Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (303)

Search Parameters:
Keywords = polychlorinated biphenyls (PCB)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1050 KiB  
Article
Fungal Communities in Soils Contaminated with Persistent Organic Pollutants: Adaptation and Potential for Mycoremediation
by Lazaro Alexis Pedroso Guzman, Lukáš Mach, Jiřina Marešová, Jan Wipler, Petr Doležal, Jiřina Száková and Pavel Tlustoš
Appl. Sci. 2025, 15(15), 8607; https://doi.org/10.3390/app15158607 (registering DOI) - 4 Aug 2025
Viewed by 101
Abstract
The main objective of this study was to select indigenous fungal species suitable for the potential mycoremediation of the soils polluted by organic pollutants. As a sampling area, Litvínov City (North Bohemia, Czech Republic) was selected. The city is characterized by intensive coal [...] Read more.
The main objective of this study was to select indigenous fungal species suitable for the potential mycoremediation of the soils polluted by organic pollutants. As a sampling area, Litvínov City (North Bohemia, Czech Republic) was selected. The city is characterized by intensive coal mining, coal processing, and the chemical industry, predominantly petrochemistry. The elevated contents of persistent organic pollutants (POPs) such as polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were identified in urban soils due to the long-term industrial pollution. The results confirmed elevated contents of PAHs in all the analyzed soil samples with high variability ranging between 0.5 and 23.3 mg/kg regardless of the position of the sampling area on the city map. PCBs and PCDD/Fs exceeded the detection limits in the soil at the sampling points, and several hotspots were revealed at some locations. All the sampling points contained a diverse community of saprotrophic and mycorrhizal fungi, as determined according to abundant basidiomycetes. Fungal species with a confirmed ability to degrade organic pollutants were found, such as species representing the genera Agaricus from the Agaricaceae family, Coprinopsis from the Psathyrellaceae family, Hymenogaster from the Hymenogasteraceae family, and Pluteus from the Pluteaceae family. These species are accustomed to particular soil conditions as well as the elevated contents of the POPs in them. Therefore, these species could be taken into account when developing potential bioremediation measures to apply in the most polluted areas, and their biodegradation ability should be elucidated in further research. The results of this study contribute to the investigation of the potential use of fungal species for mycoremediation of the areas polluted by a wide spectrum of organic pollutants. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

16 pages, 1192 KiB  
Article
Application of the AI-Based Framework for Analyzing the Dynamics of Persistent Organic Pollutants (POPs) in Human Breast Milk
by Gordana Jovanović, Timea Bezdan, Snježana Herceg Romanić, Marijana Matek Sarić, Martina Biošić, Gordana Mendaš, Andreja Stojić and Mirjana Perišić
Toxics 2025, 13(8), 631; https://doi.org/10.3390/toxics13080631 - 27 Jul 2025
Viewed by 321
Abstract
Human milk has been used for over 70 years to monitor pollutants such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). Despite the growing body of data, our understanding of the pollutant exposome, particularly co-exposure patterns and their interactions, remains limited. Artificial intelligence [...] Read more.
Human milk has been used for over 70 years to monitor pollutants such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). Despite the growing body of data, our understanding of the pollutant exposome, particularly co-exposure patterns and their interactions, remains limited. Artificial intelligence (AI) offers considerable potential to enhance biomonitoring efforts through advanced data modelling, yet its application to pollutant dynamics in complex biological matrices such as human milk remains underutilized. This study applied an AI-based framework, integrating machine learning, metaheuristic hyperparameter optimization, explainable AI, and postprocessing, to analyze PCB-170 levels in breast milk samples from 186 mothers in Zadar, Croatia. Among 24 analyzed POPs, the most influential predictors of PCB-170 concentrations were hexa- and hepta-chlorinated PCBs (PCB-180, -153, and -138), alongside p,p’-DDE. Maternal age and other POPs exhibited negligible global influence. SHAP-based interaction analysis revealed pronounced co-behavior among highly chlorinated congeners, especially PCB-138–PCB-153, PCB-138–PCB-180, and PCB-180–PCB-153. These findings highlight the importance of examining pollutant interactions rather than individual contributions alone. They also advocate for the revision of current monitoring strategies to prioritize multi-pollutant assessment and focus on toxicologically relevant PCB groups, improving risk evaluation in real-world exposure scenarios. Full article
Show Figures

