Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = poly (vinyl pyridine)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4879 KiB  
Article
Design, Characterization, and Preparation of New Smart Photoactive Polymers and Their Capacity for Photodynamic Antimicrobial Action in Organic Film
by Oscar G. Marambio, Franco I. Barrera, Rudy Martin-Trasancos, Julio Sánchez, Christian Erick Palavecino and Guadalupe del C. Pizarro
Polymers 2025, 17(9), 1247; https://doi.org/10.3390/polym17091247 - 3 May 2025
Viewed by 373
Abstract
The photosensitive properties of smart photoactive polymers give them a wide range of potential applications across various fields. This study focuses on designing polymeric systems that incorporate hydrophilic polymers, with the primary goal of adapting these materials for biological applications. Specifically, it aims [...] Read more.
The photosensitive properties of smart photoactive polymers give them a wide range of potential applications across various fields. This study focuses on designing polymeric systems that incorporate hydrophilic polymers, with the primary goal of adapting these materials for biological applications. Specifically, it aims to contribute to the development of photochromic materials for optical processing, utilizing both molecular and macromolecular components. Additionally, this study evaluates the effectiveness of photoactive polymers in photodynamic therapy (PDT). It details the synthesis and characterization of photoactive copolymers derived from maleic anhydride (MAn) combined with vinyl monomers such as 2-methyl-2-butene (MB) and 1-octadecene (OD), as well as the organic compound 1-(2-hydroxyethyl)-3,3-dimethylindoline-6-nitrobenzopyran (SP). The two novel optically active alternating polymeric systems, poly(maleic anhydride-alt-octadecene) and poly(maleic anhydride-alt-2-methyl-2-butene), were functionalized with SP through an esterification process in a 1:1 monomer feed ratio, using pyridine as a catalyst. This methodology incorporated approximately 100% of the photoactive molecules into the main acrylic chain to prepare the alternating copolymers. These copolymers were characterized by UV-visible, FTIR, and 1H-NMR spectroscopy and analysis of their optical and thermal properties. When exposed to UV light, the photoactive polymer films can develop a deep blue color (566 nm in the absorption spectra). Finally, the study also assesses their capacity for photodynamic antimicrobial action in organic film. Notably, the photoactive P(MAn-alt-2MB)-PS significantly enhances the photodynamic antimicrobial activity of the photosensitizer Ru(bpy) against two bacterial strains of Staphylococcus aureus, reducing the minimum inhibitory concentration (MIC) from 2 µg/mL to 0.5 µg/mL. Therefore, 4 times less photosensitizer is required when mixed with the photoactive polymer to inhibit the growth of antibiotic-sensitive and -resistant bacteria. Full article
(This article belongs to the Special Issue Smart and Bio-Medical Polymers: 2nd Edition)
Show Figures

Graphical abstract

21 pages, 5078 KiB  
Article
Preparation of Zwitterionic Sulfobetaines and Study of Their Thermal Properties and Nanostructured Self-Assembling Features
by Yenglik Amrenova, Arshyn Zhengis, Arailym Yergesheva, Munziya Abutalip and Nurxat Nuraje
Nanomaterials 2025, 15(1), 58; https://doi.org/10.3390/nano15010058 - 2 Jan 2025
Viewed by 1568
Abstract
Zwitterionic polymers have garnered significant attention for their distinctive properties, such as biocompatibility, antifouling capabilities, and resistance to protein adsorption, making them promising candidates for a wide range of applications, including drug delivery, oil production inhibitors, and water purification membranes. This study reports [...] Read more.
Zwitterionic polymers have garnered significant attention for their distinctive properties, such as biocompatibility, antifouling capabilities, and resistance to protein adsorption, making them promising candidates for a wide range of applications, including drug delivery, oil production inhibitors, and water purification membranes. This study reports the synthesis and characterization of zwitterionic monomers and polymers through the modification of linear, vinyl, and aromatic heterocyclic functional groups via reaction with 1,3-propanesultone. Four zwitterionic polymers with varying molecular structures—ranging from linear to five and six membered ring systems—were synthesized: poly(sulfobetaine methacrylamide) (pSBMAm), poly(sulfobetaine-1-vinylimidazole) (pSB1VI), poly(sulfobetaine-2-vinylpyridine) (pSB2VP), and poly(sulfobetaine-4-vinylpyridine) (pSB4VP). Their molecular weights, thermal behavior, and self-assembly properties were analyzed using gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and zeta potential measurements. The glass transition temperatures (Tg) ranged from 276.52 °C for pSBMAm to 313.69 °C for pSB4VP, while decomposition temperatures exhibited a similar trend, with pSBMAm degrading at 301.03 °C and pSB4VP at 387.14 °C. The polymers’ self-assembly behavior was strongly dependent on pH and their surface charge, particularly under varying pH conditions: spherical micelles were observed at neutral pH, while fractal aggregates formed at basic pH. These results demonstrate that precise modifications of the chemical structure, specifically in the linear, imidazole, and pyridine moieties, enable fine control over the thermal properties and self-assembly behavior of polyzwitterions. Such insights are essential for tailoring polymer properties for targeted applications in filtration membranes, drug delivery systems, and solid polymer electrolytes, where thermal stability and self-assembly play crucial roles. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

