Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = poloxamer N-407

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 504 KiB  
Communication
Role of Nitric Oxide in Cardioprotection by Poloxamer 188
by Zhu Li, Matthew B. Barajas, Takuro Oyama and Matthias L. Riess
Cells 2025, 14(13), 1001; https://doi.org/10.3390/cells14131001 - 30 Jun 2025
Viewed by 392
Abstract
Poloxamer (P) 188 attenuates myocardial ischemia/reperfusion injury through cell membrane stabilization. Cell–cell interactions between endothelial cells (ECs) and cardiomyocytes (CMs) further protect CMs: co-cultures showed that, at an optimal density, ECs protected CMs against hypoxia/reoxygenation (HR) injury. The mechanism of interaction with P188 [...] Read more.
Poloxamer (P) 188 attenuates myocardial ischemia/reperfusion injury through cell membrane stabilization. Cell–cell interactions between endothelial cells (ECs) and cardiomyocytes (CMs) further protect CMs: co-cultures showed that, at an optimal density, ECs protected CMs against hypoxia/reoxygenation (HR) injury. The mechanism of interaction with P188 still requires exploration. We examined if N(ω)-nitro-L-arginine methyl ester (LNAME), a non-specific nitric oxide (NO) synthase inhibitor, abolishes protection in the presence or absence of P188 and/or ECs. We co-cultured mouse coronary artery ECs in an insert atop mouse CMs plated at confluency on the bottom of a well. Normoxic controls remained in complete media while HR groups were exposed to 24 h hypoxia at 0.01% O2 in serum- and glucose-free media, followed by 2 h reoxygenation in complete media. P188 (300 μM), LNAME (40 mM), or vehicle were administered upon reoxygenation. ECs at the used lower density did not decrease HR-triggered lactate dehydrogenase release or calcium overload in CMs by themselves. P188 reduced both indicators after HR by 16/18% without and by 22/25% with ECs, respectively. LNAME abrogated CM protection by P188. Neither intervention had an effect under normoxia. Our co-culture data indicates that P188 requires NO, not necessarily of endothelial origin, to elicit CM protection. Full article
Show Figures

Figure 1

20 pages, 1996 KiB  
Article
Thermosensitive Mucoadhesive Intranasal In Situ Gel of Risperidone for Nose-to-Brain Targeting: Physiochemical and Pharmacokinetics Study
by Mahendra Singh, Sanjay Kumar, Ramachandran Vinayagam and Ramachandran Samivel
Pharmaceuticals 2025, 18(6), 871; https://doi.org/10.3390/ph18060871 - 11 Jun 2025
Viewed by 526
Abstract
Background/Objectives: Non-invasive central nervous system (CNS) therapies are limited by complex mechanisms and the blood–brain barrier, but nasal delivery offers a promising alternative. The study planned to develop a non-invasive in situ intranasal mucoadhesive thermosensitive gel to deliver CNS-active risperidone via nose-to-brain targeting. [...] Read more.
Background/Objectives: Non-invasive central nervous system (CNS) therapies are limited by complex mechanisms and the blood–brain barrier, but nasal delivery offers a promising alternative. The study planned to develop a non-invasive in situ intranasal mucoadhesive thermosensitive gel to deliver CNS-active risperidone via nose-to-brain targeting. Risperidone, a second-generation antipsychotic, has shown efficacy in managing both psychotic and mood-related symptoms. The mucoadhesive gel formulations help to prolong the residence time at the nasal absorption site, thereby facilitating the uptake of the drug. Methods: The poloxamer 407 (18.0% w/v), HPMC K100M and K15M (0.3–0.5% w/v), and benzalkonium chloride (0.1% v/v) were used as thermosensitive polymers, a mucoadhesive agent, and a preservative, respectively, for the development of in situ thermosensitive gel. The developed formulations were evaluated for various parameters. Results: The pH, gelation temperature, gelation time, and drug content were found to be 6.20 ± 0.026–6.37 ± 0.015, 34.25 ± 1.10–37.50 ± 1.05 °C, 1.65 ± 0.30–2.50 ± 0.55 min, and 95.58 ± 2.37–98.03 ± 1.68%, respectively. Furthermore, the optimized F3 formulation showed satisfactory gelling capacity (9.52 ± 0.513 h) and an acceptable mucoadhesive strength (1110.65 ± 6.87 dyne/cm2). Diffusion of the drug through the egg membrane depended on the formulation’s viscosity, and the F3 formulation explained the first-order release kinetics, indicating concentration-dependent drug diffusion with n < 0.45 (0.398) value, indicating the Fickian-diffusion (diffusional case I). The pharmacokinetic study was performed with male Wistar albino rats, and the F3 in situ thermosensitive risperidone gel confirmed significantly (p < 0.05) ~5.4 times higher brain AUC0–∞ when administered intranasally compared to the oral solution. Conclusions: Based on physicochemical, in vitro, and in vivo parameters, it can be concluded that in situ thermosensitive gel is suitable for administration of risperidone through the nasal route and can enhance patient compliance through ease of application and with less repeated administration. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

