Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = poly(ethylene glycol) diacrylate hydrogel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4926 KiB  
Article
Light-Mediated 3D-Printed Wound Dressings Based on Natural Polymers with Improved Adhesion and Antioxidant Properties
by Rute Silva, Matilde Medeiros, Carlos T. B. Paula, Sofia Saraiva, Rafael C. Rebelo, Patrícia Pereira, Jorge F. J. Coelho, Arménio C. Serra and Ana C. Fonseca
Polymers 2025, 17(8), 1114; https://doi.org/10.3390/polym17081114 - 20 Apr 2025
Cited by 1 | Viewed by 626
Abstract
The lack of personalized wound dressings tailored to individual needs can significantly hinder wound healing. Hydrogels offer a promising solution, as they can be engineered to mimic the extracellular matrix (ECM), providing an optimal environment for wound repair. The integration of digital light [...] Read more.
The lack of personalized wound dressings tailored to individual needs can significantly hinder wound healing. Hydrogels offer a promising solution, as they can be engineered to mimic the extracellular matrix (ECM), providing an optimal environment for wound repair. The integration of digital light processing (DLP), a high-resolution 3D printing process, allows precise customization of hydrogel-based wound dressings. In this study, gelatin methacrylate (GelMA)-based formulations were prepared in combination with three different polymeric precursors: methacrylated hyaluronic acid (HAMA), poly (ethylene glycol) diacrylate (PEGDA) and allyl cellulose (MCCA). These precursors were used to print high-resolution micropatterned patches. The printed constructs revealed a high gel content and a good resistance to hydrolytic degradation. To improve the adhesive and antioxidant properties of the printed patches, gallic acid (GA) was incorporated through surface functionalization. This enabled the scavenging of approximately 80% of free radicals within just 4 h. The adhesive properties of the printed wound dressings were also significantly improved, with further enhancement observed upon the addition of Fe3+ ions. In vitro cytocompatibility tests using a fibroblast (NHDF) cell line confirmed the suitability of the materials for biomedical applications. Thus, this study demonstrates the potential of DLP-printed hydrogels as advanced personalized wound dressing materials. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials, 3rd Edition)
Show Figures

Graphical abstract

16 pages, 6479 KiB  
Article
Vat Photopolymerization of CeO2-Incorporated Hydrogel Scaffolds with Antimicrobial Efficacy
by Nelly Aimelyne Mpuhwe, Gyu-Nam Kim and Young-Hag Koh
Materials 2025, 18(5), 1125; https://doi.org/10.3390/ma18051125 - 2 Mar 2025
Cited by 1 | Viewed by 1113
Abstract
We herein demonstrate the utility of gelatin methacryloyl (GelMA)/poly(ethylene glycol) diacrylate (PEGDA)–cerium oxide (CeO2) hydrogel inks for manufacturing hydrogel scaffolds with antimicrobial efficacy by vat photopolymerization. For uniform blending with GelMA/PEGDA hydrogels, CeO2 nanoparticles with a round shape were synthesized [...] Read more.
We herein demonstrate the utility of gelatin methacryloyl (GelMA)/poly(ethylene glycol) diacrylate (PEGDA)–cerium oxide (CeO2) hydrogel inks for manufacturing hydrogel scaffolds with antimicrobial efficacy by vat photopolymerization. For uniform blending with GelMA/PEGDA hydrogels, CeO2 nanoparticles with a round shape were synthesized by the precipitation method coupled with calculation at 600 °C. In addition, they had highly crystalline phases and the desired chemical structures (oxidation states of Ce3+ and Ce4+) required for outstanding antimicrobial efficacy. A range of GelMA/PEGDA-CeO2 hydrogel scaffolds with different CeO2 contents (0% w/v, 0.1% w/v, 0.5% w/v, 1% w/v, and 5% w/v with respect to distilled water content) were manufactured. The photopolymerization behavior, mechanical properties, and biological properties (swelling and biodegradation behaviors) of hydrogel scaffolds were characterized to optimize the CeO2 content. GelMA/PEGDA-CeO2 hydrogel scaffolds produced with the highest CeO2 content (5% w/v) showed reasonable mechanical properties (compressive strength = 0.56 ± 0.09 MPa and compressive modulus = 0.19 ± 0.03 MPa), a high swelling ratio (1063.3 ± 10.9%), and the desired biodegradation rate (remaining weight after 28 days = 39.6 ± 2.3%). Furthermore, they showed outstanding antimicrobial efficacy (the number of colony-forming units = 76 ± 44.6 (×103)). In addition, macroporous GelMA/PEGDA-CeO2 hydrogel scaffolds with tightly controlled porous structures could be manufactured by vat photopolymerization. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

