Biocompatible Hydrogel Coating on Silicone Rubber with Improved Antifouling and Durable Lubricious Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Surface Characterization
2.1.1. Fourier Transform Infrared Spectroscopy (FTIR) Test
2.1.2. Scanning Electron Microscope Test
2.1.3. Water Contact Angles Measurement
2.2. Protein Adsorption on Silicone Rubber
2.3. Lubricious Property Test
2.4. Cytotoxicity Assessment
2.5. Sensitization Test
2.6. Vaginal Irritation Test
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of the Hydrogel Coating with PEGDA and BPO
4.3. Preparation of the Silicone Rubber Sheet
4.4. Preparation of Hydrogel Coating-Modified Silicone Rubber Catheter and Sheet
4.5. Surface Characterization of Silicone Rubber
4.6. Protein Adsorption
4.7. Friction Coefficient Test
4.8. Cytotoxicity Test
4.9. Sensitization Test
4.10. Vaginal Irritation Test
4.11. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sardar, V.; Rajhans, N.R.; Pathak, A.; Prabhu, T. Developments in silicone material for biomedical applications—A review. In Proceedings of the Conference 14th International Conference on Humanizing Work and Work Environment, Jalandhar, India, 8–11 December 2016. [Google Scholar]
- Fallahi, D.; Mirzadeh, H.; Khorasani, M.T. Physical, mechanical, and biocompatibility evaluation of three different types of silicone rubber. J. Appl. Polym. Sci. 2003, 88, 2522–2529. [Google Scholar] [CrossRef]
- Zare, M.; Ghomi, E.R.; Venkatraman, P.D.; Ramakrishna, S. Silicone-based biomaterials for biomedical applications: Antimicrobial strategies and 3D printing technologies. J. Appl. Polym. Sci. 2021, 138, e50969. [Google Scholar] [CrossRef]
- Li, M.; Neoh, K.G.; Xu, L.Q.; Wang, R.; Kang, E.T.; Lau, T.; Olszyna, D.P.; Chiong, E. Surface Modification of Silicone for Biomedical Applications Requiring Long-Term Antibacterial, Antifouling, and Hemocompatible Properties. Langmuir 2012, 28, 16408–16422. [Google Scholar] [CrossRef] [PubMed]
- Calderón, J.A.G.; López, D.C.; Pérez, E.; Vallejo Montesinos, J. Polysiloxanes as polymer matrices in biomedical engineering: Their interesting properties as the reason for the use in medical sciences. Polym. Bull. 2020, 77, 2749–2817. [Google Scholar] [CrossRef]
- Chen, H.; Yin, C.; Zhang, X.; Zhu, Y. Preparation and characterisation of bifunctional surface-modified silicone catheter in lumen. J. Glob. Antimicrob. Resist. 2020, 23, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Liu, P.; Zhang, X.; Peng, J.; Gu, Y.; Dong, X.; Ma, Z.; Liu, P.; Shen, J. Multi-functional zwitterionic coating for silicone-based biomedical devices. Chem. Eng. J. 2020, 398, 125663. [Google Scholar] [CrossRef]
- Lanigan, J.; Fatima, S.; Charpentier, T.; Neville, A.; Dowson, D.; Bryant, M. Lubricious ionic polymer brush functionalised silicone elastomer surfaces. Biotribology 2018, 16, 1–9. [Google Scholar] [CrossRef]
- Prokopovich, P.; Perni, S. Prediction of the frictional behavior of mammalian tissues against biomaterials. Acta Biomater. 2010, 6, 4052–4059. [Google Scholar] [CrossRef]
- Chen, W.; Xu, B.; Tang, Q.; Qian, S.; Bian, D.; Li, H. Preparation and Properties of PDMS Surface Coating for Ultra-Low Friction Characteristics. Langmuir 2023, 39, 14605–14615. [Google Scholar] [CrossRef]
- Gao, L.; Zhao, X.; Zhang, Y.; Yang, L.; Wang, R.; Ma, Z.; Liang, Y.; Ma, S.; Zhou, F. Bioinspired Polysaccharide Derivative with Efficient and Stable Lubrication for Silicon-Based Devices. Biomacromolecules 2022, 23, 3766–3778. [Google Scholar] [CrossRef]
- Zhou, S.; Qian, S.; Wang, W.; Ni, Z.; Yu, J. Fabrication of a Hydrophilic Low-Friction Poly(hydroxyethyl methacrylate) Coating on Silicon Rubber. Langmuir 2021, 37, 13493–13500. [Google Scholar] [CrossRef] [PubMed]