Figure 1

25 pages, 1034 KiB  
Article
A Human Health Risk Assessment of Persistent Organic Pollutants in Wild Marine Mussels from the Western Cape Province of South Africa
by Deborah Caitlin Firth, Philip E. Strydom, Lutz Auerswald and Louwrens Christiaan Hoffman
Foods 2025, 14(13), 2226; https://doi.org/10.3390/foods14132226 - 24 Jun 2025
Viewed by 284
Abstract
Persistent Organic Pollutants (POPs) are contaminants that pose potential harm to environments and human consumers. Wild mussels (Mytilus galloprovincialis, Choromytilus meridionalis, and Perna perna) were collected from the coastline of the Western Cape Province of South Africa and analysed [...] Read more.
Persistent Organic Pollutants (POPs) are contaminants that pose potential harm to environments and human consumers. Wild mussels (Mytilus galloprovincialis, Choromytilus meridionalis, and Perna perna) were collected from the coastline of the Western Cape Province of South Africa and analysed for polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polyaromatic hydrocarbon (PAHs) via gas chromatography tandem mass spectrometry. The results showed eleven PAHs at concentrations ranging from NF to 50.3 ng g−1 d.w., five PCBs at concentrations between 4.1 and 18.6 ng g−1 d.w., and two OCPs, namely β-hexachlorocyclohexane (NF–7.9 ng g−1 d.w.) and chlordane (7.2–14.5 µg g−1 d.w.). A Human Health Risk Assessment (HHRA) determined PAH concentrations to pose little health risk to adults and children consuming < 1000 g and 500 g per month (g m−1) wild mussel meat, respectively. The HHRA of PCBs found adults and children would experience negative health effects at a consumption rate of 250 g m−1. HHRAs determined chlordane concentrations to pose unacceptable health risks for adults and children at all consumption rates (similar results for lindane). To avoid unnecessary POP-related health risks over a lifetime, it is recommended that adults consume < 250 g m−1 of wild mussels from the Western Cape Province, and children should avoid consuming mussels. This research demonstrates the legacy of POP contamination along the coastline of the Western Cape Province; more monitoring of these contaminants is imperative to protect marine ecosystems and food chains. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

35 pages, 1539 KiB  
Article
Combined Effects of Metals, PCBs, Dioxins, and Furans on Cardiovascular Dysfunction
by Bolanle Akinyemi and Emmanuel Obeng-Gyasi
J. Xenobiot. 2025, 15(3), 94; https://doi.org/10.3390/jox15030094 - 19 Jun 2025
Viewed by 789
Abstract
Environmental exposures to heavy metals, polychlorinated biphenyls (PCBs), dioxins, and furans have been associated with adverse cardiovascular outcomes, yet their combined effects remain underexplored. This study examined the joint influence of these contaminants on cardiovascular risk indicators in a representative sample of U.S. [...] Read more.
Environmental exposures to heavy metals, polychlorinated biphenyls (PCBs), dioxins, and furans have been associated with adverse cardiovascular outcomes, yet their combined effects remain underexplored. This study examined the joint influence of these contaminants on cardiovascular risk indicators in a representative sample of U.S. adults from the 2003–2004 National Health and Nutrition Examination Survey (NHANES). Biomarkers of exposure included lead, cadmium, mercury, twelve PCB congeners, seven dioxins, and ten furans. Cardiovascular outcomes were assessed using blood pressure, Framingham Risk Score (FRS), and lipid profiles. Associations were analyzed using multivariable linear regression and Bayesian Kernel Machine Regression (BKMR), adjusting for age, sex, ethnicity, body mass index, smoking, alcohol consumption, and income. The results demonstrated that metals, particularly mercury, were strongly associated with increased blood pressure and altered HDL cholesterol. PCBs were predominantly linked to elevated systolic blood pressure and FRS, with PCB156 and PCB126 identified as principal contributors. Furans exhibited the strongest associations with dyslipidemia, including elevated LDL cholesterol, total cholesterol, and triglycerides. Combined exposure analysis revealed a complex pattern, with increasing pollutant burdens associated with rising blood pressure and risk scores but declining lipid levels. These findings underscore the outcome-specific effects of pollutant mixtures and suggest that chronic low-level exposure to multiple environmental contaminants may contribute to cardiovascular dysfunction in the general population. Further longitudinal research is needed to confirm these associations and guide risk reduction strategies. Full article
Show Figures

