Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = poly(l-ornithine)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 10700 KiB  
Article
Systematic Evaluation of Extracellular Coating Matrix on the Differentiation of Human-Induced Pluripotent Stem Cells to Cortical Neurons
by Siyao Li, Yan Liu, Xianyang Luo and Wei Hong
Int. J. Mol. Sci. 2025, 26(1), 230; https://doi.org/10.3390/ijms26010230 - 30 Dec 2024
Cited by 1 | Viewed by 1697
Abstract
Induced pluripotent stem cell (iPSC)-derived neurons (iNs) have been widely used as models of neurodevelopment and neurodegenerative diseases. Coating cell culture vessels with extracellular matrixes (ECMs) gives structural support and facilitates cell communication and differentiation, ultimately enhances neuronal functions. However, the relevance of [...] Read more.
Induced pluripotent stem cell (iPSC)-derived neurons (iNs) have been widely used as models of neurodevelopment and neurodegenerative diseases. Coating cell culture vessels with extracellular matrixes (ECMs) gives structural support and facilitates cell communication and differentiation, ultimately enhances neuronal functions. However, the relevance of different ECMs to the natural environment and their impact on neuronal differentiation have not been fully characterized. In this study, we report the use of four commonly used extracellular matrixes, poly-D-lysine (PDL), poly-L-ornithine (PLO), Laminin and Matrigel, which we applied to compare the single-coating and double-coating conditions on iNs differentiation and maturation. Using the IncuCyte live-cell imaging system, we found that iNs cultured on single Matrigel- and Laminin-coated vessels have significantly higher density of neurite outgrowth and branch points than PLO or PDL but produce abnormal highly straight neurite outgrowth and larger cell body clumps. All the four double-coating conditions significantly reduced the clumping of neurons, in which the combination of PDL+Matrigel also enhanced neuronal purity. Double coating with PDL+Matrigel also tended to improve dendritic and axonal development and the distribution of pre and postsynaptic markers. These results demonstrate that the extracellular matrix contributes to the differentiation of cultured neurons and that double coating with PDL+Matrigel gives the best outcomes. Our study indicates that neuronal differentiation and maturation can be manipulated, to a certain extent, by adjusting the ECM recipe, and provides important technical guidance for the use of the ECM in neurological studies. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

16 pages, 4580 KiB  
Article
A Bioinspired Astrocyte-Derived Coating Promotes the In Vitro Proliferation of Human Neural Stem Cells While Maintaining Their Stemness
by Andrea C. Jimenez-Vergara, Jacob Avina, Travis Jackson Block, Anne Sheldrake, Carson Koch, Anna Gonzalez, Jennifer Steele, Ana M. Díaz-Lasprilla and Dany J. Munoz-Pinto
Biomimetics 2023, 8(8), 589; https://doi.org/10.3390/biomimetics8080589 - 4 Dec 2023
Viewed by 3182
Abstract
The repair of neuronal tissue is a challenging process due to the limited proliferative capacity of neurons. Neural stem cells (NSCs) can aid in the regeneration process of neural tissue due to their high proliferation potential and capacity to differentiate into neurons. The [...] Read more.
The repair of neuronal tissue is a challenging process due to the limited proliferative capacity of neurons. Neural stem cells (NSCs) can aid in the regeneration process of neural tissue due to their high proliferation potential and capacity to differentiate into neurons. The therapeutic potential of these cells can only be achieved if sufficient cells are obtained without losing their differentiation potential. Toward this end, an astrocyte-derived coating (HAc) was evaluated as a promising substrate to promote the proliferation of NSCs. Mass spectroscopy and scanning electron microscopy were used to characterize the HAc. The proliferation rate and the expression of stemness and differentiation markers in NSCs cultured on the HAc were evaluated and compared to the responses of these cells to commonly used coating materials including Poly-L-Ornithine (PLO), and a Human Induced Pluripotent Stem Cell (HiPSC)-based coating. The use of the HAc promotes the in vitro cell growth of NSCs. The expression of the stemness markers Sox2 and Nestin, and the differentiation marker DCX in the HAc group was akin to the expression of these markers in the controls. In summary, HAc supported the proliferation of NSCs while maintaining their stemness and neural differentiation potential. Full article
(This article belongs to the Special Issue Biomaterials for Stem Cell Engineering)
Show Figures