- McVerry, B.; Polasko, A.; Rao, E.; Haghniaz, R.; Chen, D.; He, N.; Ramos, P.; Hayashi, J.; Curson, P.; Wu, C.; et al. A Readily Scalable, Clinically Demonstrated, Antibiofouling Zwitterionic Surface Treatment for Implantable Medical Devices. Adv. Mater. 2022, 34, 2200254. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Shang, Y.; Zhou, Y.; Guo, J.; Yan, F. Enabling Antibacterial and Antifouling Coating via Grafting of a Nitric Oxide-Releasing Ionic Liquid on Silicone Rubber. Biomacromolecules 2022, 23, 2329–2341. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.; Ma, Y.; Zhang, Y.; Cao, X.; Shi, Z.; Liu, Y.; Ding, X. Significantly improved antifouling capability of silicone rubber surfaces by covalently bonded acrylated agarose towards biomedical applications. Colloids Surf. B Biointerfaces 2023, 222, 112979. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, E.; Mondal, A.; Douglass, M.; Hopkins, S.; Garren, M.; Devine, R.; Pandey, R.; Manuel, J.; Singha, P.; Warnock, J.; et al. Bioinspired ultra-low fouling coatings on medical devices to prevent device-associated infections and thrombosis. J. Colloid Interface Sci. 2022, 608, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Fan, B.; Li, Y.; Dong, Y.; Qian, W.; Ji, X.; Gan, D.; Liu, P.; Shen, J. Layer-by-layer construction of zwitterionic/biguanide polymers on silicone rubber as an antifouling and bactericidal coating. J. Mater. Chem. B 2022, 10, 8013. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, S.; Dhiman, A. Design of antibiotic containing hydrogel wound dressings: Biomedical properties and histological study of wound healing. Int. J. Pharm. 2013, 457, 82–91. [Google Scholar] [CrossRef]
- Asadi, N.; Pazoki-Toroudi, H.; Bakhshayesh, A.; Akbarzadeh, A.; Davaran, S.; Annabi, N. Multifunctional hydrogels for wound healing: Special focus on biomacromolecular based hydrogels. Int. J. Biol. Macromol. 2021, 170, 728–750. [Google Scholar] [CrossRef]
- Annabi, N.; Rana, D.; Sani, E.; Portillo-Lara, R.; Gifford, J.L.; Fares, M.M.; Mithieux, S.M.; Weiss, A.S. Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing. Biomaterials 2017, 139, 229–243. [Google Scholar] [CrossRef]
- Pourshahrestani, S.; Zeimaran, E.; Kadri, N.; Mutlu, N.; Boccaccini, A.R. Polymeric hydrogel systems as emerging biomaterial platforms to enable hemostasis and wound healing. Adv. Healthc. Mater. 2020, 9, 2000905. [Google Scholar] [CrossRef]
- Maulvi, F.A.; Lakdawala, D.H.; Shaikh, A.A.; Desai, A.R.; Choksi, H.H.; Vaidya, R.J.; Ranch, K.M.; Koli, A.R.; Vyas, B.A.; Shah, D.O. In vitro and in vivo evaluation of novel implantation technology in hydrogel contact lenses for controlled drug delivery. J. Control. Release 2016, 226, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Lace, R.; Doherty, K.G.; Dutta, D.; Willcox, M.D.P.; Williams, R.L. Poly-ε-Lysine or Mel4 Antimicrobial Surface Modification on a Novel Peptide Hydrogel Bandage Contact Lens. Adv. Mater. Interfaces 2020, 7, 2001232. [Google Scholar] [CrossRef]
- Tran, N.-P.-D.; Yang, M.-C.; Tran-Nguyen, P.L. Evaluation of silicone hydrogel contact lenses based on poly(dimethylsiloxane) dialkanol and hydrophilic polymers. Colloids Surf. B Biointerfaces 2021, 206, 111957. [Google Scholar] [CrossRef] [PubMed]
- Quintero, A.V.; Arai, R.; Yamazaki, Y.; Sato, T.; Smet, H.D. Near-Field Communication Powered Hydrogel-Based Smart Contact Lens. Adv. Mater. Technol. 2020, 5, 2000702. [Google Scholar] [CrossRef]
- Pita-López, M.L.; Fletes-Vargas, G.; Espinosa-Andrews, H.; Rodríguez-Rodríguez, R. Physically cross-linked chitosan-based hydrogels for tissue engineering applications: A state-of-the-art review. Eur. Polym. J. 2021, 145, 110176. [Google Scholar] [CrossRef]