12 pages, 3561 KiB  
Article
Colloidal and Biological Characterization of Dual Drug-Loaded Smart Micellar Systems
by Hildegard Herman, Delia M. Rata, Anca N. Cadinoiu, Leonard I. Atanase and Anca Hermenean
Polymers 2024, 16(9), 1189; https://doi.org/10.3390/polym16091189 - 24 Apr 2024
Cited by 2 | Viewed by 1294
Abstract
Smart polymeric micelles (PMs) are of great interest in drug delivery owing to their low critical micellar concentration and sizes. In the present study, two different pH-sensitive poly(2-vinyl pyridine)-b-poly(ethylene oxide) (P2VP-b-PEO) copolymer samples were used for the encapsulation of paclitaxel (PTX), ursolic acid [...] Read more.
Smart polymeric micelles (PMs) are of great interest in drug delivery owing to their low critical micellar concentration and sizes. In the present study, two different pH-sensitive poly(2-vinyl pyridine)-b-poly(ethylene oxide) (P2VP-b-PEO) copolymer samples were used for the encapsulation of paclitaxel (PTX), ursolic acid (UA), and dual loading of PTX and UA. Based on the molecular features of copolymers, spherical PMs with sizes of around 35 nm and 140 nm were obtained by dialysis for P2VP55-b-PEO284 and P2VP274-b-PEO1406 samples, respectively. The micellar sizes increased after loading of both drugs. Moreover, drug encapsulation and loading efficiencies varied from 53 to 94% and from 3.2 to 18.7% as a function of the copolymer/drug ratio, molar mass of copolymer sample, and drug type. By FT-IR spectroscopy, it was possible to demonstrate the drug loading and the presence of some interactions between the polymer matrix and loaded drugs. In vitro viability was studied on 4T1 mammary carcinoma mouse cells as a function of time and concentration of drug-loaded PMs. UA-PMs and free PMs alone were not effective in inhibiting the tumor cell growth whereas a viability of 40% was determined for cells treated with both PTX- and PTX/UA-loaded PMs. A synergic effect was noticed for PTX/UA-loaded PMs. Full article
(This article belongs to the Special Issue Drug-Loaded Polymer Colloidal Systems in Nanomedicine III)
Show Figures

Figure 1

16 pages, 4084 KiB  
Article
Preparation of Poly(Butadiene–Styrene–Vinyl Pyridine)/Poly(Acrylonitrile–Butadiene) Core–Shell Nanoparticles by Intermittent Seeded Emulsion Polymerization and Their Catalytic Latex Hydrogenation
by Fei Yuan, Xudong Li, Jianying Dou, Baojia Zhang, Xueling Song, Lin Li, Junjie Liu, Yanyan Li, Yigao Jiang and Hui Wang
Catalysts 2024, 14(4), 277; https://doi.org/10.3390/catal14040277 - 19 Apr 2024
Cited by 1 | Viewed by 2216
Abstract
Seed emulsion polymerization was an effective modification method to improve not only the properties of polymers but also the compatibility between different polymers by designing special core-shell structures. In this study, poly (butadiene-styrene-vinyl pyridine) (VPR)/poly (acrylonitrile-butadiene) (NBR) core–shell nanoparticles (VPR/NBR) were prepared by [...] Read more.
Seed emulsion polymerization was an effective modification method to improve not only the properties of polymers but also the compatibility between different polymers by designing special core-shell structures. In this study, poly (butadiene-styrene-vinyl pyridine) (VPR)/poly (acrylonitrile-butadiene) (NBR) core–shell nanoparticles (VPR/NBR) were prepared by seed emulsion polymerization using VPR as seed emulsion and butadiene and acrylonitrile as monomers. Subsequently, HVPR/HNBR was obtained by direct hydrogenation of the core–shell nanoparticles in latex using Wilkinson’s catalyst under high temperature and H2 pressure. It is noteworthy that the unsaturated C=C double bonds in the core (VPR) and shell (NBR) of HVPR/HNBR nanoparticles were reduced simultaneously during the hydrogenation process without obvious sequence. The particle size and size distribution of the particles remained consistent before and after hydrogenation, indicating that the synthesized core-shell nanoparticles have excellent stability. This study provides a new perspective on the chemical modification of NBR and promises an environmentally friendly “green” process for the industrial hydrogenation of unsaturated elastomers. Full article
(This article belongs to the Section Catalysis in Organic and Polymer Chemistry)
Show Figures