14 pages, 2763 KiB  
Article
Dual-Function Hydrogel Coating on Silicone Urinary Catheters with Durable Antibacterial Property and Lubricity
by Shuai Gao, Wei Zeng, Zheng Liu, Fanjun Zhang, Yunfeng Zhang, Xi Liu, Dimeng Wu and Yunbing Wang
Gels 2025, 11(2), 128; https://doi.org/10.3390/gels11020128 - 10 Feb 2025
Viewed by 1560
Abstract
Silicone urinary catheters are broadly employed in medical practice. However, they are susceptible to inducing catheter-associated urinary tract infections (CAUTIs) due to bacterial adherence to the catheter’s surface, and they exhibit a high friction coefficient, which can greatly affect their effectiveness and functionality. [...] Read more.
Silicone urinary catheters are broadly employed in medical practice. However, they are susceptible to inducing catheter-associated urinary tract infections (CAUTIs) due to bacterial adherence to the catheter’s surface, and they exhibit a high friction coefficient, which can greatly affect their effectiveness and functionality. Thus, the development of a silicone urinary catheter with antibacterial properties and lubricity is in strong demand. We hereby developed a poly(vinyl acetate) carrier coating to load chlorhexidine acetate and applied a hydrogel coating primarily composed of polyvinylpyrrolidone (PVP) and poly(ethylene glycol) diacrylate (PEGDA), which was then coated onto the silicone urinary catheters and cured through a thermal curing process and could provide lubricity. Subsequently, we analyzed its surface characteristics and assessed the antibacterial property, lubricity, cytotoxicity, and potential for vaginal irritation. The findings from the Fourier transform infrared spectrometer (FTIR), scanning electron microscope (SEM), water contact angle (WCA), inhibition zone measurements, and friction coefficient analysis confirmed the successful modification of the silicone urinary catheter. Additionally, the outcomes from the cytotoxicity and vaginal irritation assessments demonstrated that the dual-function hydrogel coating-coated silicone urinary catheters exhibit outstanding biocompatibility. This study illustrates that the prepared silicone urinary catheters possess durable antibacterial properties and lubricity, which thus gives them broad clinical application prospects. Full article
(This article belongs to the Special Issue Gel-Based Materials for Biomedical Engineering (2nd Edition))
Show Figures

Graphical abstract

26 pages, 16106 KiB  
Article
Physicochemical Characterization and Kinetics Study of Polymer Carriers with Vitamin C for Controlled Release Applications
by Magdalena Bańkosz
Materials 2024, 17(22), 5502; https://doi.org/10.3390/ma17225502 - 12 Nov 2024
Cited by 1 | Viewed by 1190
Abstract
This study focuses on the selection and evaluation of a kinetic model for the release of vitamin C from different delivery systems, including microcapsules, hydrogels, and a hybrid system combining both. The microcapsules were synthesized from a 2% sodium alginate solution and with [...] Read more.
This study focuses on the selection and evaluation of a kinetic model for the release of vitamin C from different delivery systems, including microcapsules, hydrogels, and a hybrid system combining both. The microcapsules were synthesized from a 2% sodium alginate solution and with vitamin C incorporated in selected formulations. Hydrogels were obtained through photopolymerization using poly(ethylene glycol) diacrylate and polyvinyl alcohol, with and without the addition of vitamin C. The hybrid system incorporated the vitamin C-containing microcapsules within the hydrogel matrix. Physicochemical properties, such as density, porosity, and water vapor transmission rate (WVTR), were evaluated. Kinetic studies of vitamin C release were conducted under dynamic and static conditions, and the experimental data were fitted to six different kinetic models: zero-order, first-order, second-order, Higuchi, Korsmeyer–Peppas, and Hixson–Crowell. The Higuchi and Korsmeyer–Peppas models provided the best fit for most systems, indicating that the release is predominantly controlled by diffusion and, in dynamic conditions, swelling of the matrix. The hybrid system, while exhibiting slower release than the microcapsules and hydrogel alone, demonstrated more controlled and sustained release, which is advantageous for applications requiring prolonged action. Full article
Show Figures

