Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (107)

Search Parameters:
Keywords = polyamide textile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5403 KiB  
Article
Degradation of Synthetic and Natural Textile Materials Using Streptomyces Strains: Model Compost and Genome Exploration for Potential Plastic-Degrading Enzymes
by Vukašin Janković, Brana Pantelic, Marijana Ponjavic, Darka Marković, Maja Radetić, Jasmina Nikodinovic-Runic and Tatjana Ilic-Tomic
Microorganisms 2025, 13(8), 1800; https://doi.org/10.3390/microorganisms13081800 (registering DOI) - 1 Aug 2025
Abstract
Given the environmental significance of the textile industry, especially the accumulation of nondegradable materials, there is extensive development of greener approaches to fabric waste management. Here, we investigated the biodegradation potential of three Streptomyces strains in model compost on polyamide (PA) and polyamide-elastane [...] Read more.
Given the environmental significance of the textile industry, especially the accumulation of nondegradable materials, there is extensive development of greener approaches to fabric waste management. Here, we investigated the biodegradation potential of three Streptomyces strains in model compost on polyamide (PA) and polyamide-elastane (PA-EA) as synthetic, and on cotton (CO) as natural textile materials. Weight change of the materials was followed, while Fourier-Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) were used to analyze surface changes of the materials upon biodegradation. The bioluminescence-based toxicity test employing Vibrio fischeri confirmed the ecological safety of the tested textiles. After 12 months, the increase of 10 and 16% weight loss, of PA-EA and PA, respectively, was observed in compost augmented with Streptomyces sp. BPS43. Additionally, a 14% increase in cotton degradation was recorded after 2 months in compost augmented with Streptomyces sp. NP10. Genome exploration of the strains was carried out for potential plastic-degrading enzymes. It highlighted BPS43 as the most versatile strain with specific amidases that show sequence identity to UMG-SP-1, UMG-SP-2, and UMG-SP-3 (polyurethane degrading enzymes identified from compost metagenome). Our results showcase the behavior of Streptomyces sp. BPS43 in the degradation of PA and PA-EA textiles in composting conditions, with enzymatic potential that could be further characterized and optimized for increased synthetic textile degradation. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

30 pages, 4865 KiB  
Article
Thermal Behavior and Smoke Suppression of Polyamide 6,6 Fabric Treated with ALD-ZnO and DOPO-Based Silane
by Wael Ali, Raphael Otto, Ana Raquel Lema Jimenez, Sebastian Lehmann, Eui-Young Shin, Ying Feng, Milijana Jovic, Sabyasachi Gaan, Jochen S. Gutmann, Kornelius Nielsch, Amin Bahrami and Thomas Mayer-Gall
Materials 2025, 18(13), 3195; https://doi.org/10.3390/ma18133195 - 7 Jul 2025
Viewed by 620
Abstract
Polyamide 6,6 (PA6,6) fabrics are widely used in textiles due to their high mechanical strength and chemical stability. However, their inherent flammability and melting behavior under fire pose significant safety challenges. In this study, a dual-layer flame-retardant system was developed by integrating atomic [...] Read more.
Polyamide 6,6 (PA6,6) fabrics are widely used in textiles due to their high mechanical strength and chemical stability. However, their inherent flammability and melting behavior under fire pose significant safety challenges. In this study, a dual-layer flame-retardant system was developed by integrating atomic layer deposition (ALD) of ZnO with a phosphorus–silane-based flame retardant (DOPO-ETES). ALD allowed precise control of ZnO layer thickness (50, 84, and 199 nm), ensuring uniform coating. Thermal analysis (TGA) and microscale combustion calorimetry (MCC) revealed that ZnO altered the degradation pathway of PA6,6 through catalytic effects, promoting char formation and reducing heat release. The combination of ZnO and DOPO-ETES resulted in further reductions in heat release rates. However, direct flame tests showed that self-extinguishing behavior was not achieved, emphasizing the limitations related to the melting of PA6,6. TG-IR and cone calorimetry confirmed that ZnO coatings suppressed the release of smoke-related volatiles and incomplete combustion products. These findings highlight the potential of combining metal-based catalytic flame retardants like ZnO with phosphorus-based coatings to improve flame retardancy while addressing the specific challenges of polyamide textiles. This approach may also be adapted to other fabric types and integrated with additional flame retardants, broadening its relevance for textile applications. Full article
Show Figures

