle of the liquid-filled fiber. We investigate parameters such as the fiber filling rate and optical properties of the filled fiber, with the aim to deliver repeatable and quantifiable measurements. This study thereby aids the on-going process to create compact systems that can be integrated into nanoparticle production settings for in-line measurements. Full article
Show Figures

Figure 1

12 pages, 2413 KiB  
Article
Polymer Fibers Covered by Soft Multilayered Films for Sensing Applications in Composite Materials
by Dorian Nikoniuk, Karolina Bednarska, Maksymilian Sienkiewicz, Grzegorz Krzesiński, Mateusz Olszyna, Lars Dähne, Tomasz R. Woliński and Piotr Lesiak
Sensors 2019, 19(18), 4052; https://doi.org/10.3390/s19184052 - 19 Sep 2019
Cited by 6 | Viewed by 3717
Abstract
This paper presents the possibility of applying a soft polymer coating by means of a layer-by-layer (LbL) technique to highly birefringent polymer optical fibers designed for laminating in composite materials. In contrast to optical fibers made of pure silica glass, polymer optical fibers [...] Read more.
This paper presents the possibility of applying a soft polymer coating by means of a layer-by-layer (LbL) technique to highly birefringent polymer optical fibers designed for laminating in composite materials. In contrast to optical fibers made of pure silica glass, polymer optical fibers are manufactured without a soft polymer coating. In typical sensor applications, the absence of a buffer coating is an advantage. However, highly birefringent polymer optical fibers laminated in a composite material are much more sensitive to temperature changes than polymer optical fibers in a free space as a result of the thermal expansion of the composite material. To prevent this, we have covered highly birefringent polymer optical fibers with a soft polymer coating of different thickness and measured the temperature sensitivity of each solution. The results obtained show that the undesired temperature sensitivity of the laminated optical fiber decreases as the thickness of the coating layer increases. Full article
(This article belongs to the Special Issue Fiber-Based Sensing Technology: Recent Progresses and New Challenges)
Show Figures

Figure 1

10 pages, 550 KiB  
Article
Surface Plasmon Resonance Sensor Based on Polymer Photonic Crystal Fibers with Metal Nanolayers
by Ying Lu, Cong-Jing Hao, Bao-Qun Wu, Mayilamu Musideke, Liang-Cheng Duan, Wu-Qi Wen and Jian-Quan Yao
Sensors 2013, 13(1), 956-965; https://doi.org/10.3390/s130100956 - 15 Jan 2013
Cited by 76 | Viewed by 8353
Abstract
A large-mode-area polymer photonic crystal fiber made of polymethyl methacrylate with the cladding having only one layer of air holes near the edge of the fiber is designed and proposed to be used in surface plasmon resonance sensors. In such sensor, a nanoscale [...] Read more.
A large-mode-area polymer photonic crystal fiber made of polymethyl methacrylate with the cladding having only one layer of air holes near the edge of the fiber is designed and proposed to be used in surface plasmon resonance sensors. In such sensor, a nanoscale metal film and analyte can be deposited on the outer side of the fiber instead of coating or filling in the holes of the conventional PCF, which make the real time detection with high sensitivity easily to realize. Moreover, it is relatively stable to changes of the amount and the diameter of air holes, which is very beneficial for sensor fabrication and sensing applications. Numerical simulation results show that under the conditions of the similar spectral and intensity sensitivity of 8.3 × 10−5–9.4 × 10−5 RIU, the confinement loss can be increased dramatically. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Back to TopTop