25 pages, 10662 KiB  
Article
A Novel Liposomal In-Situ Hydrogel Formulation of Hypericum perforatum L.: In Vitro Characterization and In Vivo Wound Healing Studies
by Ahmet Arif Kurt and İsmail Aslan
Gels 2025, 11(3), 165; https://doi.org/10.3390/gels11030165 - 26 Feb 2025
Cited by 2 | Viewed by 1107
Abstract
Hypericum perforatum L. (H.P.) is a species with a well-documented history of use in wound healing practices across the globe. The objective of this study was twofold: firstly, to evaluate the in vivo efficacy of liposomal in situ gel formulations in wound healing, [...] Read more.
Hypericum perforatum L. (H.P.) is a species with a well-documented history of use in wound healing practices across the globe. The objective of this study was twofold: firstly, to evaluate the in vivo efficacy of liposomal in situ gel formulations in wound healing, both clinically and histopathologically, and secondly, to determine the physicochemical characterization of liposomal in situ gel formulations. The in vitro studies will be assessed in terms of particle size, zeta potential, release kinetics, rheological behaviors, and antioxidant and antimicrobial properties. The in vivo studies will be evaluated in clinical animal experiments and pathology studies. The in-situ hydrogel formulations were prepared using the physical cross-linking method with Poloxamer 188, Poloxamer 407, Ultrez 21, and Ultrez 30. The liposome formulations phospholipid 90H and lipoid S100 were prepared using the thin film solvent evaporation method. The antioxidant activity of the samples was evaluated through in vitro studies employing the DPPH antioxidant activity, ABTS+ test, and FRAP test. The antimicrobial activity of the samples was evaluated through the determination of MIC and MBC values employing the 96-well plate method. In vivo, 36 male New Zealand rabbits aged 32–36 weeks were utilized, with six rabbits in each group. The groups were composed of six distinct groups, including conventional and in situ gel liposome formulations of HHPM, three different commercial preparations, and a control group (n = 6). The HHPM-LG8 formulation developed in this study was found to be applicable in terms of all its properties. The new liposomal in situ hydrogel formulation demonstrated notable wound healing activity, a result that was supported by the formulation itself. Full article
Show Figures

Figure 1

13 pages, 1476 KiB  
Article
Investigating Strategies to Enhance the Aqueous Solubility of Ketamine HCl for Intranasal Delivery
by Sourour Idoudi, Alaaeldin Saleh, Mohammed Akkbik, Leena Amine, Khalid Alansari, Ousama Rachid and Alaaldin M. Alkilany
Pharmaceutics 2024, 16(12), 1502; https://doi.org/10.3390/pharmaceutics16121502 - 22 Nov 2024
Cited by 1 | Viewed by 2142
Abstract
Background: Ketamine HCl, an FDA-approved therapeutic, is administered through various routes, including intranasal delivery. Administering an adequate therapeutic dose of intranasal ketamine HCl is challenging due to the limited volume that can be delivered intranasally given the current commercially available concentrations. Objectives: This [...] Read more.
Background: Ketamine HCl, an FDA-approved therapeutic, is administered through various routes, including intranasal delivery. Administering an adequate therapeutic dose of intranasal ketamine HCl is challenging due to the limited volume that can be delivered intranasally given the current commercially available concentrations. Objectives: This study investigates solubilizing strategies to enhance the aqueous solubility of ketamine HCl for intranasal administration. Methods: We assessed the solubility profile of ketamine HCl by evaluating factors such as pH, co-solvents, and surfactants. Additionally, we developed and validated a UV-Vis spectroscopy method for ketamine HCl analysis. Results: Our solubility screening in various organic co-solvents revealed the following order of effectiveness in enhancing solubility: methanol > water > propylene glycol > ethanol > dimethyl sulfoxide (DMSO) > N-methyl-2-pyrrolidone (NMP). Despite methanol’s superior solubility, its potential toxicity, coupled with the relatively lower effectiveness of other solvents compared to water, suggests that a co-solvency approach is not advantageous for ketamine HCl. We found that ketamine HCl solubility increased with medium acidity, with pH 3.5 being the optimal for further formulation studies. The impact of pharmaceutical surfactants on ketamine HCl solubility at an acidic pH was also evaluated. Surfactants tested included SDS, PEG 400, PVP, Tween 20, poloxamer 188, and lecithin. Notably, PEG 400 and PVP reduced solubility due to a salting-out effect, whereas Tween 80, lecithin, and poloxamer 188 slightly improved solubility through micelle formation. Among the surfactants tested, 1% SDS emerged as the most effective in enhancing ketamine HCl solubility. Conclusions: These outcomes highlight the potential of these solubilization strategies to address the solubility limitations of ketamine HCl, enabling the preparation of highly concentrated ketamine HCl formulations for intranasal delivery. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