Graphical abstract

16 pages, 3206 KiB  
Article
A Remarkable Impact of pH on the Thermo-Responsive Properties of Alginate-Based Composite Hydrogels Incorporating P2VP-PEO Micellar Nanoparticles
by Amalia Iliopoulou, Zacharoula Iatridi and Constantinos Tsitsilianis
Polymers 2024, 16(7), 886; https://doi.org/10.3390/polym16070886 - 24 Mar 2024
Cited by 2 | Viewed by 2771
Abstract
A heterograft copolymer with an alginate backbone, hetero-grafted by polymer pendant chains displaying different lower critical solution temperatures (LCSTs), combined with a pH-responsive poly(2-vinyl pyridine)-b-poly(ethylene oxide) (P2VP-b-PEO) diblock copolymer forming micellar nanoparticles, was investigated in aqueous media at various [...] Read more.
A heterograft copolymer with an alginate backbone, hetero-grafted by polymer pendant chains displaying different lower critical solution temperatures (LCSTs), combined with a pH-responsive poly(2-vinyl pyridine)-b-poly(ethylene oxide) (P2VP-b-PEO) diblock copolymer forming micellar nanoparticles, was investigated in aqueous media at various pHs. Due to its thermo-responsive side chains, the copolymer forms hydrogels with a thermo-induced sol–gel transition, above a critical temperature, Tgel (thermo-thickening). However, by lowering the pH of the medium in an acidic regime, a remarkable increase in the elasticity of the formulation was observed. This effect was more pronounced in low temperatures (below Tgel), suggesting secondary physical crosslinking, which induces significant changes in the hydrogel thermo-responsiveness, transforming the sol–gel transition to soft gel–strong gel. Moreover, the onset of thermo-thickening shifted to lower temperatures followed by the broadening of the transition zone, implying intermolecular interactions between the uncharged alginate backbone with the PNIPAM side chains, likely through H-bonding. The shear-thinning behavior of the soft gel in low temperatures provides injectability, which allows potential applications for 3D printing. Furthermore, the heterograft copolymer/nanoparticles composite hydrogel, encapsulating a model hydrophobic drug in the hydrophobic cores of the nanoparticles, was evaluated as a pH-responsive drug delivery system. The presented tunable drug delivery system might be useful for biomedical potential applications. Full article
Show Figures