Figure 1

14 pages, 3094 KiB  
Article
Synthesis of L-Ornithine- and L-Glutamine-Linked PLGAs as Biodegradable Polymers
by Gülce Taşkor Önel
Polymers 2023, 15(19), 3998; https://doi.org/10.3390/polym15193998 - 5 Oct 2023
Cited by 2 | Viewed by 2652
Abstract
L-ornithine and L-glutamine are amino acids used for ammonia and nitrogen transport in the human body. Novel biodegradable synthetic poly(lactic-co-glycolic acid) derivatives were synthesized via conjugation with L-ornithine or L-glutamine, which were selected due to their biological [...] Read more.
L-ornithine and L-glutamine are amino acids used for ammonia and nitrogen transport in the human body. Novel biodegradable synthetic poly(lactic-co-glycolic acid) derivatives were synthesized via conjugation with L-ornithine or L-glutamine, which were selected due to their biological importance. L-ornithine or L-glutamine was integrated into a PLGA polymer with EDC coupling reactions as a structure developer after the synthesis of PLGA via the polycondensation and ring-opening polymerization of lactide and glycolide. The chemical, thermal, and degradation property–structure relationships of PLGA, PLGA-L-ornithine, and PLGA-L-glutamine were identified. The conjugation between PLGA and the amino acid was confirmed through observation of an increase in the number of carbonyl carbons in the range of 170–160 ppm in the 13C NMR spectrum and the signal of the amide carbonyl vibration at about 1698 cm−1 in the FTIR spectrum. The developed PLGA-L-ornithine and PLGA-L-glutamine derivatives were thermally stable and energetic materials. In addition, PLGA-L-ornithine and PLGA-L-glutamine, with their unique hydrophilic properties, had faster degradation times than PLGA in terms of surface-type erosion, which covers their requirements. L-ornithine- and L-glutamine-linked PLGAs are potential candidates for development into biodegradable PLGA-derived biopolymers that can be used as raw materials for biomaterials. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

15 pages, 7315 KiB  
Article
Poly(l-Ornithine)-Based Polymeric Micelles as pH-Responsive Macromolecular Anticancer Agents
by Miao Pan, Chao Lu, Wancong Zhang, Huan Huang, Xingyu Shi, Shijie Tang and Daojun Liu
Pharmaceutics 2023, 15(4), 1307; https://doi.org/10.3390/pharmaceutics15041307 - 21 Apr 2023
Cited by 4 | Viewed by 2351
Abstract
Anticancer peptides and polymers represent an emerging field of tumor treatment and can physically interact with tumor cells to address the problem of multidrug resistance. In the present study, poly(l-ornithine)-b-poly(l-phenylalanine) (PLO-b-PLF) block copolypeptides were prepared [...] Read more.
Anticancer peptides and polymers represent an emerging field of tumor treatment and can physically interact with tumor cells to address the problem of multidrug resistance. In the present study, poly(l-ornithine)-b-poly(l-phenylalanine) (PLO-b-PLF) block copolypeptides were prepared and evaluated as macromolecular anticancer agents. Amphiphilic PLO-b-PLF self-assembles into nanosized polymeric micelles in aqueous solution. Cationic PLO-b-PLF micelles interact steadily with the negatively charged surfaces of cancer cells via electrostatic interactions and kill the cancer cells via membrane lysis. To alleviate the cytotoxicity of PLO-b-PLF, 1,2-dicarboxylic-cyclohexene anhydride (DCA) was anchored to the side chains of PLO via an acid-labile β-amide bond to fabricate PLO(DCA)-b-PLF. Anionic PLO(DCA)-b-PLF showed negligible hemolysis and cytotoxicity under neutral physiological conditions but recovered cytotoxicity (anticancer activity) upon charge reversal in the weakly acidic microenvironment of the tumor. PLO-based polypeptides might have potential applications in the emerging field of drug-free tumor treatment. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