Graphical abstract

20 pages, 453 KiB  
Review
Harnessing Biotechnology for the Remediation of Organic Pollutants in Coastal Marine Ecosystems
by Adenike A. Akinsemolu and Helen N. Onyeaka
Appl. Sci. 2025, 15(12), 6921; https://doi.org/10.3390/app15126921 - 19 Jun 2025
Viewed by 507
Abstract
The natural and biological processes of organisms offer significant potential for the removal and remediation of environmental contaminants including organic pollutants such as persistent organic pollutants (POPs) like polychlorinated biphenyls (PCBs), pesticides, herbicides, industrial chemicals, and pharmaceuticals. Biotechnology provides various approaches to detoxify [...] Read more.
The natural and biological processes of organisms offer significant potential for the removal and remediation of environmental contaminants including organic pollutants such as persistent organic pollutants (POPs) like polychlorinated biphenyls (PCBs), pesticides, herbicides, industrial chemicals, and pharmaceuticals. Biotechnology provides various approaches to detoxify or remove these pollutants from ecosystems through the use of microorganisms and plants. This review explores the application of biotechnology for the remediation of organic pollutants in coastal marine ecosystems. A thorough analysis of the existing literature highlights bioremediation methods, such as biostimulation, bioaugmentation, and bioattenuation, and phytoremediation methods, like phytoextraction, phytostabilization, phytovolatilization, phytodegradaton, and phytofiltration. as the most widely used techniques in biotechnology. While bioremediation has advanced substantially in fields such as electrochemistry, genetic engineering, and nanotechnology, there is still limited research on the compatibility and application of these technologies in phytoremediation. This paper therefore aims to examine biotechnological methods for tackling organic pollutants in coastal marine environments with an emphasis on the need for further research on enhancing phytoremediation through microbial inoculation and nanomaterial-assisted uptake. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

23 pages, 3291 KiB  
Article
From Contamination to Consequence: Tracing Donna Lake’s Human Environmental History
by Dean Kyne
Geographies 2025, 5(2), 24; https://doi.org/10.3390/geographies5020024 - 31 May 2025
Viewed by 866
Abstract
The Donna Reservoir and Canal System (Donna Lake) in Texas has been a persistent source of environmental contamination for over a century, exposing surrounding communities to dangerous levels of polychlorinated biphenyls (PCBs). Originally built for agricultural irrigation, the system became a recreational fishing [...] Read more.
The Donna Reservoir and Canal System (Donna Lake) in Texas has been a persistent source of environmental contamination for over a century, exposing surrounding communities to dangerous levels of polychlorinated biphenyls (PCBs). Originally built for agricultural irrigation, the system became a recreational fishing site before PCB contamination was discovered during public health investigations in the 1990s. This study examines patterns of demographic vulnerability, evaluates remediation efforts by the U.S. Environmental Protection Agency (EPA), and explores residents’ ongoing challenges related to toxic exposure. Using publicly available demographic data, EPA reports, and previous health assessments, the study analyzes variations in community characteristics by proximity to Donna Lake and reviews the effectiveness of interventions implemented to date. The results show that communities closer to the contamination site are predominantly low-income and Spanish-speaking, and that remediation efforts, although initiated, have been slow and insufficient to fully eliminate health risks. The residents continue to face gaps in risk communication and protection. The findings underscore the lasting impacts of historical contamination on vulnerable populations and highlight the urgent need for more effective, community-centered remediation strategies to address persistent environmental health disparities. Full article
Show Figures