Figure 1

16 pages, 6679 KiB  
Article
Accessibility and Mechanical Stability of Nanoporous Zinc Oxide and Aluminum Oxide Coatings Synthesized via Infiltration of Polymer Templates
by Khalil D. Omotosho, Zachary Lyon, Elena V. Shevchenko and Diana Berman
Polymers 2023, 15(20), 4088; https://doi.org/10.3390/polym15204088 - 14 Oct 2023
Cited by 2 | Viewed by 2082
Abstract
The conformal nanoporous inorganic coatings with accessible pores that are stable under applied thermal and mechanical stresses represent an important class of materials used in the design of sensors, optical coatings, and biomedical systems. Here, we synthesize porous AlOx and ZnO coatings [...] Read more.
The conformal nanoporous inorganic coatings with accessible pores that are stable under applied thermal and mechanical stresses represent an important class of materials used in the design of sensors, optical coatings, and biomedical systems. Here, we synthesize porous AlOx and ZnO coatings by the sequential infiltration synthesis (SIS) of two types of polymers that enable the design of porous conformal coatings—polymers of intrinsic microporosity (PIM) and block co-polymer (BCP) templates. Using quartz crystal microbalance (QCM), we show that alumina precursors infiltrate both polymer templates four times more efficiently than zinc oxide precursors. Using the quartz crystal microbalance (QCM) technique, we provide a comprehensive study on the room temperature accessibility to water and ethanol of pores in block copolymers (BCPs) and porous polymer templates using polystyrene-block-poly-4-vinyl pyridine (PS75-b-P4VP25) and polymers of intrinsic microporosity (PIM-1), polymer templates modified by swelling, and porous inorganic coatings such as AlOx and ZnO synthesized by SIS using such templates. Importantly, we demonstrate that no structural damage occurs in inorganic nanoporous AlOx and ZnO coatings synthesized via infiltration of the polymer templates during the water freezing/melting cycling tests, suggesting excellent mechanical stability of the coatings, even though the hardness of the inorganic nanoporous coating is affected by the polymer and precursor selections. We show that the hardness of the coatings is further improved by their annealing at 900 °C for 1 h, though for all the cases except ZnO obtained using the BCP template, this annealing has a negligible effect on the porosity of the material, as is confirmed by the consistency in the optical characteristics. These findings unravel new potential for the materials being used across various environment and temperature conditions. Full article
(This article belongs to the Special Issue Research and Application of Polymer-Derived Ceramics)
Show Figures

Figure 1

17 pages, 4643 KiB  
Article
High-Glass-Transition Polyesters Produced with Phthalic Anhydride and Epoxides by Ring-Opening Copolymerization (ROCOP)
by Selena Silvano, Matteo Proverbio, Adriano Vignali, Fabio Bertini and Laura Boggioni
Polymers 2023, 15(13), 2801; https://doi.org/10.3390/polym15132801 - 24 Jun 2023
Cited by 7 | Viewed by 2703
Abstract
Polyesters with a high glass transition temperature above 130 °C were obtained from limonene oxide (LO) or vinylcyclohexene oxide (VCHO) and phthalic anhydride (PA) in the presence of commercial salen-type complexes with different metals—Cr, Al, and Mn—as catalysts in combination with 4-(dimethylamino) pyridine [...] Read more.
Polyesters with a high glass transition temperature above 130 °C were obtained from limonene oxide (LO) or vinylcyclohexene oxide (VCHO) and phthalic anhydride (PA) in the presence of commercial salen-type complexes with different metals—Cr, Al, and Mn—as catalysts in combination with 4-(dimethylamino) pyridine (DMAP), bis-(triphenylphosphorydine) ammonium chloride (PPNCl), and bis-(triphenylphosphoranylidene)ammonium azide (PPNN3) as cocatalysts via alternating ring-opening copolymerization (ROCOP). The effects of the time of precontact between the catalyst and cocatalyst and the polymerization time on the productivity, molar mass (Mw), and glass transition temperature (Tg) were evaluated. The polyesters were characterized by a molar mass (Mw) of up to 14.0 kg/mol, a narrow dispersity Tg of up to 136 °C, and low (<3 mol%) polyether units. For poly(LO-alt-PA) copolymers, biodegradation tests were performed according to ISO 14851 using the respirometric biochemical oxygen demand method. Moreover, the vinyl double bond present in the poly(LO-alt-PA) copolymer chain was functionalized using three different thiols, methyl-3-mercaptopropionate, isooctyl-3-mercaptopropionate, and butyl-3-mercaptopropionate, via a click chemistry reaction. The thermal properties of poly(LO-alt-PA), poly(VCHO-alt-PA) and thiol-modified poly(LO-alt-PA) copolymers were extensively studied by DSC and TGA. Some preliminary compression molding tests were also conducted. Full article
(This article belongs to the Special Issue Sustainable Polymeric Materials and Eco-Design)
Show Figures

