Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = poly (ethylene-co-vinyl acetate) (EVA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1808 KiB  
Article
Development and Characterization of LDPE/EVA Films Incorporating Carvacrol Essential Oil with Antifungal Activity
by Konstantinos Safakas, Georgia C. Lainioti, Pinelopi Koutsodima, Panagiota Stathopoulou and Athanasios Ladavos
Foods 2025, 14(12), 2069; https://doi.org/10.3390/foods14122069 - 12 Jun 2025
Viewed by 1106
Abstract
The development of antimicrobial and antioxidant packaging materials is critical for improving food safety and extending shelf life. This study aimed to design and characterize low-density polyethylene (LDPE) and poly(ethylene-co-vinyl acetate) (EVA) films incorporating organically modified montmorillonite (OMt) nanocarriers loaded with carvacrol (C) [...] Read more.
The development of antimicrobial and antioxidant packaging materials is critical for improving food safety and extending shelf life. This study aimed to design and characterize low-density polyethylene (LDPE) and poly(ethylene-co-vinyl acetate) (EVA) films incorporating organically modified montmorillonite (OMt) nanocarriers loaded with carvacrol (C) and thymol (T) essential oil components. The incorporation of carvacrol and thymol into OMt was conducted through an evaporation/adsorption method without the use of organic solvents. In the next step, LDPE, EVA and OMtC or OMtT were melt-compounded in order to obtain films. Characterization of the bioactive nanocarriers and films was performed through X-ray diffraction (XRD), tensile testing, oxygen permeability measurements (OTR) and antioxidant assays. Films LDPE/EVA/OMtC and LDPE/EVA/OMtT showed improved mechanical strength and antioxidant activity, with IC50 values between 0.32 and 0.52 mg/mL. Film with component weight ratio LDPE/EVA/OMtC equal to 80/10/10 also demonstrated enhanced barrier properties and significantly inhibited fungal growth on baguette bread for up to 60 days. These findings highlight the potential of these bioactive films to improve the microbial safety and shelf life of bakery products. Full article
Show Figures

Figure 1

20 pages, 6967 KiB  
Article
Molten-State Dielectrophoretic Alignment of EVA/BaTiO3 Thermoplastic Composites: Enhancement of Piezo-Smart Sensor for Medical Application
by Omar Zahhaf, Giulia D’Ambrogio, Angela Giunta, Minh-Quyen Le, Guilhem Rival, Pierre-Jean Cottinet and Jean-Fabien Capsal
Int. J. Mol. Sci. 2022, 23(24), 15745; https://doi.org/10.3390/ijms232415745 - 12 Dec 2022
Cited by 7 | Viewed by 3334
Abstract
Dielectrophoresis has recently been used for developing high performance elastomer-based structured piezoelectric composites. However, no study has yet focused on the development of aligned thermoplastic-based piezocomposites. In this work, highly anisotropic thermoplastic composites, with high piezoelectric sensitivity, are created. Molten-state dielectrophoresis is introduced [...] Read more.
Dielectrophoresis has recently been used for developing high performance elastomer-based structured piezoelectric composites. However, no study has yet focused on the development of aligned thermoplastic-based piezocomposites. In this work, highly anisotropic thermoplastic composites, with high piezoelectric sensitivity, are created. Molten-state dielectrophoresis is introduced as an effective manufacturing pathway for the obtaining of an aligned filler structure within a thermoplastic matrix. For this study, Poly(Ethylene-co Vinyl Acetate) (EVA), revealed as a biocompatible polymeric matrix, was combined with barium titanate (BaTiO3) filler, well-known as a lead-free piezoelectric material. The phase inversion method was used to obtain an optimal dispersion of the BaTiO3 within the EVA thermoplastic matrix. The effect of the processing parameters, such as the poling electric field and the filler content, were analyzed via dielectric spectroscopy, piezoelectric characterization, and scanning electron microscopy (SEM). The thermal behavior of the matrix was investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry analysis (DSC). Thermoplastic-based structured composites have numerous appealing advantages, such as recyclability, enhanced piezoelectric activity, encapsulation properties, low manufacturing time, and being light weight, which make the developed composites of great novelty, paving the way for new applications in the medical field, such as integrated sensors adaptable to 3D printing technology. Full article
(This article belongs to the Special Issue Polymer Composites: Preparation, Properties, and Application)
Show Figures