Graphical abstract

25 pages, 3711 KiB  
Article
Eco-Friendly Extraction of Curcumin from Turmeric and Dyeability of Textile Fibers
by Vasilica Popescu, Ana-Diana Alexandrescu, Gabriel Popescu and Viorica Vasilache
Fibers 2025, 13(6), 73; https://doi.org/10.3390/fib13060073 - 4 Jun 2025
Viewed by 1760
Abstract
Classical and modern methods are used to release curcumin by degrading the polysaccharides found in the turmeric powder matrix. Classical methods use chemicals as acids (HCl, H2SO4, CH3COOH), oxidants (H2O2, kojic acid), and [...] Read more.
Classical and modern methods are used to release curcumin by degrading the polysaccharides found in the turmeric powder matrix. Classical methods use chemicals as acids (HCl, H2SO4, CH3COOH), oxidants (H2O2, kojic acid), and enzymes (amylase type) that can degrade amylose and amylopectin from starch. The modern applied methods consist of the degradation of the polysaccharides in the turmeric powder during eco-friendly processes assisted by ultrasound or microwaves. The extraction medium can consist of only water, water with a solvent, and/or an oxidizing agent. The presence of curcumin in turmeric powder is confirmed by FTIR analysis. The UV–VIS analysis of the extracts allows the determination of the efficiency of modern extraction processes. The release of curcumin from turmeric is highlighted quantitatively by colorimetric measurements for the obtained extracts, using a portable DataColor spectrophotometer. The comparison of the results leads to the conclusion that microwave-assisted extractions are the most effective. These extracts are able to dye many types of textile fibers: wool, cotton, hemp, silk, polyacrylonitrile, polyamide, polyester, and cellulose acetate. CIELab and color strength (K/S) measurements indicate that the most intense yellow colors are obtained on polyacrylonitrile (b* = 86.32, K/S = 15.14) and on cellulose acetate (b* = 90.40, K/S = 14.17). Full article
Show Figures

Figure 1

32 pages, 5548 KiB  
Article
Analysis of the Impact of Fabric Surface Profiles on the Electrical Conductivity of Woven Fabrics
by Ayalew Gebremariam, Magdalena Tokarska and Nawar Kadi
Materials 2025, 18(11), 2456; https://doi.org/10.3390/ma18112456 - 23 May 2025
Viewed by 509
Abstract
The surface profile and structural alignment of fibers and yarns in fabrics are critical factors affecting the electrical properties of conductive textile surfaces. This study aimed to investigate the impact of fabric surface roughness and the geometrical parameters of woven fabrics on their [...] Read more.
The surface profile and structural alignment of fibers and yarns in fabrics are critical factors affecting the electrical properties of conductive textile surfaces. This study aimed to investigate the impact of fabric surface roughness and the geometrical parameters of woven fabrics on their electrical resistance properties. Surface roughness was assessed using the MicroSpy® Profile profilometer FRT (Fries Research & Technology) Metrology™, while electrical resistance was evaluated using the Van der Pauw method. The findings indicate that rougher fabric surfaces exhibit higher electrical resistance due to surface irregularities and lower yarn compactness. In contrast, smoother fabrics improve conductivity by enhancing surface uniformity and yarn contact. Fabric density, particularly weft density, governs the structural alignment of yarns. A 35% increase in weft density (W19–W27) resulted in a 13–15% reduction in resistance, confirming that denser fabrics facilitate current flow. Higher weft density also increases directional resistance differences, enhancing anisotropic behavior. Angular distribution analysis showed lower resistance and greater anisotropy at perpendicular orientations (0° and 180°, the weft direction; 90° and 270°, the warp direction), while diagonal directions (45°, 135°, 225°, and 315°) exhibited higher resistance. Surface roughness further hindered current flow, whereas increased weft density and surface mass reduced resistance and improved the directional dependencies of the electrical resistances. This analysis was conducted based on research using woven fabrics produced from silver-plated polyamide yarns (Shieldex® 117/17 HCB). These insights support the optimization of these conductive fabrics for smart textiles, wearable sensors, and e-textiles. Fabric variants W19 and W21, with lower resistance variability and better isotropic behavior under the S electrode arrangement, could be proposed as suitable materials for integration into compact sensing systems like heart rate or bio-signal monitors. Full article
Show Figures