Graphical abstract

16 pages, 10185 KiB  
Article
Catheters with Dual-Antimicrobial Properties by Gamma Radiation-Induced Grafting
by Lorena Duarte-Peña, Héctor Magaña and Emilio Bucio
Pharmaceutics 2023, 15(3), 960; https://doi.org/10.3390/pharmaceutics15030960 - 16 Mar 2023
Cited by 2 | Viewed by 2245
Abstract
Dual antimicrobial materials that have a combination of antimicrobial and antifouling properties were developed. They were developed through modification using gamma radiation of poly (vinyl chloride) (PVC) catheters with 4-vinyl pyridine (4VP) and subsequent functionalization with 1,3-propane sultone (PS). These materials were characterized [...] Read more.
Dual antimicrobial materials that have a combination of antimicrobial and antifouling properties were developed. They were developed through modification using gamma radiation of poly (vinyl chloride) (PVC) catheters with 4-vinyl pyridine (4VP) and subsequent functionalization with 1,3-propane sultone (PS). These materials were characterized by infrared spectroscopy, thermogravimetric analysis, swelling tests, and contact angle to determine their surface characteristics. In addition, the capacity of the materials to deliver ciprofloxacin, inhibit bacterial growth, decrease bacterial and protein adhesion, and stimulate cell growth were evaluated. These materials have potential applications in the manufacturing of medical devices with antimicrobial properties, which can reinforce prophylactic potential or even help treat infections, through localized delivery systems for antibiotics. Full article
(This article belongs to the Special Issue Polymers Enhancing Bioavailability in Drug Delivery, 2nd Edition)
Show Figures

Figure 1

18 pages, 4690 KiB  
Article
Development of Micro-Column Preconcentration Method Using a Restricted-Access Poly(protoporphyrin-co-vinyl pyridine) Adsorbent for Copper Determination in Water and Milk Samples by FIA-FAAS
by Fabio Antonio Cajamarca Suquila, Letícia Alana Bertoldo, Eduardo Lins and César Ricardo Teixeira Tarley
Separations 2023, 10(2), 122; https://doi.org/10.3390/separations10020122 - 9 Feb 2023
Cited by 5 | Viewed by 2718
Abstract
For years, researchers have focused on the determination of metal ions at trace levels in environmental and food samples using analytical methods that employ techniques with low cost acquisition and maintenance and without microwave-assisted acid digestion procedures or aggressive reagents. Therefore, the present [...] Read more.
For years, researchers have focused on the determination of metal ions at trace levels in environmental and food samples using analytical methods that employ techniques with low cost acquisition and maintenance and without microwave-assisted acid digestion procedures or aggressive reagents. Therefore, the present study deals with the synthesis and application of a novel, restricted-access poly(protoporphyrin-co-vinyl pyridine) adsorbent to preconcentrate copper in water samples and bovine milk that have only been subjected to pH adjusting (pH 6.0) and filtration using posterior on-line determination by FAAS. Regarding macromolecules, the restricted-access property of the adsorbent was achieved using the hydrophilic compound 2-hydroxyethyl methacrylate (HEMA). This method is based on the preconcentration of Cu2+ ions using a flow-injection system which is buffered with 0.05 mol L−1 of Britton–Robinson (BR) at a pH of 6.0 and has a flow rate of 14.0 mL min−1 through a mini-column packed with 50.0 mg of adsorbent. The elution was carried out using 0.40 mol L−1 of HCl toward the FAAS detector. The developed method provided a preconcentration factor of 44.7-fold, low limits of detection (LOD) (0.90 µg L−1) and quantification (LOQ) (2.90 µg L−1), tolerance to interfering ions (95.0 and 103.0%), and intra-day and inter-day precision assessed as the RSD (percentage of relative standard deviation), which ranged from 3.08 to 4.80%. The restricted-access poly(protoporphyrin-co-vinyl pyridine) adsorbent demonstrated outstanding features to exclude macromolecules, bovine serum albumin (BSA), and humic acid (HA) from an aqueous medium. Lake water and bovine milk samples were analyzed by the proposed preconcentration method with minimal sample pretreatment (which was based mainly on pH adjusting and filtration using an analytical curve with external calibration), yielding recovery values from addition and recovery tests ranging from 91.7 to 101.9%. The developed method shows great advantages over previously published methods, avoiding the time-consuming use of concentrated acids in a microwave-assisted acid digestion procedure. Full article
Show Figures