15 pages, 6090 KiB  
Article
Vancomycin-Loaded Furriness Amino Magnetic Nanospheres for Rapid Detection of Gram-Positive Water Bacterial Contamination
by Ahmed M. Azzam, Mohamed A. Shenashen, Mohamed S. Selim, Bayaumy Mostafa, Ahmed Tawfik and Sherif A. El-Safty
Nanomaterials 2022, 12(3), 510; https://doi.org/10.3390/nano12030510 - 1 Feb 2022
Cited by 11 | Viewed by 2586
Abstract
Bacterial pathogens pose high threat to public health worldwide. Different types of nanomaterials have been synthesized for the rapid detection and elimination of pathogens from environmental samples. However, the selectivity of these materials remains challenging, because target bacterial pathogens commonly exist in complex [...] Read more.
Bacterial pathogens pose high threat to public health worldwide. Different types of nanomaterials have been synthesized for the rapid detection and elimination of pathogens from environmental samples. However, the selectivity of these materials remains challenging, because target bacterial pathogens commonly exist in complex samples at ultralow concentrations. In this study, we fabricated novel furry amino magnetic poly-L-ornithine (PLO)/amine-poly(ethylene glycol) (PEG)-COOH/vancomycin (VCM) (AM-PPV) nanospheres with high-loading VCM for vehicle tracking and the highly efficient capture of pathogens. The magnetic core was coated with organosilica and functionalized with cilia. The core consisted of PEG/PLO loaded with VCM conjugated to Gram-positive bacterial cell membranes, forming hydrogen bonds with terminal peptides. The characterization of AM-PPV nanospheres revealed an average particle size of 56 nm. The field-emission scanning electron microscopy (FE-SEM) micrographs showed well-controlled spherical AM-PPV nanospheres with an average size of 56 nm. The nanospheres were relatively rough and contained an additional 12.4 nm hydrodynamic layer of PLO/PEG/VCM, which provided additional stability in the suspension. The furry AM-PPV nanospheres exhibited a significant capture efficiency (>90%) and a high selectivity for detecting Bacillus cereus (employed as a model for Gram-positive bacteria) within 15 min, even in the presence of other biocompatible pathogens. Moreover, AM-PPV nanospheres rapidly and accurately detected B. cereus at levels less than 10 CFU/mL. The furry nano-design can potentially satisfy the increasing demand for the rapid and sensitive detection of pathogens in clinical and environmental samples. Full article
(This article belongs to the Special Issue Feature Papers in Nanomaterials Science)
Show Figures

Figure 1

14 pages, 3165 KiB  
Article
Difluoromethylornithine Induces Apoptosis through Regulation of AP-1 Signaling via JNK Phosphorylation in Epithelial Ovarian Cancer
by Woo Yeon Hwang, Wook Ha Park, Dong Hoon Suh, Kidong Kim, Yong Beom Kim and Jae Hong No
Int. J. Mol. Sci. 2021, 22(19), 10255; https://doi.org/10.3390/ijms221910255 - 23 Sep 2021
Cited by 7 | Viewed by 4337
Abstract
Difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC), has promising activity against various cancers and a tolerable safety profile for long-term use as a chemopreventive agent. However, the anti-tumor effects of DFMO in ovarian cancer cells have not been entirely understood. Our [...] Read more.
Difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC), has promising activity against various cancers and a tolerable safety profile for long-term use as a chemopreventive agent. However, the anti-tumor effects of DFMO in ovarian cancer cells have not been entirely understood. Our study aimed to identify the effects and mechanism of DFMO in epithelial ovarian cancer cells using SKOV-3 cells. Treatment with DFMO resulted in a significantly reduced cell viability in a time- and dose-dependent manner. DFMO treatment inhibited the activity and downregulated the expression of ODC in ovarian cancer cells. The reduction in cell viability was reversed using polyamines, suggesting that polyamine depletion plays an important role in the anti-tumor activity of DFMO. Additionally, significant changes in Bcl-2, Bcl-xL, Bax protein levels, activation of caspase-3, and cleavage of poly (ADP-ribose) polymerase were observed, indicating the apoptotic effects of DFMO. We also found that the effect of DFMO was mediated by AP-1 through the activation of upstream JNK via phosphorylation. Moreover, DFMO enhanced the effect of cisplatin, thus showing a possibility of a synergistic effect in treatment. In conclusion, treatment with DFMO alone, or in combination with cisplatin, could be a promising treatment for ovarian cancer. Full article
(This article belongs to the Special Issue Advances in Gynecological Cancers)
Show Figures