Graphical abstract

16 pages, 5009 KiB  
Article
Conductive-Polymer-Based Double-Network Hydrogels for Wearable Supercapacitors
by Bu Quan, Linjie Du, Zixuan Zhou, Xin Sun, Jadranka Travas-Sejdic and Bicheng Zhu
Gels 2024, 10(11), 688; https://doi.org/10.3390/gels10110688 - 24 Oct 2024
Cited by 5 | Viewed by 2081
Abstract
In the field of contemporary epidermal bioelectronics, there is a demand for energy supplies that are safe, lightweight, flexible and robust. In this work, double-network polymer hydrogels were synthesized by polymerization of 3,4-ethylenedioxythiophene (EDOT) into a poly(vinyl alcohol)/poly(ethylene glycol diacrylate) (PVA/PEGDA) double-network hydrogel [...] Read more.
In the field of contemporary epidermal bioelectronics, there is a demand for energy supplies that are safe, lightweight, flexible and robust. In this work, double-network polymer hydrogels were synthesized by polymerization of 3,4-ethylenedioxythiophene (EDOT) into a poly(vinyl alcohol)/poly(ethylene glycol diacrylate) (PVA/PEGDA) double-network hydrogel matrix. The PEDOT-PVA/PEGDA double-network hydrogel shows both excellent mechanical and electrochemical performance, having a strain up to 498%, electrical conductivity as high as 5 S m−1 and specific capacitance of 84.1 ± 3.6 mF cm⁻2. After assembling two PEDOT-PVA/PEGDA double-network hydrogel electrodes with the free-standing boron cross-linked PVA/KCl hydrogel electrolyte, the formed supercapacitor device exhibits a specific capacitance of 54.5 mF cm⁻2 at 10 mV s−1, with an energy density of 4.7 μWh cm−2. The device exhibits excellent electrochemical stability with 97.6% capacitance retention after 3000 charging–discharging cycles. In addition, the hydrogel also exhibits great sensitivity to strains and excellent antifouling properties. It was also found that the abovementioned hydrogel can achieve stable signals under both small and large deformations as a flexible sensor. The flexible and antifouling PEDOT-PVA/PEGDA double-network hydrogel-based supercapacitor is a promising power storage device with potential applications in wearable electronics. Full article
Show Figures

Graphical abstract

13 pages, 3616 KiB  
Article
Double-Network Hydrogel 3D BioPrinting Biocompatible with Fibroblast Cells for Tissue Engineering Applications
by Immacolata Greco, Hatim Machrafi and Carlo S. Iorio
Gels 2024, 10(11), 684; https://doi.org/10.3390/gels10110684 - 23 Oct 2024
Cited by 2 | Viewed by 1963
Abstract
The present study examines the formulation of a biocompatible hydrogel bioink for 3D bioprinting, integrating poly(ethylene glycol) diacrylate (PEGDA) and sodium alginate (SA) using a double-network approach. These materials were chosen for their synergistic qualities, with PEGDA contributing to mechanical integrity and SA [...] Read more.
The present study examines the formulation of a biocompatible hydrogel bioink for 3D bioprinting, integrating poly(ethylene glycol) diacrylate (PEGDA) and sodium alginate (SA) using a double-network approach. These materials were chosen for their synergistic qualities, with PEGDA contributing to mechanical integrity and SA ensuring biocompatibility. Fibroblast cells were included in the bioink and printed with a Reg4Life bioprinter employing micro-extrusion technology. The optimisation of printing parameters included needle size and flow velocities. This led to precise structure development and yielded results with a negligible deviation in printed angles and better control of line widths. The rheological characteristics of the bioink were evaluated, demonstrating appropriate viscosity and shear-thinning behaviour for efficient extrusion. The mechanical characterisation revealed an average compressive modulus of 0.38 MPa, suitable for tissue engineering applications. The printability of the bioink was further confirmed through the evaluations of morphology and diffusion rates, confirming structural integrity. Biocompatibility assessments demonstrated a high cell viability rate of 82.65% following 48 h of incubation, supporting the bioink’s suitability for facilitating cell survival. This study introduced a reliable technique for producing tissue-engineered scaffolds that exhibit outstanding mechanical characteristics and cell viability, highlighting the promise of PEGDA–SA hydrogels in bioprinting applications. Full article
(This article belongs to the Special Issue Composite Hydrogels for Biomedical Applications)
Show Figures