- Drury, J.L.; Mooney, D.J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 2003, 24, 4337–4351. [Google Scholar]
- Dorishetty, P.; Dutta, N.K.; Choudhury, N.R. Bioprintable tough hydrogels for tissue engineering applications. Adv. Colloid Interface Sci. 2020, 281, 102163. [Google Scholar] [CrossRef]
- Gomez-Florit, M.; Pardo, A.; Domingues, R.M.A.; Graça, A.L.; Babo, P.S.; Reis, R.L.; Gomes, M.E. Natural-Based Hydrogels for Tissue Engineering Applications. Molecules 2020, 25, 5858. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, Y.; Dong, F.; Zhao, J.; Zhang, P.; Li, S.; Gao, Y.; Wang, Y.; Gao, G. Fast-polymerized lubricant and antibacterial hydrogel coatings for medical catheters. Chem. Eng. J. 2024, 488, 150944. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, C.; Wang, J.; Wang, Y.; Zha, W.; Li, X. Tough Hydrogel Coating on Silicone Rubber with Improved Antifouling and Antibacterial Properties. ACS Appl. Polym. Mater. 2022, 4, 3462–3472. [Google Scholar]
- Yong, Y.; Qiao, M.; Chiu, A.; Fuchs, S.; Liu, Q.; Pardo, Y.; Worobo, R.; Liu, Z.; Ma, M. Conformal Hydrogel Coatings on Catheters to Reduce Biofouling. Langmuir 2019, 35, 1927–1934. [Google Scholar] [CrossRef]
- Yuk, H.; Zhang, T.; Parada, G.A.; Liu, X.; Zhao, X. Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 2016, 7, 12028. [Google Scholar] [CrossRef] [PubMed]
- Parada, G.A.; Yuk, H.; Liu, X.; Hsieh, A.J.; Zhao, X. Impermeable robust hydrogels via hybrid lamination. Adv. Healthc. Mater. 2017, 6, 1700520. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tang, T.-C.; Tham, E.; Zhao, X. Stretchable living materials and devices with hydrogel–elastomer hybrids hosting programmed cells. Proc. Natl. Acad. Sci. USA 2017, 114, 2200–2205. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Choi, H.; Jeong, H.; Baek, S.; Han, S.; Chung, D.J.; Lee, H.S. Thermally Crosslinked Biocompatible Hydrophilic Polyvinylpyrrolidone Coatings on Polypropylene with Enhanced Mechanical and Adhesion Properties. Macromol. Res. 2018, 26, 151–156. [Google Scholar] [CrossRef]
- Baldan, A. Adhesion phenomena in bonded joints. Int. J. Adhes. Adhes. 2012, 38, 95–116. [Google Scholar] [CrossRef]
- Bowditch, M.R.; Shaw, S.J. Adhesive bonding for high performance materials. Adv. Perform. Mater. 1996, 3, 325–342. [Google Scholar] [CrossRef]
- Niemczyk, A.; El Fray, M.; Franklin, S.E. Friction behaviour of hydrophilic lubricious coatings for medical device applications. Tribol. Int. 2015, 89, 54–61. [Google Scholar] [CrossRef]
- Liu, G.; Li, K.; Wang, H.; Ma, L.; Yu, L.; Yu, N. Stable Fabrication of Zwitterionic Coating Based on Copper-Phenolic Networks on Contact Lens with Improved Surface Wettability and Broad-Spectrum Antimicrobial Activity. ACS Appl. Mater. Interfaces 2020, 12, 16125–16136. [Google Scholar] [CrossRef]
- Cheng, W.; Yang, C.; Ding, X.; Engler, A.C.; Hedrick, J.L.; Yang, Y. Broad-Spectrum Antimicrobial/Antifouling Soft Material Coatings Using Poly(ethylenimine) as a Tailorable Scaffold. Biomacromolecules 2015, 16, 1967–1977. [Google Scholar] [CrossRef]
- Kazmierska, K.; Szwast, M.; Ciach, T. Determination of urethral catheter surface lubricity. J. Mater. Sci. Mater. Med. 2008, 19, 2301–2306. [Google Scholar] [CrossRef]
- Moore, J.V.; Burns, J.; McClelland, N.; Quinn, J.; McCoy, C.P. Understanding the properties of intermittent catheters to inform future development. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2024, 238, 713–727. [Google Scholar] [CrossRef] [PubMed]
- ISO 8295:1995; Plastics-Film and sheeting-Determination of the coefficients of friction. ISO: Geneva, Switzerland, 1995.