Figure 1

21 pages, 1003 KiB  
Article
Alpinia zerumbet Extract Mitigates PCB 126-Induced Neurotoxicity and Locomotor Impairment in Adult Male Mice
by Paula Hosana Fernandes da Silva, Jemima Isnardo Fernandes, Matheus Pontes de Menezes, Fabrícia Lima Fontes-Dantas, André Luiz Nunes Freitas, Rayane Efraim Correa, Ulisses Cesar de Araujo, Dayane Teixeira Ognibene, Cristiane Aguiar da Costa, Cláudio Carneiro Filgueiras, Alex Christian Manhães, Júlio Beltrame Daleprane, Angela de Castro Resende and Graziele Freitas de Bem
Sci. Pharm. 2025, 93(2), 23; https://doi.org/10.3390/scipharm93020023 - 25 May 2025
Viewed by 1391
Abstract
Polychlorinated biphenyls (PCBs) are synthetic chemical compounds that have bioaccumulated and contaminated the entire global ecosystem, causing neurotoxic effects. However, polyphenols may have protective effects against this neurotoxicity. We aimed to investigate the neuroprotective effect of a hydroalcoholic extract of fresh leaves of [...] Read more.
Polychlorinated biphenyls (PCBs) are synthetic chemical compounds that have bioaccumulated and contaminated the entire global ecosystem, causing neurotoxic effects. However, polyphenols may have protective effects against this neurotoxicity. We aimed to investigate the neuroprotective effect of a hydroalcoholic extract of fresh leaves of Alpinia zerumbet (ALE), which is rich in polyphenols, on the neurobehavioral changes induced by 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126). We divided C57BL/6 male mice into four groups (n = 40): Control, Control + ALE, PCB, and PCB + ALE. We administered the ALE (50 mg/kg/day) through drinking water and PCB 126 (2 mg/kg/once a week) intraperitoneally for four weeks. The mice were subjected to the elevated plus maze (EPM) and open field (OF) tests in the last week of treatment. PCB 126 reduced locomotor activity, DOPAC levels, dopamine turnover, and D2 receptor expression. This compound also increased lipid peroxidation, tyrosine levels, and BAX expression in the cerebral cortex. Notably, ALE treatment prevented locomotor activity reduction and increased DOPAC levels, dopamine turnover, and D2 receptor expression. Moreover, the extract prevented the PCB-induced increases in BAX expression and lipid peroxidation. Finally, the ALE increased SOD antioxidant activity. Our investigation highlights that using the ALE may serve as a therapeutic strategy against PCB-induced neurotoxicity. Full article
(This article belongs to the Topic Natural Products and Drug Discovery—2nd Edition)
Show Figures

Graphical abstract

25 pages, 2388 KiB  
Article
PCBs in Chinstrap Penguins from Deception Island (South Shetland Islands, Antarctica)
by Miguel Motas, Silvia Jerez-Rodríguez, José Manuel Veiga-del-Baño, Juan José Ramos, José Oliva, Miguel Ángel Cámara, Pedro Andreo-Martínez and Simonetta Corsolini
Toxics 2025, 13(6), 430; https://doi.org/10.3390/toxics13060430 - 24 May 2025
Viewed by 997
Abstract
The aim of this study was to evaluate the concentration of polychlorinated biphenyls (PCBs) in chinstrap penguins (Pygoscelis antarctica) and krill (Euphausia superba) from Deception Island (South Shetland Islands, Antarctica) to provide additional data of the PCB presence in [...] Read more.
The aim of this study was to evaluate the concentration of polychlorinated biphenyls (PCBs) in chinstrap penguins (Pygoscelis antarctica) and krill (Euphausia superba) from Deception Island (South Shetland Islands, Antarctica) to provide additional data of the PCB presence in Antarctica. To this end, 34 samples of different tissues corresponding to four adult specimens and six chicks, and krill from the area were studied. The selected samples were analyzed for the determination of 27 congeners of PCBs by gas chromatography. Adult specimens accumulated PCBs mainly in the liver (33%, 1330.82 ± 733.69 pg·g−1 wet weight, w.w.) and muscle (25%, 1029.73 ± 823.4 pg·g−1 w.w.), whereas the brain showed the highest levels in chicks (36%, 1215.83 ± 955.19 pg·g−1 w.w.). Regarding krill, our results were five to eight times lower than the levels found in krill from King George Island and from the Ross Sea. Further, a distribution analysis of PCBs in penguins according to Regulation 2013/39/UE and Commission Regulation (EU) No 277/2012 was also performed, and PCBs were categorized into three groups (dioxin-like-mono-ortho, non-dioxin-like-indicators, and others-non-dioxin-like). The data indicate that the content of the other group was generally higher than that of the other two PCB groups for both adults and chicks. Notably, the liver consistently exhibited the highest proportion of the other group. Full article
(This article belongs to the Special Issue Biomonitoring of Toxic Elements and Emerging Pollutants)
Show Figures