Figure 1

13 pages, 4135 KiB  
Article
Trans-Polyisoprene/Poly (Ethylene-co-Vinyl Acetate) Polymer Composites as High-Performance Triple Shape Memory Materials
by Hua Xin, Yangfan Li and Qi Peng
Polymers 2022, 14(24), 5344; https://doi.org/10.3390/polym14245344 - 7 Dec 2022
Cited by 11 | Viewed by 2579
Abstract
The performance and programming conditions of the triple shape memory of crosslinked trans-polyisoprene/poly (ethylene-co-vinyl acetate) (TPI/EVA) composites with different contents of dicumyl peroxide (DCP) were investigated. The effect of triple shape memory in the TPI/EVA composites was studied by tensile loading, scanning electron [...] Read more.
The performance and programming conditions of the triple shape memory of crosslinked trans-polyisoprene/poly (ethylene-co-vinyl acetate) (TPI/EVA) composites with different contents of dicumyl peroxide (DCP) were investigated. The effect of triple shape memory in the TPI/EVA composites was studied by tensile loading, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and dynamic thermomechanical analysis (DMA). It was demonstrated that the content of DCP increased, the crystallization temperature of TPI decreased from 55.2 to 38.3 °C, and the crystallization temperature of EVA decreased slightly. The SEM results showed that DCP, as an initiator, could form a graft copolymer of TPI-g-EVA at the interface of the two phases, which could improve the adhesion of the two phases. The DMA showed that the higher the content of DCP, the higher the first-stage shape recovery ratio. Moreover, the composites exhibited favorable shape fixity ratio (Rf) and shape recovery ratio (Rr) with the incorporation of 0.4 phr DCP. At the same time, it was demonstrated that the TPI/EVA composites showed excellent mechanical strength, including tensile strength up to 24.3 MPa, as well as elongation at break reaching 508%. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

13 pages, 1440 KiB  
Article
Polar Wax as Adhesion Promoter in Polymeric Blend Films for Durable Photovoltaic Encapsulants
by Marilena Baiamonte, Elisabetta Morici, Claudio Colletti and Nadka Tz. Dintcheva
Materials 2022, 15(19), 6751; https://doi.org/10.3390/ma15196751 - 29 Sep 2022
Cited by 5 | Viewed by 2144
Abstract
Technological developments in the solar photovoltaic field must guarantee the high performance and low deterioration of solar cells in order for solar power plants to be more efficient and competitive. The solar cell needs comprehensive protection offered by a polymeric encapsulant, which improves [...] Read more.
Technological developments in the solar photovoltaic field must guarantee the high performance and low deterioration of solar cells in order for solar power plants to be more efficient and competitive. The solar cell needs comprehensive protection offered by a polymeric encapsulant, which improves UV stability, reduces water and moisture absorption, reduces oxygen and vapor permeability and enhances mechanical resistance. Moreover, high transparency and adhesion yields improved the solar panel performance. The current work analyzes polymeric films based on poly(ethylene-co-vinyl acetate) (EVA) and polyolefin (PO) for photovoltaic encapsulant use (the high temperature resistance is improved by adding PO to EVA, as investigated and documented before). To enhance the mechanical resistance and optical properties of the investigated matrices, a crosslinking agent, an adhesion promoter and stabilizing agents have been incorporated in both EVA and EVA/PO systems. The adhesion promoter is a polar wax–silane-free agent; the absence of the silane function allows the integrity of the module to be maintained over time. All samples were characterized through mechanical and rheological analysis, and their long-term UV stability was investigated by accelerated ageing and by FTIR and UV–vis spectroscopy. The obtained results suggest that the presence of a crosslinking agent, an adhesion promoter and stabilizers in EVA/PO-based films allows for the achievement of the required features for the encapsulants, showing mechanical and rheological behavior similar to those of EVA containing the same additives. Full article
Show Figures