Figure 1

21 pages, 7337 KiB  
Article
Modeling of Mechanical Properties of Threads Using Nonlinear Rheological Models
by Aleksandra Prążyńska, Zbigniew Mikołajczyk and Maciej Kuchar
Materials 2025, 18(9), 1982; https://doi.org/10.3390/ma18091982 - 27 Apr 2025
Viewed by 333
Abstract
This publication presents the results of research aimed at analyzing the dynamic stretching process of multifilament polyester and polyamide threads with medium linear densities. Building virtual design tools for the mechanical properties of textiles under dynamic impact conditions on their structures is a [...] Read more.
This publication presents the results of research aimed at analyzing the dynamic stretching process of multifilament polyester and polyamide threads with medium linear densities. Building virtual design tools for the mechanical properties of textiles under dynamic impact conditions on their structures is a fundamental challenge for identifying textile technological processes and their behavior in real operating conditions. In the Autodesk® Inventor® software environment, a virtual analogue model was built based on appropriately connected modules of the Kelvin–Voigt rheological models, for which the input parameters of the selected rheological models were defined. The nonlinear static and dynamic elasticity coefficients were determined based on the obtained results of experimental tests carried out in static conditions on a testing machine at a speed of 33 × 10−6 m/s and in dynamic conditions on a constructed measuring device. The nonlinear viscosity coefficient was calculated based on data read from the force-time characteristics obtained by measuring forces during stress relaxation in the threads. To conduct this research, an original research stand was designed and built. A series of simulation calculations of the dynamic stretching process were performed for different values of linear densities, lengths of stretched thread sections, and stretching speeds. A comparative analysis of the characteristics obtained from experimental and modeling studies was performed. A very good agreement between the experimental and numerical simulation curves was obtained, which leads to the conclusion about the usefulness of the tools used in the work for the physical description of the thread stretching process. Full article
Show Figures

Figure 1

23 pages, 7753 KiB  
Article
Microplastic Pollution on the Beaches of the Black Sea in Romania and Bulgaria
by Mirel Glevitzky, Gabriela-Alina Dumitrel, Gerlinde Iuliana Rusu, Daniela Toneva, Stoyan Vergiev, Mihai-Teopent Corcheş, Ana-Maria Pană and Maria Popa
Appl. Sci. 2025, 15(9), 4751; https://doi.org/10.3390/app15094751 - 25 Apr 2025
Cited by 2 | Viewed by 1230
Abstract
Microplastic pollution has gained attention in recent years due to its adverse impact on the environment. As a major threat to marine ecosystems and biota, the accumulation of microplastics along coastlines has become a growing concern. This study focused on quantifying and characterizing [...] Read more.
Microplastic pollution has gained attention in recent years due to its adverse impact on the environment. As a major threat to marine ecosystems and biota, the accumulation of microplastics along coastlines has become a growing concern. This study focused on quantifying and characterizing the presence, distribution, and composition of microplastics along the beaches of Romania and Bulgaria. Microplastics were extracted from beach sand samples using a saturated NaCl solution. The particles were then analyzed through FT-IR and DSC spectral analyses to identify their chemical composition. Sampling was conducted across several resorts along the Romanian and Bulgarian coastlines. The findings revealed varying concentrations of microplastics across different beaches, with Romanian beaches showing concentrations of between 40 and 213 particles per sample (470–2500 microplastics/kg), which were notably higher in areas like Mamaia and Costinești. On Bulgarian beaches, the average concentrations reached up to 137 particles per sample (1612 microplastics/kg), particularly in areas like Sunny Beach and Nessebar. Polyethylene (PE) was identified as the most prevalent polymer (55%), followed by polyamide (PA), polypropylene (PP), polyethylene terephthalate (PET), and polyurethane (PU). These polymers were linked to common sources such as packaging, textiles, and industrial products. Microscopic examination, combined with FT-IR and DSC spectral analysis, confirmed the plastic nature of the particles, revealing distinct chemical structures characteristic of each material type. This study underscores the widespread contamination of Romanian and Bulgarian beaches with microplastics, emphasizing the environmental risks to coastal ecosystems. The presence of synthetic polymers highlights the urgent need for policies targeting plastic waste management to mitigate the growing pollution in marine environments. Full article
Show Figures