Graphical abstract

14 pages, 3147 KiB  
Article
Biocompatible Hydrogel Coating on Silicone Rubber with Improved Antifouling and Durable Lubricious Properties
by Shuai Gao, Zheng Liu, Wei Zeng, Yunfeng Zhang, Fanjun Zhang, Dimeng Wu and Yunbing Wang
Gels 2024, 10(10), 647; https://doi.org/10.3390/gels10100647 - 11 Oct 2024
Cited by 5 | Viewed by 2604
Abstract
Silicone rubber is widely used in various medical applications. However, silicone rubber is prone to biofouling due to their affinity for lipids and has a high friction coefficient, which can significantly impact their efficacy and performance used as medical devices. Thus, the development [...] Read more.
Silicone rubber is widely used in various medical applications. However, silicone rubber is prone to biofouling due to their affinity for lipids and has a high friction coefficient, which can significantly impact their efficacy and performance used as medical devices. Thus, the development of hydrogels with antifouling and lubricious abilities for the modification of silicone rubber is in high demand. We herein prepared a variety of hydrogel coatings mainly based on polyvinylpyrrolidone (PVP) and poly (ethylene glycol) diacrylate (PEGDA). We modified the silicone rubber using the prepared hydrogel coatings and cured it using a heating method. Then, we characterized its surface and evaluated the antifouling property, lubricious property, cytotoxicity, sensitization, and vaginal irritation. The results of water contact angle (WCA), protein adsorption, and friction coefficient indicated the success of the modification of the silicone rubber, leading to a significant decrease in the corresponding test values. Meanwhile, the results of cytotoxicity, sensitization, and vaginal irritation tests showed that the hydrogel coating-modified silicone rubbers have an excellent biocompatibility. This study describes how the silicone rubber could be modified with a biocompatible hydrogel coating. The hydrogel coating-modified silicone rubbers have improved antifouling and durable lubricious properties. Full article
(This article belongs to the Special Issue State-of-the-Art Gel Research in China)
Show Figures

Graphical abstract

14 pages, 5040 KiB  
Article
3D-Printed Melatonin Tablets with Braille Motifs for the Visually Impaired
by Chrystalla Protopapa, Angeliki Siamidi, Aikaterini Sakellaropoulou, Siva Kolipaka, Laura Andrade Junqueira, Atabak Ghanizadeh Tabriz, Dennis Douroumis and Marilena Vlachou
Pharmaceuticals 2024, 17(8), 1017; https://doi.org/10.3390/ph17081017 - 1 Aug 2024
Cited by 3 | Viewed by 1917
Abstract
An innovative approach for creating customized dosage forms and supporting patient populations with specific requirements who need additional support to improve drug adherence is 3D printing. This work introduces liquid crystal display (LCD) 3D printing as a means of developing melatonin (MLT) tablets. [...] Read more.
An innovative approach for creating customized dosage forms and supporting patient populations with specific requirements who need additional support to improve drug adherence is 3D printing. This work introduces liquid crystal display (LCD) 3D printing as a means of developing melatonin (MLT) tablets. For patients who are blind or visually challenged, Braille patterns were displayed on the tablet surface in addition to the optimization of printing hydrogel inks. Owing to the great printing accuracy, blind patients could validate the Braille patterns that provided the required information. Upon further examination MLT was found to be present in the photopolymerized resins in an amorphous state. The choice of poly(ethylene glycol)-diacrylate (PEGDA) with varying molecular weights and the inclusion of surfactants or solubilizers interfered with the photopolymerization of the resin, hence controlling the rates of MLT dissolution towards the sought sustained release. Nuclear magnetic resonance (NMR) analysis showed that photopolymerization of the PEGDA resins in the printed dosage forms has taken place. A small batch scale-up investigation showed that LCDs could print a significant number of tablets quickly—about twenty-four minutes. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