Figure 1

35 pages, 3663 KiB  
Review
Polymeric Nanoparticles in Gene Therapy: New Avenues of Design and Optimization for Delivery Applications
by Raj Rai, Saniya Alwani and Ildiko Badea
Polymers 2019, 11(4), 745; https://doi.org/10.3390/polym11040745 - 25 Apr 2019
Cited by 277 | Viewed by 21336
Abstract
The field of polymeric nanoparticles is quickly expanding and playing a pivotal role in a wide spectrum of areas ranging from electronics, photonics, conducting materials, and sensors to medicine, pollution control, and environmental technology. Among the applications of polymers in medicine, gene therapy [...] Read more.
The field of polymeric nanoparticles is quickly expanding and playing a pivotal role in a wide spectrum of areas ranging from electronics, photonics, conducting materials, and sensors to medicine, pollution control, and environmental technology. Among the applications of polymers in medicine, gene therapy has emerged as one of the most advanced, with the capability to tackle disorders from the modern era. However, there are several barriers associated with the delivery of genes in the living system that need to be mitigated by polymer engineering. One of the most crucial challenges is the effectiveness of the delivery vehicle or vector. In last few decades, non-viral delivery systems have gained attention because of their low toxicity, potential for targeted delivery, long-term stability, lack of immunogenicity, and relatively low production cost. In 1987, Felgner et al. used the cationic lipid based non-viral gene delivery system for the very first time. This breakthrough opened the opportunity for other non-viral vectors, such as polymers. Cationic polymers have emerged as promising candidates for non-viral gene delivery systems because of their facile synthesis and flexible properties. These polymers can be conjugated with genetic material via electrostatic attraction at physiological pH, thereby facilitating gene delivery. Many factors influence the gene transfection efficiency of cationic polymers, including their structure, molecular weight, and surface charge. Outstanding representatives of polymers that have emerged over the last decade to be used in gene therapy are synthetic polymers such as poly(l-lysine), poly(l-ornithine), linear and branched polyethyleneimine, diethylaminoethyl-dextran, poly(amidoamine) dendrimers, and poly(dimethylaminoethyl methacrylate). Natural polymers, such as chitosan, dextran, gelatin, pullulan, and synthetic analogs, with sophisticated features like guanidinylated bio-reducible polymers were also explored. This review outlines the introduction of polymers in medicine, discusses the methods of polymer synthesis, addressing top down and bottom up techniques. Evaluation of functionalization strategies for therapeutic and formulation stability are also highlighted. The overview of the properties, challenges, and functionalization approaches and, finally, the applications of the polymeric delivery systems in gene therapy marks this review as a unique one-stop summary of developments in this field. Full article
(This article belongs to the Special Issue Polymers in Gene Delivery)
Show Figures

Figure 1

16 pages, 3304 KiB  
Article
Improved Intranasal Retentivity and Transnasal Absorption Enhancement by PEGylated Poly-l-ornithine
by Yusuke Kamiya, Tsutomu Yamaki, Shigehiro Omori, Masaki Uchida, Kazuo Ohtake, Mitsutoshi Kimura, Hiroshi Yamazaki and Hideshi Natsume
Pharmaceuticals 2018, 11(1), 9; https://doi.org/10.3390/ph11010009 - 25 Jan 2018
Cited by 11 | Viewed by 4558
Abstract
We reported that the introduction of polyethylene glycol (PEG) to poly-l-ornithine (PLO), which is an homopolymeric basic amino acid having absorption-enhancement ability, prolonged retention time in an in vitro inclined plate test, probably due to an increase in viscosity caused by [...] Read more.
We reported that the introduction of polyethylene glycol (PEG) to poly-l-ornithine (PLO), which is an homopolymeric basic amino acid having absorption-enhancement ability, prolonged retention time in an in vitro inclined plate test, probably due to an increase in viscosity caused by PEGylation. The aim of the present study is to investigate whether the introduction of PEG chains to PLO improves intranasal retention and transnasal absorption in vivo. We performed intranasal administration experiments using PLO and PEG-PLO with a model drug, fluorescein isothiocyanate dextran (FD-4), in rats under closed and open systems. In the open system, transition of plasma FD-4 concentration after co-administration with unmodified PLO was low, and the area under the plasma concentration-time curve (AUC) decreased to about 60% of that in the closed system. In contrast, the AUC after co-administration with PEG-PLO in the open system was about 90% of that in the closed system, and the transition of plasma FD-4 concentration and FD-4 absorption profile were similar to those of the closed system. These findings indicate that introducing PEG chains to homopolymeric basic amino acids (HPBAAs) is a very useful method for developing a functional absorption enhancer that can exhibit an efficient in vivo absorption-enhancing effect. Full article
(This article belongs to the Special Issue Polyethylene Glycol (PEG) and PEGylation in Pharmacy)
Show Figures