Figure 1

46 pages, 7489 KiB  
Review
Environmental Impact of Textile Materials: Challenges in Fiber–Dye Chemistry and Implication of Microbial Biodegradation
by Arvind Negi
Polymers 2025, 17(7), 871; https://doi.org/10.3390/polym17070871 - 24 Mar 2025
Cited by 3 | Viewed by 3240
Abstract
Synthetic and natural fibers are widely used in the textile industry. Natural fibers include cellulose-based materials like cotton, and regenerated fibers like viscose as well as protein-based fibers such as silk and wool. Synthetic fibers, on the other hand, include PET and polyamides [...] Read more.
Synthetic and natural fibers are widely used in the textile industry. Natural fibers include cellulose-based materials like cotton, and regenerated fibers like viscose as well as protein-based fibers such as silk and wool. Synthetic fibers, on the other hand, include PET and polyamides (like nylon). Due to significant differences in their chemistry, distinct dyeing processes are required, each generating specific waste. For example, cellulose fibers exhibit chemical inertness toward dyes, necessitating chemical auxiliaries that contribute to wastewater contamination, whereas synthetic fibers are a major source of non-biodegradable microplastic emissions. Addressing the environmental impact of fiber processing requires a deep molecular-level understanding to enable informed decision-making. This manuscript emphasizes potential solutions, particularly through the biodegradation of textile materials and related chemical waste, aligning with the United Nations Sustainable Development Goal 6, which promotes clean water and sanitation. For instance, cost-effective methods using enzymes or microbes can aid in processing the fibers and their associated dyeing solutions while also addressing textile wastewater, which contains high concentrations of unreacted dyes, salts, and other highly water-soluble pollutants. This paper covers different aspects of fiber chemistry, dyeing, degradation mechanisms, and the chemical waste produced by the textile industry, while highlighting microbial-based strategies for waste mitigation. The integration of microbes not only offers a solution for managing large volumes of textile waste but also paves the way for sustainable technologies. Full article
(This article belongs to the Special Issue Reactive and Functional Biopolymers)
Show Figures

Figure 1

14 pages, 3700 KiB  
Article
Pressure and Thermal Behavior of Elastic Polyurethane and Polyamide Knitted Fabrics for Compression Textiles
by Nga Wun Li, Mei-Ying Kwan and Kit-Lun Yick
Polymers 2025, 17(7), 831; https://doi.org/10.3390/polym17070831 - 21 Mar 2025
Cited by 1 | Viewed by 625
Abstract
Compression stockings have long been manufactured in a single color without patterns, but enhancing their aesthetic appeal through knitted designs can improve user compliance. This study explores the potential of punch lace knitted structures to create patterns in compression textiles by seamless knitting [...] Read more.
Compression stockings have long been manufactured in a single color without patterns, but enhancing their aesthetic appeal through knitted designs can improve user compliance. This study explores the potential of punch lace knitted structures to create patterns in compression textiles by seamless knitting technology while maintaining sufficient pressure. The effects of yarn material, number of yarns used, and knitted patterns on pressure and thermal comfort will be studied. The fabric pressure was evaluated using pressure sensors with a leg mannequin, while the thermal properties were measured according to the textile standard. This study found that the pressure and thermal conductivity of fabric are significantly influenced by the number of yarn and yarn materials, but not the knitted pattern. Cupro/cotton/polyurethane yarn (A) exhibits the strongest positive impact on pressure, increasing by 2.03 mmHg with the addition of one end of yarn A while polyamide/lycra yarn (C) exhibits a higher thermal conductivity than yarn A. For air permeability, the number of yarn and knitted patterns significantly affects the ventilation resistance. Pattern B with an additional needle in a float stitch shows 0.023 kPa·s/m lower resistance than pattern A. The findings from this study can be widely used in health, medical, and sports applications. Full article
(This article belongs to the Special Issue Technical Textile Science and Technology)
Show Figures