Graphical abstract

17 pages, 7905 KiB  
Article
Rheological and Aesthetical Properties of Polyolefin Composites for Flame Retardant Cables with High Loading of Mineral Fillers
by Sara Haveriku, Michela Meucci, Marco Badalassi, Camillo Cardelli and Andrea Pucci
Micro 2022, 2(3), 524-540; https://doi.org/10.3390/micro2030034 - 2 Sep 2022
Cited by 3 | Viewed by 2866
Abstract
It was found that the use of natural magnesium hydroxide (n–MDH) as mineral filler in EVA based composites provided mechanical and rheological properties that did not completely comply with the halogen-free flame-retardant (HFFR) cables parameters. Moreover, the use of n–MDH mostly gave a [...] Read more.
It was found that the use of natural magnesium hydroxide (n–MDH) as mineral filler in EVA based composites provided mechanical and rheological properties that did not completely comply with the halogen-free flame-retardant (HFFR) cables parameters. Moreover, the use of n–MDH mostly gave a rough grey surface in the compound extruded by rheometry capillary. In contrast, with the use of synthetic material (s–MDH), a combination of better outcomes was observed. Mechanical and rheological properties were more aligned with the application, and the aesthetics were also improved, i.e., the surface was smooth and whiter. Therefore, with the aim of obtaining good aesthetical quality on the extrudate, we studied formulations by varying the type of polymer matrix and using a mixture of the natural magnesium hydroxide combined with other kind of fillers (in a 3:1 ratio using as main filler n–MDH). On this account, we found a synergistic effect in the mechanical, rheological, and aesthetic properties for the filler blend system containing n–MDH in combination with s–MDH or Böhmite AlO(OH), or using a secondary polymer belonging to the polybutene family combined with EVA. Full article
(This article belongs to the Special Issue State-of-the-Art Microscale and Nanoscale Researches in Italy)
Show Figures

Figure 1

10 pages, 7568 KiB  
Article
Dissolution from Ethylene Vinyl Acetate Copolymer Long-Acting Implants: Effect of Model Active Ingredient Size and Shape
by Anne M. Gohn, Amy Nolte, Ethan Ravotti, Seth P. Forster, Morgan Giles, Nathan Rudd and Gamini Mendis
Pharmaceutics 2022, 14(6), 1139; https://doi.org/10.3390/pharmaceutics14061139 - 27 May 2022
Viewed by 2945
Abstract
In recent pharmaceutical applications, an active pharmaceutical ingredient (API) can be mixed with a polymer material to yield a composite long-acting drug-delivery device. These devices boast higher patient compliance, localized drug delivery, and lower dosage concentrations, which can increase patient safety. As a [...] Read more.
In recent pharmaceutical applications, an active pharmaceutical ingredient (API) can be mixed with a polymer material to yield a composite long-acting drug-delivery device. These devices boast higher patient compliance, localized drug delivery, and lower dosage concentrations, which can increase patient safety. As a laboratory-safe option, calcium carbonate (CaCO3) was used as a drug surrogate to mimic the release kinetics of a low-solubility API. The release of CaCO3 from a poly(ethylene vinyl acetate) (EVA) polymer matrix was studied in ultra-high-purity water. The geometry of CaCO3, along with the manufacturing technique, was manipulated to study the implications on surrogate drug release. It was found that injection molding proved to yield higher burst release, due to higher pressures achievable during manufacturing. The extrusion process can affect the surface concentration of the pharmaceutical ingredient when extruded through a water bath, resulting in a lower initial burst concentration. Regarding CaCO3 geometry, the particle size was more critical than the surface area in terms of CaCO3 release. Larger particles showed a higher release rate, though they also displayed higher variability in release. These data can be used to engineer specific release profiles when designing composite formulations and manufacturing methods for pharmaceutical-drug-delivery applications. Full article
(This article belongs to the Special Issue Advances in Polymeric Drug Delivery Systems)
Show Figures