Graphical abstract

11 pages, 2537 KiB  
Article
pH-Responsive Carbon Foams with Switchable Wettability Made from Larch Sawdust for Oil Recovery
by Jia Tan, Jiaming Sun, Chunhui Ma, Sha Luo, Wei Li and Shouxin Liu
Polymers 2023, 15(3), 638; https://doi.org/10.3390/polym15030638 - 26 Jan 2023
Cited by 2 | Viewed by 1925
Abstract
The global challenge of oil pollution calls for the efficient selective recovery of oil or organics from oil–water mixtures. A pH-responsive carbon foam (CF) made from liquefied larch sawdust (LLS) with switchable wettability was fabricated in this work. After grafted with poly 4-vinyl [...] Read more.
The global challenge of oil pollution calls for the efficient selective recovery of oil or organics from oil–water mixtures. A pH-responsive carbon foam (CF) made from liquefied larch sawdust (LLS) with switchable wettability was fabricated in this work. After grafted with poly 4-vinyl pyridine (P4vp), the CF obtained a switchable wettability surface, which allowed the CF to exhibit superhydrophilicity and superhydrophobicity at different pH levels, respectively. The results revealed that the pH-responsive CF possessed a three-dimensional (3D) spongy-like skeleton and porous structure with a diameter between 50 and 200 µm. Thus, the pH-responsive CF could absorb 15–35 g/g of oil/organics in a neutral aqueous solution at pH = 7 and desorb all the absorbate within 40 s after immersion in an aqueous solution at pH = 1. Moreover, only about 2.8% loss was observed for organic (chloroform) absorption and recovery after reusing up to 15 cycles, which indicated promising prospects in oil and organic recovery. Full article
(This article belongs to the Special Issue Eco-Friendly Supramolecular Polymeric Materials)
Show Figures

Figure 1

13 pages, 3992 KiB  
Article
Stimuli-Responsive Triblock Terpolymer Conversion into Multi-Stimuli-Responsive Micelles with Dynamic Covalent Bonds for Drug Delivery through a Quick and Controllable Post-Polymerization Reaction
by Eva Hlavatovičová, Roberto Fernandez-Alvarez, Katarzyna Byś, Sami Kereïche, Tarun K. Mandal, Leonard Ionut Atanase, Miroslav Štěpánek and Mariusz Uchman
Pharmaceutics 2023, 15(1), 288; https://doi.org/10.3390/pharmaceutics15010288 - 14 Jan 2023
Cited by 12 | Viewed by 3012
Abstract
Stimuli-responsive copolymers are of great interest for targeted drug delivery. This study reports on a controllable post-polymerization quaternization with 2-bromomethyl-4-fluorophenylboronic acid of the poly(4-vinyl pyridine) (P4VP) block of a common poly(styrene)-b-poly(4-vinyl pyridine)-b-poly(ethylene oxide) (SVE) triblock terpolymer in order to [...] Read more.
Stimuli-responsive copolymers are of great interest for targeted drug delivery. This study reports on a controllable post-polymerization quaternization with 2-bromomethyl-4-fluorophenylboronic acid of the poly(4-vinyl pyridine) (P4VP) block of a common poly(styrene)-b-poly(4-vinyl pyridine)-b-poly(ethylene oxide) (SVE) triblock terpolymer in order to achieve a selective responsivity to various diols. For this purpose, a reproducible method was established for P4VP block quaternization at a defined ratio, confirming the reaction yield by 11B, 1H NMR. Then, a reproducible self-assembly protocol is designed for preparing stable micelles from functionalized stimuli-responsive triblock terpolymers, which are characterized by light scattering and by cryogenic transmission electron microscopy. In addition, UV-Vis spectroscopy is used to monitor the boron-ester bonding and hydrolysis with alizarin as a model drug and to study encapsulation and release of this drug, induced by sensing with three geminal diols: fructose, galactose and ascorbic acid. The obtained results show that only the latter, with the vicinal diol group on sp2-hybridized carbons, was efficient for alizarin release. Therefore, the post-polymerization method for triblock terpolymer functionalization presented in this study allows for preparation of specific stimuli-responsive systems with a high potential for targeted drug delivery, especially for cancer treatment. Full article
(This article belongs to the Special Issue Application of Polymeric Micelles for Drug and Gene Delivery)
Show Figures