13 pages, 4609 KiB  
Article
Crosslinking and Swelling Properties of pH-Responsive Poly(Ethylene Glycol)/Poly(Acrylic Acid) Interpenetrating Polymer Network Hydrogels
by Uijung Hwang, HoYeon Moon, Junyoung Park and Hyun Wook Jung
Polymers 2024, 16(15), 2149; https://doi.org/10.3390/polym16152149 - 29 Jul 2024
Cited by 12 | Viewed by 3489
Abstract
This study investigates the crosslinking dynamics and swelling properties of pH-responsive poly(ethylene glycol) (PEG)/poly(acrylic acid) (PAA) interpenetrating polymer network (IPN) hydrogels. These hydrogels feature denser crosslinked networks compared to PEG single network (SN) hydrogels. Fabrication involved a two-step UV curing process: First, forming [...] Read more.
This study investigates the crosslinking dynamics and swelling properties of pH-responsive poly(ethylene glycol) (PEG)/poly(acrylic acid) (PAA) interpenetrating polymer network (IPN) hydrogels. These hydrogels feature denser crosslinked networks compared to PEG single network (SN) hydrogels. Fabrication involved a two-step UV curing process: First, forming PEG-SN hydrogels using poly(ethylene glycol) diacrylate (PEGDA) through UV-induced free radical polymerization and crosslinking reactions, then immersing them in PAA solutions with two different molar ratios of acrylic acid (AA) monomer and poly(ethylene glycol) dimethacrylate (PEGDMA) crosslinker. A subsequent UV curing step created PAA networks within the pre-fabricated PEG hydrogels. The incorporation of AA with ionizable functional groups imparted pH sensitivity to the hydrogels, allowing the swelling ratio to respond to environmental pH changes. Rheological analysis showed that PEG/PAA IPN hydrogels had a higher storage modulus (G′) than PEG-SN hydrogels, with PEG/PAA-IPN5 exhibiting the highest modulus. Thermal analysis via thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) indicated increased thermal stability for PEG/PAA-IPN5 compared to PEG/PAA-IPN1, due to higher crosslinking density from increased PEGDMA content. Consistent with the storage modulus trend, PEG/PAA-IPN hydrogels demonstrated superior mechanical properties compared to PEG-SN hydrogels. The tighter network structure led to reduced water uptake and a higher gel modulus in swollen IPN hydrogels, attributed to the increased density of active network strands. Below the pKa (4.3) of acrylic acid, hydrogen bonds between PEG and PAA chains caused the IPN hydrogels to contract. Above the pKa, ionization of PAA chains induced electrostatic repulsion and osmotic forces, increasing water absorption. Adjusting the crosslinking density of the PAA network enabled fine-tuning of the IPN hydrogels’ properties, allowing comprehensive comparison of single network and IPN characteristics. Full article
(This article belongs to the Special Issue Hydrogels for Biomedical and Structural Applications)
Show Figures