Figure 1

15 pages, 4784 KiB  
Article
Degradation and Breakdown of Polymer/Graphene Composites under Strong Electric Field
by Yangming Kou, Xiang Cheng and Christopher W. Macosko
J. Compos. Sci. 2022, 6(5), 139; https://doi.org/10.3390/jcs6050139 - 10 May 2022
Cited by 3 | Viewed by 4049
Abstract
In this work, we study the effect of strong electric fields on a polymer/graphene composite and the resulting morphology upon its dielectric breakdown. Our model system was produced by compounding up to 0.25 wt % graphene nanoplatelets (GNP) into poly(ethylene-co-vinyl acetate) [...] Read more.
In this work, we study the effect of strong electric fields on a polymer/graphene composite and the resulting morphology upon its dielectric breakdown. Our model system was produced by compounding up to 0.25 wt % graphene nanoplatelets (GNP) into poly(ethylene-co-vinyl acetate) (EVA), which is a soft polymer with low melt viscosity. A strong electric field of up to 400 Vrms/mm was applied to the EVA/GNP composite in the melt. The sample’s resistance over the electric field application was simultaneously measured. Despite the low GNP loading, which was below the theoretical percolation threshold, the electric conductivity of the composite during electric field application dramatically increased to >10−6 S/cm over 5 min of electric field application before reaching the current limit of the experimental apparatus. Conductivity growth follows the same scaling relationship of the theoretical model that predicts the rotation and translation time of GNPs in a polymer melt as a function of electric field strength. Since no significant GNP alignment in the composite was observed under transmission electron microscopy (TEM), we hypothesized that the increase in electrical conductivity was due to local electrical treeing of the polymer matrix, which eventually leads to dielectric breakdown of the composite. Electrical treeing is likely initiated by local GNP agglomerates and propagated through conductive channels formed during progressive dielectric breakdown. Full article
(This article belongs to the Special Issue Polymer Composites: Fabrication and Applications)
Show Figures

Figure 1

13 pages, 5615 KiB  
Article
Towards Understanding the Chemical Structure Modification of EVA Copolymer upon MAPLE Processing of Thin Films
by Agata Niemczyk, Simona Brajnicov, Veronica Satulu, Jolanta Baranowska, Bogdana Mitu and Maria Dinescu
Int. J. Mol. Sci. 2021, 22(21), 11686; https://doi.org/10.3390/ijms222111686 - 28 Oct 2021
Cited by 3 | Viewed by 2800
Abstract
A series of coatings from poly(ethylene-co-vinyl acetate) (EVA) were obtained using the matrix-assisted pulsed laser evaporation (MAPLE) technique. By changing the process parameters, i.e., laser fluence and EVA co-polymer concentration in the target, coatings with various morphologies and topographies were produced. [...] Read more.
A series of coatings from poly(ethylene-co-vinyl acetate) (EVA) were obtained using the matrix-assisted pulsed laser evaporation (MAPLE) technique. By changing the process parameters, i.e., laser fluence and EVA co-polymer concentration in the target, coatings with various morphologies and topographies were produced. The evaluation of the film structure was based on an analysis of optical and atomic force microscopy and profilometry measurements. A detailed chemical structure investigation, conducted based on Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) spectra, revealed that although the general structure was preserved, some alterations of ethylene (Et) and vinyl acetate (VAc) blocks took place. The most noticeable change was in the ester group that was transformed into ketone and carboxyl groups; nevertheless, some changes in the aliphatic main chain were also present. The chemical structure changes in EVA coatings took place regardless of the process parameters used. The use of chloroform as a solvent to dissolve the EVA copolymer was indicated as a possible reason of the changes as well as the tendency of EVA macromolecules to form clusters. Nevertheless, due to low level of structure alteration, it has been shown that the MAPLE technique can be successfully used to obtain coatings from polymers with more complex structures, which are soluble in a limited number of solvents. Full article
(This article belongs to the Collection Frontiers in Polymeric Materials)
Show Figures