Figure 1

25 pages, 1142 KiB  
Article
Polychlorinated Biphenyl Exposure Alters tRNA Transcriptome in High-Fat Diet-Fed Mouse Liver
by Carolyn M. Klinge, Julia H. Chariker, Kellianne M. Piell, Belinda J. Petri, Eric C. Rouchka and Matthew C. Cave
Non-Coding RNA 2025, 11(3), 41; https://doi.org/10.3390/ncrna11030041 - 22 May 2025
Viewed by 576
Abstract
Background/Objectives: Exposure of high-fat diet (HFD)-fed mice to polychlorinated biphenyls (PCBs) results in metabolic dysfunction-associated steatotic liver disease (MASLD) and progression to metabolic dysfunction-associated steatohepatitis (MASH). The mechanisms by which HFD diet and PCBs increase MASLD are unclear. Previously, we identified differences in [...] Read more.
Background/Objectives: Exposure of high-fat diet (HFD)-fed mice to polychlorinated biphenyls (PCBs) results in metabolic dysfunction-associated steatotic liver disease (MASLD) and progression to metabolic dysfunction-associated steatohepatitis (MASH). The mechanisms by which HFD diet and PCBs increase MASLD are unclear. Previously, we identified differences in HFD-fed mouse liver tRNA modifications with single oral exposures to the dioxin-like PCB126, the non-dioxin-like PCB mixture Aroclor 1260 (Ar1260), or the combination of Ar1260 + PCB126. Methods: Here, we used small RNA sequencing and the tRNA analysis of expression (tRAX) pipeline to examine if PCB exposures alter the tRNA transcriptome, including tRNA-derived fragments (tRFs), in the livers of the PCB-exposed mice. Results: Each PCB exposure produced distinct hepatic tRNA transcriptomes with more tRNAs decreased than increased. Only tRNA-Glu-TTC-1 was reduced with all three PCB exposures. More changes in tRFs were identified with Ar1260 alone or in combination with PCB126 than with PCB126 alone. Four tRF-3s were upregulated in both PCB126 and Ar1260 + PCB126 co-exposed mice, suggesting PCB126 as responsible for this increase. We previously reported that PCB126 exposure increased hepatic Angiogenin (ANG) protein which generates tRF-3s. Four previously reported tRNA modifications corresponded to positions of PCB-associated tRNA modifications identified by tRAX: m1A, m6A, ms2t6A, and Ψ. Conclusions: Overall, the differences in hepatic tRNAs and tRFs with three different PCB exposures suggest that PCB exposures play an unexplored role in regulating translation in mouse liver. Full article
Show Figures