Figure 1

15 pages, 2932 KiB  
Article
Microstructural and Magnetic Properties of Polyamide-Based Recycled Composites with Iron Oxide Nanoparticles
by Lucas G. Dos Santos, Daina D. A. Buelvas, Daniel F. Valezi, Bruno L. S. Vicentin, Christian M. M. Rocha, Eduardo Di Mauro and Felipe de A. La Porta
Magnetism 2025, 5(1), 5; https://doi.org/10.3390/magnetism5010005 - 25 Feb 2025
Cited by 2 | Viewed by 1882
Abstract
This study explores a sustainable approach to developing magnetic nanocomposites by synthesizing a mixed-phase iron oxide (IO) and recycled polyamide (RPA) composite from textile waste. The RPA/IO nanocomposite’s microstructural and magnetic properties were characterized using X-ray diffraction (XRD) with Rietveld refinement, scanning, transmission [...] Read more.
This study explores a sustainable approach to developing magnetic nanocomposites by synthesizing a mixed-phase iron oxide (IO) and recycled polyamide (RPA) composite from textile waste. The RPA/IO nanocomposite’s microstructural and magnetic properties were characterized using X-ray diffraction (XRD) with Rietveld refinement, scanning, transmission electron microscopy (SEM, TEM), and vibrating sample magnetometry (VSM). The proportions of the Fe3O4 and γ-Fe2O3 phases were found to be 23.2 wt% and 76.8 wt%, respectively. SEM and TEM showed a porous, agglomerated IO surface morphology with an average particle size of 14 nm. Magnetic analysis revealed ferrimagnetic and superparamagnetic behavior, with VSM showing saturation magnetization values of 21.81 emu g−1 at 5 K and 18.84 emu g−1 at 300 K. Anisotropy constants were estimated at 4.28 × 105 and 1.53 × 105, respectively, for IO and the composite, with a blocking temperature of approximately 178 K at 300 K. These results contribute to understanding the magnetic behavior of IO and their nanocomposites, which is crucial for their potential applications in emerging technologies. Full article
(This article belongs to the Special Issue Magnetism and Correlations in Nanomaterials)
Show Figures

Figure 1

15 pages, 999 KiB  
Article
Investigation of Removal Efficiency of Microplastics at Different Process Stages of a Wastewater Treatment Plant in the Textile Industry in Southern China
by Yanjing Zhu, Sijia Yang, Mathias Gustavsson, Wenli Huang, Si Gao and Rui Wang
Water 2025, 17(4), 574; https://doi.org/10.3390/w17040574 - 17 Feb 2025
Cited by 2 | Viewed by 1288
Abstract
Wastewater treatment plants (WWTPs) play a crucial role in mitigating microplastic (MP) release to the environment. In this paper, a WWTP of a textile manufacturing plant in Guangdong, China, was investigated to identify MP characteristics and the effectiveness of wastewater treatment within the [...] Read more.
Wastewater treatment plants (WWTPs) play a crucial role in mitigating microplastic (MP) release to the environment. In this paper, a WWTP of a textile manufacturing plant in Guangdong, China, was investigated to identify MP characteristics and the effectiveness of wastewater treatment within the plant. Laser Direct Infrared (LDIR) and Liquid Chromatography with Mass Spectrometry (LC-MS/MS) were applied to quantify both the number and the mass of the microplastics in the effluent of the textile manufacturing plant where most of the wastewater were from three printing and dyeing lines. The study further investigated the MP removal efficiency of each wastewater treatment process of the industry-owned WWTP and analysed the removal mechanism of each step, highlighting limitations in detecting and eliminating MPs. It is observed that (1) the results from LDIR and LC-MS/MS can be complementary to each other; (2) the MP concentration in the influent was 1730 n/L by number and 13.52 µg/L by mass; (3) the total removal efficiency of the WWTP were 99% by the number of MPs and 67.7% by the mass of MPs; (4) nine types of polymers have been identified in the influent, of which Polyamide (PA) was dominating; (5) hydrolysis acidification removed PA most; (6) aerobic tank, sand filter, and biological aerated filter (BAF) showed low removal efficiency; (7) coagulation and sedimentation tank had the highest removal efficiency to PET than any other processes. Full article
Show Figures