Graphical abstract

19 pages, 4047 KiB  
Article
Three-Dimensional Printed Filters Based on Poly(ethylene glycol) Diacrylate Hydrogels Doped with Silver Nanoparticles for Removing Hg(II) Ions from Water
by Luca Burratti, Federica Bertelà, Michele Sisani, Irene Di Guida, Chiara Battocchio, Giovanna Iucci, Paolo Prosposito and Iole Venditti
Polymers 2024, 16(8), 1034; https://doi.org/10.3390/polym16081034 - 10 Apr 2024
Cited by 4 | Viewed by 1824
Abstract
Nowadays, due to water pollution, more and more living beings are exposed to dangerous compounds, which can lead to them contracting diseases. The removal of contaminants (including heavy metals) from water is, therefore, a necessary aspect to guarantee the well-being of living beings. [...] Read more.
Nowadays, due to water pollution, more and more living beings are exposed to dangerous compounds, which can lead to them contracting diseases. The removal of contaminants (including heavy metals) from water is, therefore, a necessary aspect to guarantee the well-being of living beings. Among the most used techniques, the employment of adsorbent materials is certainly advantageous, as they are easy to synthesize and are cheap. In this work, poly(ethylene glycol) diacrylate (PEGDA) hydrogels doped with silver nanoparticles (AgNPs) for removing Hg(II) ions from water are presented. AgNPs were embedded in PEGDA-based matrices by using a photo-polymerizable solution. By exploiting a custom-made 3D printer, the filters were synthesized. The kinetics of interaction was studied, revealing that the adsorption equilibrium is achieved in 8 h. Subsequently, the adsorption isotherms of PEGDA doped with AgNPs towards Hg(II) ions were studied at different temperatures (4 °C, 25 °C, and 50 °C). In all cases, the best isotherm model was the Langmuir one (revealing that the chemisorption is the driving process and the most favorable one), with maximum adsorption capacities equal to 0.55, 0.57, and 0.61 mg/g, respectively. Finally, the removal efficiency was evaluated for the three temperatures, obtaining for 4 °C, 25 °C, and 50 °C the values 94%, 94%, and 86%, respectively. Full article
(This article belongs to the Special Issue Metal Nanoparticles–Polymers Hybrid Materials III)
Show Figures

Figure 1

17 pages, 4240 KiB  
Article
Fabrication and Characterization of Quad-Component Bioinspired Hydrogels to Model Elevated Fibrin Levels in Central Nervous Tissue Scaffolds
by Ana M. Diaz-Lasprilla, Meagan McKee, Andrea C. Jimenez-Vergara, Swathisri Ravi, Devon Bellamy, Wendy Ortega, Cody O. Crosby, Jennifer Steele, Germán Plascencia-Villa, George Perry and Dany J. Munoz-Pinto
Gels 2024, 10(3), 203; https://doi.org/10.3390/gels10030203 - 17 Mar 2024
Cited by 1 | Viewed by 2687
Abstract
Multicomponent interpenetrating polymer network (mIPN) hydrogels are promising tissue-engineering scaffolds that could closely resemble key characteristics of native tissues. The mechanical and biochemical properties of mIPNs can be finely controlled to mimic key features of target cellular microenvironments, regulating cell-matrix interactions. In this [...] Read more.
Multicomponent interpenetrating polymer network (mIPN) hydrogels are promising tissue-engineering scaffolds that could closely resemble key characteristics of native tissues. The mechanical and biochemical properties of mIPNs can be finely controlled to mimic key features of target cellular microenvironments, regulating cell-matrix interactions. In this work, we fabricated hydrogels made of collagen type I (Col I), fibrin, hyaluronic acid (HA), and poly (ethylene glycol) diacrylate (PEGDA) using a network-by-network fabrication approach. With these mIPNs, we aimed to develop a biomaterial platform that supports the in vitro culture of human astrocytes and potentially serves to assess the effects of the abnormal deposition of fibrin in cortex tissue and simulate key aspects in the progression of neuroinflammation typically found in human pathologies such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and tissue trauma. Our resulting hydrogels closely resembled the complex modulus of AD human brain cortex tissue (~7.35 kPa), promoting cell spreading while allowing for the modulation of fibrin and hyaluronic acid levels. The individual networks and their microarchitecture were evaluated using confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Human astrocytes were encapsulated in mIPNs, and negligible cytotoxicity was observed 24 h after the cell encapsulation. Full article
(This article belongs to the Special Issue Gel-Based Materials: Preparations and Characterization (2nd Edition))
Show Figures