Graphical abstract

20 pages, 4205 KiB  
Article
Composite Proton-Conducting Membrane with Enhanced Phosphoric Acid Doping of Basic Films Radiochemically Grafted with Binary Vinyl Heterocyclic Monomer Mixtures
by Paveswari Sithambaranathan, Mohamed Mahmoud Nasef, Arshad Ahmad, Amin Abbasi and T. M. Ting
Membranes 2023, 13(1), 105; https://doi.org/10.3390/membranes13010105 - 13 Jan 2023
Cited by 8 | Viewed by 3003
Abstract
A composite proton conducting membrane (PCM) was prepared by radiation-induced grafting (RIG) of binary mixtures of 4-vinyl pyridine (4-VP) and 1-vinylimidazole (1-VIm) onto poly(ethylene-co-tetrafluoroethylene) (ETFE) film followed by phosphoric acid (PA) doping. The grafting parameters such as absorbed dose, temperature, monomer [...] Read more.
A composite proton conducting membrane (PCM) was prepared by radiation-induced grafting (RIG) of binary mixtures of 4-vinyl pyridine (4-VP) and 1-vinylimidazole (1-VIm) onto poly(ethylene-co-tetrafluoroethylene) (ETFE) film followed by phosphoric acid (PA) doping. The grafting parameters such as absorbed dose, temperature, monomer concentration, time, and monomer ratio were varied to control the degree of grafting (DG%). The effect of the reactivity ratio of 4-VP and 1-VIm on the composition and degree of monomer unit alternation in the formed graft copolymer was investigated. The changes in the chemical and physical properties endowed by grafting and subsequent PA acid doping were monitored using analytical instruments. The mechanical properties and proton conductivity of the obtained membrane were evaluated and its performance was tested in H2/O2 fuel cell at 120 °C under anhydrous and partially wet conditions. The acid doping level was affected by the treatment parameters and enhanced by increasing DG. The proton conductivity was boosted by incorporating the combination of pyridine and imidazole rings originating from the formed basic graft copolymer of 4-VP/1-VIm dominated by 4-VP units in the structure. The proton conductivity showed a strong dependence on the temperature. The membrane demonstrated superior properties compared to its counterpart obtained by grafting 4-VP alone. The membrane also showed a strong potential for application in proton exchange membrane fuel cells (PEMFC) operating at 120 °C. Full article
(This article belongs to the Special Issue Proton-Conducting Membranes)
Show Figures

Graphical abstract

15 pages, 4177 KiB  
Article
New Hybrid Nanocomposites with Catalytic Properties Obtained by In Situ Preparation of Gold Nanoparticles on Poly (Ionic Liquid)/Poly (4-Vinylpyridine) Nanofibers
by Oscar Ramírez, Matías Leal, Ximena Briones, Marcela Urzúa, Sebastián Bonardd, Cesar Saldías and Angel Leiva
Polymers 2022, 14(18), 3782; https://doi.org/10.3390/polym14183782 - 9 Sep 2022
Cited by 6 | Viewed by 2333
Abstract
In this work, we report the obtaining of new hybrid nanocomposites with catalytic activity formed by nanofibers of polymer blends and gold nanoparticles. The nanofibers were obtained by electrospinning blends of a poly (ionic liquid) (PIL) and its precursor polymer, poly (4-vinyl pyridine) [...] Read more.
In this work, we report the obtaining of new hybrid nanocomposites with catalytic activity formed by nanofibers of polymer blends and gold nanoparticles. The nanofibers were obtained by electrospinning blends of a poly (ionic liquid) (PIL) and its precursor polymer, poly (4-vinyl pyridine) (P4VPy). The characteristics of the nanofibers obtained proved to be dependent on the proportion of polymer in the blends. The nanofibers obtained were used to synthesize, in situ, gold nanoparticles on their surface by two-step procedure. Firstly, the adsorption of precursor ions on the nanofibers and then their reduction with sodium borohydride to generate gold nanoparticles. The results indicated a significant improvement in the performance of PIL-containing nanofibers over pure P4VPy NFs during ion adsorption, reaching a 20% increase in the amount of adsorbed ions and a 6-fold increase in the respective adsorption constant. The catalytic performance of the obtained hybrid systems in the reduction reaction of 4-nitrophenol to 4-aminophenol was studied. Higher catalytic conversions were obtained using the hybrid nanofibers containing PIL and gold nanoparticles achieving a maximum conversion rate of 98%. Remarkably, the highest value of kinetic constant was obtained for the nanofibers with the highest PIL content. Full article
(This article belongs to the Special Issue Advanced Polymer Nanocomposites II)
Show Figures