- ISO 10993-5: 2009; Biological Evaluation of Medical Devices Part 5: Tests for In Vitro Cytotoxicity. ISO: Geneva, Switzerland, 2009.
- ISO 10993-10: 2021; Biological Evaluation of Medical Devices—Part 10: Tests for Skin Sensitization. ISO: Geneva, Switzerland, 2021.
- Shuai, G.; Zheng, L.; Zeng, W.; Zhang, Y.; Huang, W.; Wu, D. Preparation and Characterization of Sterile Hydrophilic Lubricating Silicone Catheter. China Med. Devices 2023, 38, 7–11. [Google Scholar]
Group | Number | Clinical Observation | Grading Scale | |
---|---|---|---|---|
24 h | 48 h | |||
Polar experiment | 1–10 | No obvious abnormality | 0 | 0 |
Polar control | 11–15 | No obvious abnormality | 0 | 0 |
Non-polar experiment | 16–25 | No obvious abnormality | 0 | 0 |
Non-polar control | 25–30 | No obvious abnormality | 0 | 0 |
Group | Slice Position | Score | Average Score | |||
---|---|---|---|---|---|---|
Epithelial | Leukocyte Infiltration | Vascular Congestion | Edema | |||
Polar experiment | Front/ Middle/ Back | 0 | 0 | 0 | 0 | 0 |
Polar control | Front/ Middle/ Back | 0 | 0 | 0 | 0 | 0 |
Non-polar experiment | Front/ Middle/ Back | 0 | 0 | 0 | 0 | 0 |
Non-polar Control | Front/ Middle/ Back | 0 | 0 | 0 | 0 | 0 |
Patch Test Reaction | Grading Scale |
---|---|
No visible change | 0 |
Discrete or patchy reythema | 1 |
Moderate and confluent erythema | 2 |
Intense erythema and/or swelling | 3 |
Tissue | Reaction | Score |
---|---|---|
Epithelial | normal, intact | 0 |
cell degeneration or flattening | 1 | |
tissue deformation | 2 | |
local erosion | 3 | |
extensive erosion | 4 | |
Leukocyte infiltration/ Vascular congestion/ Edema | none | 0 |
rare | 1 | |
mild | 2 | |
moderate | 3 | |
severe | 4 |
Average Score | Reaction Type |
---|---|
0 | none |
5–8 | mild |
9–11 | moderate |
12–16 | severe |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, S.; Liu, Z.; Zeng, W.; Zhang, Y.; Zhang, F.; Wu, D.; Wang, Y. Biocompatible Hydrogel Coating on Silicone Rubber with Improved Antifouling and Durable Lubricious Properties. Gels 2024, 10, 647. https://doi.org/10.3390/gels10100647
Gao S, Liu Z, Zeng W, Zhang Y, Zhang F, Wu D, Wang Y. Biocompatible Hydrogel Coating on Silicone Rubber with Improved Antifouling and Durable Lubricious Properties. Gels. 2024; 10(10):647. https://doi.org/10.3390/gels10100647
Chicago/Turabian StyleGao, Shuai, Zheng Liu, Wei Zeng, Yunfeng Zhang, Fanjun Zhang, Dimeng Wu, and Yunbing Wang. 2024. "Biocompatible Hydrogel Coating on Silicone Rubber with Improved Antifouling and Durable Lubricious Properties" Gels 10, no. 10: 647. https://doi.org/10.3390/gels10100647
APA StyleGao, S., Liu, Z., Zeng, W., Zhang, Y., Zhang, F., Wu, D., & Wang, Y. (2024). Biocompatible Hydrogel Coating on Silicone Rubber with Improved Antifouling and Durable Lubricious Properties. Gels, 10(10), 647. https://doi.org/10.3390/gels10100647