Figure 1

20 pages, 15011 KiB  
Article
Glacial Waters Under Threat: Risk Assessment and Source Identification of Polychlorinated Biphenyls in Meili Snow Mountains, Southeastern Tibetan Plateau
by Huawei Zhang, Yan Yao, Xinyu Wen, Rui Zhang and Rui Liu
Toxics 2025, 13(5), 391; https://doi.org/10.3390/toxics13050391 - 13 May 2025
Viewed by 516
Abstract
Polychlorinated biphenyls (PCBs) are classified as persistent organic pollutants (POPs) due to their potential threat to both ecosystems and human health. The Tibetan Plateau (TP), characterized by its low temperatures, pristine ecological conditions, and remoteness from anthropogenic influences, serves as the investigation region. [...] Read more.
Polychlorinated biphenyls (PCBs) are classified as persistent organic pollutants (POPs) due to their potential threat to both ecosystems and human health. The Tibetan Plateau (TP), characterized by its low temperatures, pristine ecological conditions, and remoteness from anthropogenic influences, serves as the investigation region. This study analyzed water samples from the temperature glacial watershed and employed the risk assessment method established by the United States Environmental Protection Agency (US EPA) to assess both carcinogenic and non-carcinogenic risks of PCBs in five age groups. The total concentrations of PCBs (∑3PCBs) varied from 738 to 1914 ng/L, with a mean value of 1058 ng/L, which was comparable to or exceeded levels reported in the surface water around the TP. Notably, the riverine sites located near the villages and towns exhibited the highest pollution levels. Our analyses indicated that glacier melting, long-range atmospheric transport (LRAT), reductive dechlorination processes, and various anthropogenic activities might be potential sources of PCB emission in the Meili Snow Mountains. According to the established national and international water quality standards, as well as toxic equivalency concentrations (TEQs) for dioxin-like PCBs (DL PCBs), the PCB concentrations detected in this study could result in serious biological damage and adverse ecological toxicological effects. However, the PCBs in all samples posed a negligible cancer risk to five age groups, and a non-carcinogenic risk to adults. These findings contribute valuable insights into the risks and sources of PCBs and may serve as a foundational reference for subsequent study of these compounds in the Meili Snow Mountains area of the southeastern TP. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

21 pages, 3000 KiB  
Article
Populus × euramericana Accumulates More Organic Pollutants (PAHs and PCBs), While P. nigra ‘Italica’ Absorbs More Heavy Metals
by Olivera Kalozi, Marko Kebert, Saša Orlović, Marko Ilić and Saša Kostić
Plants 2025, 14(10), 1445; https://doi.org/10.3390/plants14101445 - 12 May 2025
Viewed by 519
Abstract
The phytoremediation capacity of three common poplar species, white poplar (Populus alba L.), Lombardy poplar (Populus nigra ’Italica’), and Euro-American hybrid poplar (Populus × euramericana (Dode) Guinier cl. I-214), grown in a middle-sized city with a continental climate in Serbia [...] Read more.
The phytoremediation capacity of three common poplar species, white poplar (Populus alba L.), Lombardy poplar (Populus nigra ’Italica’), and Euro-American hybrid poplar (Populus × euramericana (Dode) Guinier cl. I-214), grown in a middle-sized city with a continental climate in Serbia was analyzed. For this purpose, 15 polycyclic aromatic hydrocarbons (PAHs), 10 polychlorinated biphenyls (PCBs), and 6 heavy metals (HMs) were tracked in leaves and one-year-old branches. P. × euramericana showed the highest PAH uptake capacity, with concentrations of 821.40 ng g−1 dry weight (DW) and 453.64 ng g−1 DW in leaves and branches, respectively. Likewise, P. euramericana accumulated the highest levels of PCBs in leaves (364.53 ng g−1 DW). Additionally, P. nigra ‘Italica’ demonstrated the greatest accumulation potential for HMs, particularly zinc, with 310.10 µg g−1 DW in leaves. Leaves accumulated ~30% more pollutants compared with branches. Significant differences in pollutant uptake capacities were found among species and plant organs. These findings highlight the importance of species selection in phytoremediation and clarify the role of poplar species in accumulating pollutants to mitigate urban pollution. Finally, this study provides valuable insights for future phytoremediation strategies using poplars, especially in urban environments with similar conditions. Full article
Show Figures