Graphical abstract

14 pages, 3203 KiB  
Article
Bioactive Polyurethane–Poly(ethylene Glycol) Diacrylate Hydrogels for Applications in Tissue Engineering
by Yixuan Yuan, Caleb Tyson, Annika Szyniec, Samuel Agro, Tara N. Tavakol, Alexander Harmon, DessaRae Lampkins, Lauran Pearson, Jerald E. Dumas and Lakeshia J. Taite
Gels 2024, 10(2), 108; https://doi.org/10.3390/gels10020108 - 29 Jan 2024
Cited by 5 | Viewed by 4165
Abstract
Polyurethanes (PUs) are a highly adaptable class of biomaterials that are among some of the most researched materials for various biomedical applications. However, engineered tissue scaffolds composed of PU have not found their way into clinical application, mainly due to the difficulty of [...] Read more.
Polyurethanes (PUs) are a highly adaptable class of biomaterials that are among some of the most researched materials for various biomedical applications. However, engineered tissue scaffolds composed of PU have not found their way into clinical application, mainly due to the difficulty of balancing the control of material properties with the desired cellular response. A simple method for the synthesis of tunable bioactive poly(ethylene glycol) diacrylate (PEGDA) hydrogels containing photocurable PU is described. These hydrogels may be modified with PEGylated peptides or proteins to impart variable biological functions, and the mechanical properties of the hydrogels can be tuned based on the ratios of PU and PEGDA. Studies with human cells revealed that PU–PEG blended hydrogels support cell adhesion and viability when cell adhesion peptides are crosslinked within the hydrogel matrix. These hydrogels represent a unique and highly tailorable system for synthesizing PU-based synthetic extracellular matrices for tissue engineering applications. Full article
(This article belongs to the Special Issue Recent Advances in Hydrogel-Based Biomaterials)
Show Figures

Graphical abstract

14 pages, 3503 KiB  
Article
Electron-Beam-Initiated Crosslinking of Methacrylated Alginate and Diacrylated Poly(ethylene glycol) Hydrogels
by Arn Mignon, Joanne Zimmer, Carolina Gutierrez Cisneros, Mathias Kühnert, Elien Derveaux, Olesya Daikos, Tom Scherzer, Peter Adriaensens and Agnes Schulze
Polymers 2023, 15(24), 4685; https://doi.org/10.3390/polym15244685 - 12 Dec 2023
Cited by 2 | Viewed by 2229
Abstract
An ideal wound dressing not only needs to absorb excess exudate but should also allow for a moist wound-healing environment as well as being mechanically strong. Such a dressing can be achieved by combining both a natural (alginate) and synthetic (poly(ethylene glycol) polymer. [...] Read more.
An ideal wound dressing not only needs to absorb excess exudate but should also allow for a moist wound-healing environment as well as being mechanically strong. Such a dressing can be achieved by combining both a natural (alginate) and synthetic (poly(ethylene glycol) polymer. Interestingly, using an electron beam on (meth)acrylated polymers allows their covalent crosslinking without the use of toxic photo-initiators. The goal of this work was to crosslink alginate at different methacrylation degrees (26.1 and 53.5% of the repeating units) with diacrylated poly(ethylene glycol) (PEGDA) using electron-beam irradiation at different doses to create strong, transparent hydrogels. Infrared spectroscopy showed that both polymers were homogeneously distributed within the irradiated hydrogel. Rheology showed that the addition of PEGDA into alginate with a high degree of methacrylation and a polymer concentration of 6 wt/v% improved the storage modulus up to 15,867 ± 1102 Pa. Gel fractions > 90% and swelling ratios ranging from 10 to 250 times its own weight were obtained. It was observed that the higher the storage modulus, the more limited the swelling ratio due to a more crosslinked network. Finally, all species were highly transparent, with transmittance values > 80%. This may be beneficial for the visual inspection of healing progression. Furthermore, these polymers may eventually be used as carriers of photosensitizers, which is favorable in applications such as photodynamic therapy. Full article
(This article belongs to the Special Issue Smart Natural-Based Polymers)
Show Figures