Figure 1

14 pages, 4544 KiB  
Article
Piezoelectric and Electromechanical Characteristics of Porous Poly(Ethylene-co-Vinyl Acetate) Copolymer Films for Smart Sensors and Mechanical Energy Harvesting Applications
by Chouaib Ennawaoui, Abdelowahed Hajjaji, Cédric Samuel, Erroumayssae Sabani, Abdelkader Rjafallah, Ikrame Najihi, El Mehdi Laadissi, El Mehdi Loualid, Mohamed Rguiti, Abdessamad El Ballouti and Azeddine Azim
Appl. Syst. Innov. 2021, 4(3), 57; https://doi.org/10.3390/asi4030057 - 26 Aug 2021
Cited by 19 | Viewed by 3469
Abstract
This paper investigates energy harvesting performances of porous piezoelectric polymer films to collect electrical energy from vibrations and power various sensors. The influence of void content on the elastic matrix, dielectric, electrical, and mechanical properties of porous piezoelectric polymer films produced from available [...] Read more.
This paper investigates energy harvesting performances of porous piezoelectric polymer films to collect electrical energy from vibrations and power various sensors. The influence of void content on the elastic matrix, dielectric, electrical, and mechanical properties of porous piezoelectric polymer films produced from available commercial poly(ethylene-co-vinyl acetate) using an industrially applicable melt-state extrusion method (EVA) were examined and discussed. Electrical and mechanical characterization showed an increase in the harvested current and a decrease in Young’s modulus with the increasing ratio of voids. Thermal analysis revealed a decrease in piezoelectric constant of the porous materials. The authors present a mathematical model that is able to predict harvested current as a function of matrix characteristics, mechanical excitation and porosity percentage. The output current is directly proportional to the porosity percentage. The harvested power significantly increases with increasing strain or porosity, achieving a power value up to 0.23, 1.55, and 3.87 mW/m3 for three EVA compositions: EVA 0%, EVA 37% and EVA 65%, respectively. In conclusion, porous piezoelectric EVA films has great potential from an energy density viewpoint and could represent interesting candidates for energy harvesting applications. Our work contributes to the development of smart materials, with potential uses as innovative harvester systems of energy generated by different vibration sources such as roads, machines and oceans. Full article
Show Figures

Figure 1

18 pages, 4218 KiB  
Article
Optimization of the Mechanical Properties of Polyolefin Composites Loaded with Mineral Fillers for Flame Retardant Cables
by Sara Haveriku, Michela Meucci, Marco Badalassi, Camillo Cardelli, Giacomo Ruggeri and Andrea Pucci
Micro 2021, 1(1), 102-119; https://doi.org/10.3390/micro1010008 - 29 Jul 2021
Cited by 14 | Viewed by 5561
Abstract
Formulations based on mineral fillers and polymeric matrices of different nature were studied to obtain halogen-free flame retardant compounds (HFFR) for cable applications. The work was carried out by comparing fire-retardant mineral fillers of natural origin with synthetic mineral ones available on the [...] Read more.
Formulations based on mineral fillers and polymeric matrices of different nature were studied to obtain halogen-free flame retardant compounds (HFFR) for cable applications. The work was carried out by comparing fire-retardant mineral fillers of natural origin with synthetic mineral ones available on the market. As a reference, a formulation based on micronized natural magnesium hydroxide (n-MDH, obtained from brucite) and an ethylene-vinyl acetate copolymer with 28% by weight (11% by moles) of vinyl acetate were selected, and the mechanical and flame retardant properties compared with formulations based on secondary polymers combined with EVA, metal hydroxides, and carbonates. Notably, we found a synergistic effect in the mechanical, rheological and flame retardant properties for the composite containing a mixture of n-MDH and boehmite in a 3:1 weight ratio. Overall, the present work provided a complete and optimized recipe for the formulation of polymer composites characterized by the required flame retardant and mechanical features in electric cables applications. Full article
(This article belongs to the Section Microscale Materials Science)
Show Figures

Figure 1

14 pages, 3495 KiB  
Article
Comparative Analysis of Morphological and Release Profiles in Ocular Implants of Acetazolamide Prepared by Electrospinning
by Mariana Morais, Patrícia Coimbra and Maria Eugénia Pina
Pharmaceutics 2021, 13(2), 260; https://doi.org/10.3390/pharmaceutics13020260 - 15 Feb 2021
Cited by 14 | Viewed by 3380
Abstract
The visual impairment that often leads to blindness causes a higher morbidity rate. The goal of this work is to create a novel biodegradable polymeric implant obtained from coaxial fibers containing the dispersed drug—acetazolamide—in order to achieve sustained drug release and increase patient [...] Read more.
The visual impairment that often leads to blindness causes a higher morbidity rate. The goal of this work is to create a novel biodegradable polymeric implant obtained from coaxial fibers containing the dispersed drug—acetazolamide—in order to achieve sustained drug release and increase patient compliance, which is of the highest importance. Firstly, during this work, uncoated implants were produced by electrospinning, and rolled in the shape of small cylinders that were composed of uniaxial and coaxial fibers with immobilized drug inside. The fibers were composed by PCL (poly ε-caprolactone) and Lutrol F127 (poly (oxyethylene-b-oxypropylene-b-oxyethylene)). The prepared implants exhibited a fast rate of drug release, which led to the preparation of new implants incorporating the same formulation but with an additional coating film prepared by solvent casting and comprising PCL and Lutrol F127 or PCL and Luwax EVA 3 ((poly (ethylene-co-vinyl acetate)). Implants were characterized and in vitro release profiles of acetazolamide were obtained in phosphate buffered saline (PBS) at 37 °C. The release profile of the acetazolamide from coated implant containing Luwax EVA 3 is considerably slower than what was observed in case of coated implants containing Lutrol F127, allowing a sustained release and an innovation relatively to other ocular drug delivery systems. Full article
(This article belongs to the Special Issue Ophthalmic Drug Delivery, 2nd Edition)
Show Figures