Graphical abstract

17 pages, 3599 KiB  
Article
Post-Modified Polypeptides with UCST-Type Behavior for Control of Cell Attachment in Physiological Conditions
by Xuan Xue, Lalitha Thiagarajan, James E. Dixon, Brian R. Saunders, Kevin M. Shakesheff and Cameron Alexander
Materials 2018, 11(1), 95; https://doi.org/10.3390/ma11010095 - 9 Jan 2018
Cited by 9 | Viewed by 5105
Abstract
Upper Critical Solution Temperature (UCST)-type thermally responsive polypeptides (TRPs) with phase transition temperatures around 37 °C in phosphate-buffered saline (PBS) buffer (pH 7.4, 100 mM) were prepared from poly(l-ornithine) hydrobromide and coated on non-tissue culture-treated plastic plates (nTCP). Cell adhesion was [...] Read more.
Upper Critical Solution Temperature (UCST)-type thermally responsive polypeptides (TRPs) with phase transition temperatures around 37 °C in phosphate-buffered saline (PBS) buffer (pH 7.4, 100 mM) were prepared from poly(l-ornithine) hydrobromide and coated on non-tissue culture-treated plastic plates (nTCP). Cell adhesion was observed at temperatures above the phase transition temperature of the coating polymer (39 °C), while cell release was triggered when the culture temperature was switched to 37 °C. Approximately 65% of the attached cells were released from the surface within 6 h after changing the temperature, and more than 96% of the released cells were viable. Water contact angle measurements performed at 39 and 37 °C demonstrated that the surface hydrophobicity of the new TRP coatings changed in response to applied temperature. The cell attachment varied with the presence of serum in the media, suggesting that the TRP coatings mediated cell attachment and release as the underlying polymer surface changed conformation and consequently the display of adsorbed protein. These new TRP coatings provide an additional means to mediate cell attachment for application in cell-based tissue regeneration and therapies. Full article
(This article belongs to the Special Issue Temperature-Responsive Polymers)
Show Figures

Graphical abstract

19 pages, 1594 KiB  
Article
Physical Properties of Polypeptide Electrospun Nanofiber Cell Culture Scaffolds on a Wettable Substrate
by Donald T. Haynie, Dhan B. Khadka and Michael C. Cross
Polymers 2012, 4(3), 1535-1553; https://doi.org/10.3390/polym4031535 - 31 Aug 2012
Cited by 15 | Viewed by 8881
Abstract
Physical properties of poly(L-ornithine) (PLO), a polycation, poly(L-glutamic acid4-co-L-tyrosine) (PLEY), a polyanion, and electrospun fibers made of these polymers have been determined and compared. The polymers adopted random coil-like conformations in aqueous feedstocks at neutral pH and in dehydrated [...] Read more.
Physical properties of poly(L-ornithine) (PLO), a polycation, poly(L-glutamic acid4-co-L-tyrosine) (PLEY), a polyanion, and electrospun fibers made of these polymers have been determined and compared. The polymers adopted random coil-like conformations in aqueous feedstocks at neutral pH and in dehydrated cast films and fibers on glass, and the fibers comprised numerous counterions, according to spectral analysis. Adsorption of model proteins and serum proteins onto hydrated and crosslinked fibers depended on the electrical charge of the proteins and the fibers. The surface charge density of the fibers will be comparable to, but less than, the charge density on the outer leaflet of the plasma membrane of usual eukaryotic cells. The present analysis thus advances understanding of cell behavior on electrospun fiber scaffolds, a topic of considerable current interest. Full article
Show Figures

Graphical abstract

Back to TopTop