Figure 1

12 pages, 2100 KiB  
Article
Evaluation of Length and Fiber Count Determinations for Natural and Synthetic Microfibers Using the OpTest Fiber Quality Analyzer
by Michael Santiago Cintron, Chanel A. Fortier and Sunghyun Nam
Microplastics 2024, 3(4), 730-741; https://doi.org/10.3390/microplastics3040045 - 6 Dec 2024
Viewed by 1507
Abstract
Microfibers are small fiber particles that range from 1 µm to 5 mm in length, generated through the home laundering and daily wear of textile garments. Microfibers stemming from synthetic textiles are a global pollution problem marked by their slow biodegradation and steady [...] Read more.
Microfibers are small fiber particles that range from 1 µm to 5 mm in length, generated through the home laundering and daily wear of textile garments. Microfibers stemming from synthetic textiles are a global pollution problem marked by their slow biodegradation and steady environmental accumulation. Thus, the quantification and study of factors controlling their generation is of interest. The aim of the current study included exploring the use of a Fiber Quality Analyzer-360 (FQA) for examining fiber counts and lengths of microfibers derived from cotton, flax, ramie, hemp, acrylic, polyester, viscose, and polyamide, and to explore if additional preparation steps, such as sonication, would improve microfiber detection by the system. While probe sonication led to higher fiber counts for most microfiber types, average microfiber lengths were statistically similar for most samples, with only the hemp and ramie samples showing statistically shorter microfibers following sonication. FQA detection estimates for cotton, viscose, and ramie microfibers were high, at 99, 101, and 116% for viscose, flax, and cotton, respectively. In contrast, synthetic microfibers of acrylic, polyamide and polyester showed 77, 43, and 14% detection rates, respectively. The high detection rate for the cotton sample is partly due to the higher fineness value obtained from the gravimetric determination. A similar calculation using AFIS fineness showed 86% detection. These observations confirm the significance of properly suspending the samples to accurately quantify microfibers while using the FQA system. Furthermore, the reduced detection of the examined synthetic microfibers suggests the limitations of the FQA as a technique for the direct comparison of natural and synthetic microfiber counts. Full article
Show Figures

Figure 1

23 pages, 7201 KiB  
Article
Development of Textile-Based Strain Sensors for Compression Measurements in Sportswear (Sports Bra)
by Aqsa Imran, Shahood uz Zaman, Mozzan Razzaq, Ayesha Ahmad and Xuyuan Tao
Sensors 2024, 24(23), 7495; https://doi.org/10.3390/s24237495 - 24 Nov 2024
Cited by 1 | Viewed by 1838
Abstract
Women sports wearer’s comfort and health are greatly impacted by the breast movements and resultant sports bra compression to prevent excessive movement. However, as sports bras are only made in universal sizes, they do not offer the right kind of support that is [...] Read more.
Women sports wearer’s comfort and health are greatly impacted by the breast movements and resultant sports bra compression to prevent excessive movement. However, as sports bras are only made in universal sizes, they do not offer the right kind of support that is required for a certain activity. To prevent this issue, textile-based strain sensors may be utilized to track compression throughout various activities to create activity-specific designed sports bras. Textile-based strain sensors are prepared in this study using various conductive yarns, including steel, Ag-coated polyamide, and polypropylene/steel-blended threads. Various embroidery designs, including straight, zigzag, and square-wave embroidery patterns, etc., were created on knitted fabric and characterized for strain sensing efficiencies. The experiments concluded that strain sensors prepared from polypropylene/steel thread using a 2-thread square-wave design were best performed in terms of linear conductivity, sensitivity of mechanical impact, and wide working range. This best-performed sample was also tested by integrating it into the sportswear for proposed compression measurements in different body movements. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

14 pages, 6472 KiB  
Article
Melt Spinnability Comparison of Mechanically and Chemically Recycled Polyamide 6 for Plastic Waste Reuse
by Kyuhyun Kim, Minsoo Kim, Yerim Kim, Jinhyeong Kim, Jihwan Lim, Woojin Lee, Han Seong Kim, Dong-Hyun Cho, Jaejun Lee and Sejin Choi
Polymers 2024, 16(22), 3152; https://doi.org/10.3390/polym16223152 - 12 Nov 2024
Viewed by 1987
Abstract
With the increasing volume of synthetic fiber waste, interest in plastic reuse technologies has grown. To address this issue, physical and chemical recycling techniques for polyamide, a major component of textile waste, have been developed. This study investigates the remelting and reforming properties [...] Read more.
With the increasing volume of synthetic fiber waste, interest in plastic reuse technologies has grown. To address this issue, physical and chemical recycling techniques for polyamide, a major component of textile waste, have been developed. This study investigates the remelting and reforming properties of four types of pristine and recycled polyamide 6, focusing on how the microstructural arrangement of recycled polyamides affects polymer fiber formation. DSC and FT-IR were used to determine the thermal properties and chemical composition of the reformed thin films. Differences in the elongation behavior of molten fibers during the spinning process were also observed, and the morphology of the resulting fibers was examined via SEM. Birefringence analysis revealed that the uniformity of the molecular structure greatly influenced differences in the re-fiberization process, suggesting that chemically recycled polyamide is the most suitable material for re-fiberization with its high structural similarity to pristine polyamide. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