14 pages, 6777 KiB  
Article
Novel Thermosensitive and Mucoadhesive Nasal Hydrogel Containing 5-MeO-DMT Optimized Using Box-Behnken Experimental Design
by Pablo Miranda, Analía Castro, Paola Díaz, Lucía Minini, Florencia Ferraro, Erika Paulsen, Ricardo Faccio and Helena Pardo
Polymers 2024, 16(15), 2148; https://doi.org/10.3390/polym16152148 - 29 Jul 2024
Cited by 1 | Viewed by 2036
Abstract
We present the development and characterization of a nasal drug delivery system comprised of a thermosensitive mucoadhesive hydrogel based on a mixture of the polymers Poloxamer 407, Poloxamer 188 and Hydroxypropyl-methylcellulose, and the psychedelic drug 5-methoxy-N,-N-dimethyltryptamine. The development relied on a 3 × [...] Read more.
We present the development and characterization of a nasal drug delivery system comprised of a thermosensitive mucoadhesive hydrogel based on a mixture of the polymers Poloxamer 407, Poloxamer 188 and Hydroxypropyl-methylcellulose, and the psychedelic drug 5-methoxy-N,-N-dimethyltryptamine. The development relied on a 3 × 3 Box-Behnken experimental design, focusing on optimizing gelification temperature, viscosity and mucoadhesion. The primary objective of this work was to tailor the formulation for efficient nasal drug delivery. This would increase contact time between the hydrogel and the mucosa while preserving normal ciliary functioning. Following optimization, the final formulation underwent characterization through an examination of the in vitro drug release profile via dialysis under sink conditions. Additionally, homogeneity of its composition was assessed using Raman Confocal Spectroscopy. The results demonstrate complete mixing of drug and polymers within the hydrogel matrix. Furthermore, the formulation exhibits sustained release profile, with 73.76% of the drug being delivered after 5 h in vitro. This will enable future studies to assess the possibility of using this formulation to treat certain mental disorders. We have successfully developed a promising thermosensitive and mucoadhesive hydrogel with a gelling temperature of around 32 °C, a viscosity close to 100 mPas and a mucoadhesion of nearly 4.20 N·m. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Graphical abstract