Figure 1

11 pages, 2930 KiB  
Article
Chemical Structure of EVA Films Obtained by Pulsed Electron Beam and Pulse Laser Ablation
by Agata Niemczyk, Dariusz Moszyński, Roman Jędrzejewski, Konrad Kwiatkowski, Joanna Piwowarczyk and Jolanta Baranowska
Polymers 2019, 11(9), 1419; https://doi.org/10.3390/polym11091419 - 29 Aug 2019
Cited by 13 | Viewed by 4189
Abstract
Poly(ethylene-co-vinyl acetate) (EVA) films were deposited for the first time using physical methods. The chemical structure of the films obtained using two techniques, pulsed electron beam deposition (PED) and pulsed laser deposition (PLD), was studied by attenuated total reflection Fourier infrared [...] Read more.
Poly(ethylene-co-vinyl acetate) (EVA) films were deposited for the first time using physical methods. The chemical structure of the films obtained using two techniques, pulsed electron beam deposition (PED) and pulsed laser deposition (PLD), was studied by attenuated total reflection Fourier infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). Whilst significant molecular degradation of the EVA films was observed for the PLD method, the original macromolecular structure was only partially degraded when the PED technique was used, emphasizing the superiority of the PED method over PLD for structurally complex polymers such as EVA. Optical and scanning electron microscopic observations revealed compact and smooth EVA films deposited by pulsed electron beam ablation as opposed to heterogeneous films with many different sized particulates obtained by PLD. Full article
Show Figures

Figure 1

21 pages, 854 KiB  
Article
Functionalization, Compatibilization and Properties of Polyolefin Composites with Natural Fibers
by Mariano Pracella, Md. Minhaz-Ul Haque and Vera Alvarez
Polymers 2010, 2(4), 554-574; https://doi.org/10.3390/polym2040554 - 15 Nov 2010
Cited by 129 | Viewed by 19718
Abstract
The article is focused on analyzing the effect of functionalization and reactive processing on the morphological, thermal, rheological and mechanical properties of composites of isotactic polypropylene (PP), polystyrene (PS), poly(ethylene-vinyl acetate) (EVA), with cellulose fibers, hemp or oat as natural fillers. Both polymers [...] Read more.
The article is focused on analyzing the effect of functionalization and reactive processing on the morphological, thermal, rheological and mechanical properties of composites of isotactic polypropylene (PP), polystyrene (PS), poly(ethylene-vinyl acetate) (EVA), with cellulose fibers, hemp or oat as natural fillers. Both polymers and fibers were modified with bi-functional monomers (glycidyl methacrylate, GMA; maleic anhydride, MA) capable of facilitating chemical reactions between the components during melt mixing. Polyolefin copolymers containing reactive groups (PP-g-GMA, SEBS-g-MA, PS-co-MA, etc.) were used as compatibilizers. Optical and SEM microscopy, FTIR, RX, DSC, TGA, DMTA, rheological and mechanical tests were employed for the composites characterization. The properties of binary and ternary systems have been analyzed as a function of both fiber and compatibilizer content. All compatibilized systems showed enhanced fiber dispersion and interfacial adhesion. The phase behavior and the thermal stability of the composites were affected by the chemical modification of the fibers. Marked changes in the overall crystallization processes and crystal morphology of PP composites were observed owing to the nucleating effect of the fibers. The tensile mechanical behavior of the compatibilized composites generally resulted in a higher stiffness, depending on the fiber amount and the structure and concentration of compatibilizer. Full article
(This article belongs to the Special Issue Natural Polymers)
Show Figures

Figure 1

Back to TopTop