Graphical abstract

17 pages, 3431 KiB  
Article
Poly(vinyl pyridine) and Its Quaternized Derivatives: Understanding Their Solvation and Solid State Properties
by Katerina Mavronasou, Alexandra Zamboulis, Panagiotis Klonos, Apostolos Kyritsis, Dimitrios N. Bikiaris, Raffaello Papadakis and Ioanna Deligkiozi
Polymers 2022, 14(4), 804; https://doi.org/10.3390/polym14040804 - 19 Feb 2022
Cited by 32 | Viewed by 11400
Abstract
A series of N-methyl quaternized derivatives of poly(4-vinylpyridine) (PVP) were synthesized in high yields with different degrees of quaternization, obtained by varying the methyl iodide molar ratio and affording products with unexplored optical and solvation properties. The impact of quaternization on the physicochemical [...] Read more.
A series of N-methyl quaternized derivatives of poly(4-vinylpyridine) (PVP) were synthesized in high yields with different degrees of quaternization, obtained by varying the methyl iodide molar ratio and affording products with unexplored optical and solvation properties. The impact of quaternization on the physicochemical properties of the copolymers, and notably the solvation properties, was further studied. The structure of the synthesized polymers and the quaternization degrees were determined by infrared and nuclear magnetic spectroscopies, while their thermal characteristics were studied by differential scanning calorimetry and their thermal stability and degradation by thermogravimetric analysis (TG-DTA). Attention was given to their optical properties, where UV-Vis and diffuse reflectance spectroscopy (DRS) measurements were carried out. The optical band gap of the polymers was calculated and correlated with the degree of quaternization. The study was further orientated towards the solvation properties of the polymers in binary solvent mixtures that strongly depend on the degree of quaternization, enabling a better understanding of the key polymer (solute)-solvent interactions. The assessment of the underlying solvation phenomena was performed in a system of different ratios of DMSO/H2O and the solvatochromic indicator used was Reichardt’s dye. Solvent polarity parameters have a significant effect on the visible spectra of the nitrogen quaternization of PVP studied in this work and a detailed path towards this assessment is presented. Full article
(This article belongs to the Special Issue Advances and Applications of Block Copolymers)
Show Figures

Figure 1

20 pages, 5252 KiB  
Article
Synthesis of New Hybrid Structured Magnetite Crosslinked Poly Ionic Liquid for Efficient Removal of Coomassie Brilliant Blue R-250 Dye in Aqueous Medium
by Abdelrahman O. Ezzat, Ahmed M. Tawfeek, Jothi Ramalingam Rajabathar and Hamad A. Al-Lohedan
Molecules 2022, 27(2), 441; https://doi.org/10.3390/molecules27020441 - 10 Jan 2022
Cited by 11 | Viewed by 2719
Abstract
In this work, new crosslinked pyridinium poly ionic liquid and its magnetite hybrid structured composite were prepared and applied to remove the toxic dye Coomassie Brilliant Blue (CBB-R250) from aqueous solutions. In this respect, vinyl pyridine, maleic anhydride, and dibromo nonane were used [...] Read more.
In this work, new crosslinked pyridinium poly ionic liquid and its magnetite hybrid structured composite were prepared and applied to remove the toxic dye Coomassie Brilliant Blue (CBB-R250) from aqueous solutions. In this respect, vinyl pyridine, maleic anhydride, and dibromo nonane were used to prepare crosslinked quaternized vinyl pyridinium/maleic anhydride ionic liquid (CQVP-MA). Furthermore, a linear copolymer was prepared by the reaction of vinyl pyridine with bromo nonane followed by its copolymerization with maleic anhydride in order to use it as a capping agent for magnetite nanoparticles. The monodisperse MNPs were incorporated into the crosslinked PIL (CQVP-MA) by ultrasonication to prepare CQVP-MA/Fe3O4 composite to facilitate its recovery using an external magnetic field and enhance its adsorption capacity. The chemical structures, thermal stabilities, zeta potential, particle size, EDS, and SEM of the prepared CQVP-MA and CQVP-MA/Fe3O4 were investigated. Adsorption kinetics, isotherms, and mechanisms of CB-R250 elimination from aqueous solutions using CQVP-MA and CQVP-MA/Fe3O4 were also studied, and the results revealed that the pseudo second-order kinetic model and the Langmuir isotherm model were the most suitable to describe the CBB adsorption from an aqueous solution. The adsorption capacities of CQVP-MA and CQVP-MA/Fe3O4 were found to be 1040 and 1198, respectively, which are more than those for previously reported material in the literature with reasonable stability for five cycles. Full article
(This article belongs to the Special Issue Surface Chemistry of Hybrid Materials)
Show Figures

Figure 1

Back to TopTop