Figure 1

13 pages, 1034 KiB  
Review
Air Pollution and Pituitary Adenoma Pathogenesis: Unraveling Environmental Impacts on Neuroendocrine Function and Tumorigenesis
by Andre E. Boyke, Simon A. Menaker, Alberto Nunez, Keith L. Black and Vladimir A. Ljubimov
J. Xenobiot. 2025, 15(3), 71; https://doi.org/10.3390/jox15030071 - 12 May 2025
Viewed by 879
Abstract
Pituitary adenomas, although predominantly benign, can lead to significant clinical complications due to endocrine imbalances and mass effects on adjacent structures. Traditional research has focused on intrinsic factors like genetic mutations and hormonal dysregulation; however, emerging evidence implicates environmental pollutants—particularly urban air contaminants—in [...] Read more.
Pituitary adenomas, although predominantly benign, can lead to significant clinical complications due to endocrine imbalances and mass effects on adjacent structures. Traditional research has focused on intrinsic factors like genetic mutations and hormonal dysregulation; however, emerging evidence implicates environmental pollutants—particularly urban air contaminants—in pituitary tumorigenesis. This review consolidates current findings on how chronic exposure to pollutants such as benzene, di(2-ethylhexyl) phthalate (DEHP), and polychlorinated biphenyls (PCBs) may trigger neuroinflammation, disrupt the hypothalamic–pituitary–adrenal (HPA) axis, and alter pituitary cell proliferation and hormone secretion. We explore mechanistic pathways involving inflammatory cytokines, oxidative stress, and microenvironmental modifications that contribute to neoplastic transformation and tumor progression. Epidemiological studies, supported by in vitro experiments, suggest that air pollutants not only initiate the development of pituitary adenomas but may also enhance the secretory activity of functioning tumors, potentially increasing their aggressiveness. Given the escalating global burden of air pollution and its far-reaching public health implications, further investigation is essential to elucidate these complex interactions. Advancing our understanding in this area could inform preventive strategies and therapeutic interventions aimed at mitigating the environmental impact on pituitary tumor behavior. Full article
Show Figures

Graphical abstract

24 pages, 3124 KiB  
Article
Trends in Polychlorinated Biphenyl Contamination in Bucharest’s Urban Soils: A Two-Decade Perspective (2002–2022)
by Mirela Alina Sandu, Mihaela Preda, Veronica Tanase, Denis Mihailescu, Ana Virsta and Veronica Ivanescu
Processes 2025, 13(5), 1357; https://doi.org/10.3390/pr13051357 - 29 Apr 2025
Viewed by 688
Abstract
Polychlorinated biphenyls (PCBs) are synthetic organic compounds that were widely used in industrial applications throughout the 20th century. Due to their chemical stability, resistance to degradation and ability to bioaccumulate and biomagnify through food chains, PCBs pose long-term environmental and health risks. Due [...] Read more.
Polychlorinated biphenyls (PCBs) are synthetic organic compounds that were widely used in industrial applications throughout the 20th century. Due to their chemical stability, resistance to degradation and ability to bioaccumulate and biomagnify through food chains, PCBs pose long-term environmental and health risks. Due to these characteristics, PCBs have been globally regulated as persistent organic pollutants (POPs), despite being banned from production in most countries decades ago. This study investigates temporal trends in PCB contamination in urban soils of Bucharest over a 20-year period (2002–2022), focusing on six principal congeners (PCB 28, 52, 101, 138, 153, and 180) sampled from 13 locations, including roadsides and urban parks. Gas chromatography and spatial analysis using inverse distance weighting (IDW) revealed a marked reduction in Σ6PCB concentrations, declining from 0.0159 mg/kg in 2002 to 0.0065 mg/kg in 2022, with statistically significant differences confirmed by Kruskal–Wallis analysis (p < 0.05). This decline is primarily attributed to reduced emissions, source control measures, and natural attenuation. However, the persistence of PCBs in localized hotspots is influenced by secondary dispersion mechanisms, such as atmospheric deposition and surface runoff, which redistribute contaminants rather than eliminate them. Health risk assessments via ingestion, dermal absorption, and inhalation routes confirmed negligible carcinogenic risk for both adults and children. Although measurable progress has been achieved, the persistence of localized contamination underscores the need for targeted remediation strategies and sustained environmental monitoring to protect vulnerable urban areas from recontamination. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