17 pages, 6099 KiB  
Article
Influence of Graphene, Carbon Nanotubes, and Carbon Black Incorporated into Polyamide Yarn on Fabric Properties
by Veerakumar Arumugam, Aleksander Góra and Vitali Lipik
Textiles 2024, 4(4), 442-458; https://doi.org/10.3390/textiles4040026 - 4 Oct 2024
Cited by 2 | Viewed by 1839
Abstract
Carbon nanomaterials are increasingly being integrated into modern research, particularly within the textile industry, to significantly boost performance and broaden application possibilities. This study investigates the impact of incorporating three distinct carbon-based nanofillers—carbon nanotubes (CNTs), carbon black (CB), and graphene (Gn)—into polyamide 6 [...] Read more.
Carbon nanomaterials are increasingly being integrated into modern research, particularly within the textile industry, to significantly boost performance and broaden application possibilities. This study investigates the impact of incorporating three distinct carbon-based nanofillers—carbon nanotubes (CNTs), carbon black (CB), and graphene (Gn)—into polyamide 6 (PA6) multifilament yarns. It explores how these nanofillers affect the physical, mechanical, and thermal properties of PA6 yarns and fabrics. By utilizing melt extrusion, the nanomaterials were uniformly distributed in the yarns, and knitted fabrics were subsequently produced for detailed analysis. The research offers critical insights into how each nanofiller improves the thermal behavior of PA6-based textiles, enabling the customization of their applications. FTIR spectroscopy revealed significant chemical interactions between polyamide and carbon additives, while DSC analysis showed enhanced thermal stability, particularly with the inclusion of graphene. The introduction of these nanomaterials led to increased absorbance and decreased transmittance in the UV-Vis-NIR spectrum. Additionally, Far-Infrared (FIR) emissivity and thermal effusivity varied with different concentrations, with optimal improvements observed at specific levels. Although thermal conductivity decreased with the addition of these nanomaterials, heat management experiments demonstrated varied effects on heat accumulation and cooling times, underscoring potential applications in insulation and cooling technologies. These findings enrich the existing knowledge on nanomaterial-enhanced textiles, providing valuable guidance for optimizing PA6 yarns and fabrics for use in protective clothing, sportswear, and technical textiles. The comparative analysis offers a thorough understanding of the relationship between carbon nanomaterials and thermal properties, paving the way for innovative advancements in functional textile materials. Full article
Show Figures

Figure 1

19 pages, 4889 KiB  
Article
Insights on Microplastic Contamination from Municipal and Textile Industry Effluents and Their Removal Using a Cellulose-Based Approach
by Solange Magalhães, Daniel Paciência, João M. M. Rodrigues, Björn Lindman, Luís Alves, Bruno Medronho and Maria da Graça Rasteiro
Polymers 2024, 16(19), 2803; https://doi.org/10.3390/polym16192803 - 3 Oct 2024
Cited by 4 | Viewed by 1932
Abstract
The rampant use of plastics, with the potential to degrade into insidious microplastics (MPs), poses a significant threat by contaminating aquatic environments. In the present study, we delved into the analysis of effluents from textile industries, a recognized major source of MPs contamination. [...] Read more.
The rampant use of plastics, with the potential to degrade into insidious microplastics (MPs), poses a significant threat by contaminating aquatic environments. In the present study, we delved into the analysis of effluents from textile industries, a recognized major source of MPs contamination. Data were further discussed and compared with a municipal wastewater treatment plant (WWTP) effluent. All effluent samples were collected at the final stage of treatment in their respective WWTP. Laser diffraction spectroscopy was used to evaluate MP dimensions, while optical and fluorescence microscopies were used for morphology analysis and the identification of predominant plastic types, respectively. Electrophoresis was employed to unravel the prevalence of negative surface charge on these plastic microparticles. The analysis revealed that polyethylene terephthalate (PET) and polyamide were the dominant compounds in textile effluents, with PET being predominant in municipal WWTP effluents. Surprisingly, despite the municipal WWTP exhibiting higher efficiency in MP removal (ca. 71% compared to ca. 55% in textile industries), it contributed more to overall pollution. A novel bio-based flocculant, a cationic cellulose derivative derived from wood wastes, was developed as a proof-of-concept for MP flocculation. The novel derivatives were found to efficiently flocculate PET MPs, thus allowing their facile removal from aqueous media, and reducing the threat of MP contamination from effluents discharged from WWTPs. Full article
(This article belongs to the Special Issue Micro- and Nanoplastics Engineering and Design for Research)
Show Figures

Figure 1

Back to TopTop