Figure 1

19 pages, 4357 KiB  
Article
Evaluating the Efficacy of a Thermoresponsive Hydrogel for Delivering Anti-Collagen Antibodies to Reduce Posttraumatic Scarring in Orthopedic Tissues
by Andrzej Steplewski, Jolanta Fertala, Lan Cheng, Mark L. Wang, Michael Rivlin, Pedro Beredjiklian and Andrzej Fertala
Gels 2023, 9(12), 971; https://doi.org/10.3390/gels9120971 - 12 Dec 2023
Cited by 3 | Viewed by 2082
Abstract
Excessive posttraumatic scarring in orthopedic tissues, such as joint capsules, ligaments, tendons, muscles, and peripheral nerves, presents a significant medical problem, resulting in pain, restricted joint mobility, and impaired musculoskeletal function. Current treatments for excessive scarring are often ineffective and require the surgical [...] Read more.
Excessive posttraumatic scarring in orthopedic tissues, such as joint capsules, ligaments, tendons, muscles, and peripheral nerves, presents a significant medical problem, resulting in pain, restricted joint mobility, and impaired musculoskeletal function. Current treatments for excessive scarring are often ineffective and require the surgical removal of fibrotic tissue, which can aggravate the problem. The primary component of orthopedic scars is collagen I-rich fibrils. Our research team has developed a monoclonal anti-collagen antibody (ACA) that alleviates posttraumatic scarring by inhibiting collagen fibril formation. We previously established the safety and efficacy of ACA in a rabbit-based arthrofibrosis model. In this study, we evaluate the utility of a well-characterized thermoresponsive hydrogel (THG) as a delivery vehicle for ACA to injury sites. Crucial components of the hydrogel included N-isopropylacrylamide, poly(ethylene glycol) diacrylate, and hyaluronic acid. Our investigation focused on in vitro ACA release kinetics, stability, and activity. Additionally, we examined the antigen-binding characteristics of ACA post-release from the THG in an in vivo context. Our preliminary findings suggest that the THG construct exhibits promise as a delivery platform for antibody-based therapeutics to reduce excessive scarring in orthopedic tissues. Full article
Show Figures

Graphical abstract

13 pages, 2070 KiB  
Article
Factors That Influence Base-Catalyzed Thiol-Ene Hydrogel Synthesis
by Nolan Morrison and Brandon M. Vogel
Gels 2023, 9(11), 917; https://doi.org/10.3390/gels9110917 - 20 Nov 2023
Cited by 3 | Viewed by 3402
Abstract
Injectable, localized drug delivery using hydrogels made from ethoxylated trimethylolpropane tri-3-mercaptopropionate (ETTMP) and poly(ethylene glycol) diacrylate (PEGDA) has shown great potential due to these hydrogels’ ability to exhibit non-swelling behavior and tunable drug release properties. However, current synthesis methods in the literature suffer [...] Read more.
Injectable, localized drug delivery using hydrogels made from ethoxylated trimethylolpropane tri-3-mercaptopropionate (ETTMP) and poly(ethylene glycol) diacrylate (PEGDA) has shown great potential due to these hydrogels’ ability to exhibit non-swelling behavior and tunable drug release properties. However, current synthesis methods in the literature suffer from poor ETTMP solubility in water, slow gelation times exceeding 20 min, and a lack of reproducibility. To address these limitations, we have developed a reliable synthesis procedure and conducted a sensitivity analysis of key variables. This has enabled us to synthesize ETTMP-PEGDA hydrogels in a polymer concentration range of 15 to 90 wt% with gelation times of less than 2 min and moduli ranging from 3.5 to 190 kPa. We overcame two synthesis limitations by identifying the impact of residual mercaptopropionic acid and alumina purification column height on gelation time and by premixing ETTMP and PEGDA to overcome low ETTMP solubility in water. Our ETTMP-PEGDA mixture can be stored at −20 °C for up to 2 months without crosslinking, allowing easy storage and shipment. These and previous results demonstrate the potential of ETTMP-PEGDA hydrogels as promising candidates for injectable, localized drug delivery with tunable drug release properties. Full article
(This article belongs to the Special Issue Advances in Chemistry and Physics of Hydrogels)
Show Figures

Graphical abstract

Back to TopTop