13 pages, 2007 KiB  
Article
Ecological Risk and Early Warning of PCBs in Central Jilin Province’s Black Soil Zone, China
by Jinying Li, Yanan Chen, Dianqi Pan, Jiquan Zhang, Yichen Zhang, Pengju Song and Wanying Shi
Toxics 2025, 13(4), 249; https://doi.org/10.3390/toxics13040249 - 27 Mar 2025
Viewed by 356
Abstract
To investigate the levels of polychlorinated biphenyls (PCBs) in the black soils of Northeast China, we collected 59 surface soil samples from the central black soil region of Jilin Province. We analyzed the concentrations and sources of seven PCBs in the black soil, [...] Read more.
To investigate the levels of polychlorinated biphenyls (PCBs) in the black soils of Northeast China, we collected 59 surface soil samples from the central black soil region of Jilin Province. We analyzed the concentrations and sources of seven PCBs in the black soil, assessed the ecological risks associated with PCB contamination, and provided a risk assessment for PCBs in this soil type. The mean concentrations of the seven PCBs (PCB28, PCB52, PCB101, PCB118, PCB138, PCB153, and PCB180) were as follows: 1.61 μg/kg, 10.61 μg/kg, 0.37 μg/kg, 4.11 μg/kg, 0.70 μg/kg, 1.07 μg/kg, and 2.09 μg/kg, respectively. Principal component analysis revealed that PCB contamination in black soil is mainly attributed to automobile exhaust emissions during transportation, waste incineration processes, and insulation materials from electronic and electrical equipment. PCB28 and PCB52 are the primary causes of PCB danger, according to the findings of the ecological risk assessment, with Liaoyuan City having the highest risk. By applying contemporary industrial economic theory to analyze the annual accumulation of contaminants, we forecasted future PCB concentrations in black soil and issued a risk warning for these seven PCBs. Our results indicate that under the three scenarios considered, the presence of these seven PCBs in black soil does not pose a significant risk. However, given that our study examined only seven PCBs, the actual environmental risk may be underestimated. Full article
Show Figures

Graphical abstract

13 pages, 2766 KiB  
Article
Headspace Extraction onto a 3D-Printed Device for GC-MS Quantification of Polychlorinated Biphenyls in Newborn Urine
by Paweł Georgiev, Mariusz Belka, Szymon Ulenberg, Dagmara Kroll, Bartosz Marciniak, Izabela Drążkowska, Tomasz Bączek and Justyna Płotka-Wasylka
Int. J. Mol. Sci. 2025, 26(6), 2755; https://doi.org/10.3390/ijms26062755 - 19 Mar 2025
Viewed by 445
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that pose significant health risks, especially for neonates. Traditional urine analysis methods for PCBs are often complex and prone to contamination. This study introduces a novel, efficient, and contamination-free method for PCB analysis in neonatal urine [...] Read more.
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that pose significant health risks, especially for neonates. Traditional urine analysis methods for PCBs are often complex and prone to contamination. This study introduces a novel, efficient, and contamination-free method for PCB analysis in neonatal urine using 3D-printed extraction devices. A headspace extraction method was developed, utilizing a 3D-printed device containing C18-modified silica particles. Urine samples were heated to 90 °C, and volatile PCBs were sorbed onto the particles. The method was optimized for maximum extraction efficiency and selectivity, demonstrating excellent linearity, precision, and accuracy. The optimized method was successfully applied to analyze neonatal urine samples, revealing detectable levels of PCBs. This innovative approach, leveraging 3D-printed devices, offers a promising solution for sample preparation, minimizing contamination risks and enabling the analysis of volatile compounds. The customizable nature of 3D-printed devices opens up possibilities for future advancements in environmental analysis. Full article
Show Figures

Figure 1

Back to TopTop