14 pages, 3872 KiB  
Article
Analgesic Effect of Sulforaphane: A New Application for Poloxamer-Hyaluronic Acid Hydrogels
by Juliana Zampoli Boava Papini, Bruno de Assis Esteves, Vagner Gomes de Souza Oliveira, Henrique Ballassani Abdalla, Cintia Maria Saia Cereda, Daniele Ribeiro de Araújo and Giovana Radomille Tofoli
Gels 2024, 10(7), 460; https://doi.org/10.3390/gels10070460 - 13 Jul 2024
Cited by 2 | Viewed by 1626
Abstract
Sulforaphane (SFN) has shown potential as an antioxidant and anti-inflammatory agent. To improve its druggability, we developed new analgesic formulations with sulforaphane-loaded hyaluronic acid (HA)-poloxamer (PL) hydrogel. This study evaluated the pre-clinical safety and effectiveness of these formulations. Effectiveness was tested on Wistar [...] Read more.
Sulforaphane (SFN) has shown potential as an antioxidant and anti-inflammatory agent. To improve its druggability, we developed new analgesic formulations with sulforaphane-loaded hyaluronic acid (HA)-poloxamer (PL) hydrogel. This study evaluated the pre-clinical safety and effectiveness of these formulations. Effectiveness was tested on Wistar rats divided into groups (n = 15) receiving (IM, 10 mg/kg) SFN formulations or control groups (without SFN). This study used a hind paw incision postoperative pain model to evaluate mechanical hypersensitivity with von Frey filaments. TNF-α, IL-1β, substance P, and CGRP levels verified anti-inflammatory activity in the hind paw tissue. Histopathology of tissues surrounding the injection site was assessed after 2 and 7 days post-treatment. To corroborate drug safety, cell viability of 3T3 and RAW 264.7 cultures was assessed. Additionally, RAW 264.7 cultures primed with carrageenan evaluated nitric oxide (NO) levels. All animals exhibited post-incisional hypersensitivity, and F2 (PL 407/338 (18/2%) + HA 1% + SFN 0.1%) showed a longer analgesic effect (p < 0.05). F2 reduced TNF-α, IL-1β, and CGRP levels (p < 0.05). Histopathological evaluation showed mild to moderate inflammatory reactions after the formulations’ injections. F2 produced no significant difference in cell viability (p > 0.05) but reduced NO production (p < 0.05). Thus, our results highlight the biocompatibility and effectiveness of F2. Full article
(This article belongs to the Special Issue Design and Optimization of Pharmaceutical Gels (2nd Edition))
Show Figures

Figure 1

18 pages, 22447 KiB  
Article
Rheological and Injectability Evaluation of Sterilized Poloxamer-407-Based Hydrogels Containing Docetaxel-Loaded Lipid Nanoparticles
by Ana Camila Marques, Paulo C. Costa, Sérgia Velho and Maria Helena Amaral
Gels 2024, 10(5), 307; https://doi.org/10.3390/gels10050307 - 1 May 2024
Cited by 6 | Viewed by 3179
Abstract
Nanostructured lipid carriers (NLCs) have the potential to increase the bioavailability and reduce the side effects of docetaxel (DTX). However, only a small fraction of nanoparticles given intravenously can reach a solid tumor. In situ-forming gels combined with nanoparticles facilitate local administration and [...] Read more.
Nanostructured lipid carriers (NLCs) have the potential to increase the bioavailability and reduce the side effects of docetaxel (DTX). However, only a small fraction of nanoparticles given intravenously can reach a solid tumor. In situ-forming gels combined with nanoparticles facilitate local administration and promote drug retention at the tumor site. Injectable hydrogels based on poloxamer 407 are excellent candidates for this hybrid nanoparticle–hydrogel system because of their thermoresponsive behavior and biocompatibility. Therefore, this work aimed to develop injectable poloxamer hydrogels containing NLCs for intratumoral delivery of DTX. To ensure sterility, the obtained hydrogels were autoclaved (121 °C for 15 min) after preparation. Then, the incorporation of NLCs into the poloxamer hydrogels and the impact of steam sterilization on the nanocomposite hydrogels were evaluated concerning sol–gel transition, injectability, and physicochemical stability. All formulations were extruded through the tested syringe–needle systems with acceptable force (2.2–13.4 N) and work (49.5–317.7 N·mm) of injection. Following steam sterilization, injection became easier in most cases, and the physicochemical properties of all hydrogels remained practically unchanged according to the spectroscopical and thermal analysis. The rheological evaluation revealed that the nanocomposite hydrogels were liquid at 25 °C and underwent rapid gelation at 37 °C. However, their sterilized counterparts gelled at 1–2 °C above body temperature, suggesting that the autoclaving conditions employed had rendered these nanocomposite hydrogels unsuitable for local drug delivery. Full article
(This article belongs to the Special Issue Advances in Functional Gel (2nd Edition))
Show Figures

Figure 1

22 pages, 7639 KiB  
Article
Development and Characterization of Thermosensitive and Bioadhesive Ophthalmic Formulations Containing Flurbiprofen Solid Dispersions
by Pınar Adısanoğlu and Işık Özgüney
Gels 2024, 10(4), 267; https://doi.org/10.3390/gels10040267 - 15 Apr 2024
Cited by 5 | Viewed by 2016
Abstract
In this study, we aimed to develop thermosensitive and bioadhesive in situ gelling systems containing solid dispersions of flurbiprofen (FB-SDs) using poloxamer 407 (P407) and 188 (P188) for ophthalmic delivery. FB-SDs were prepared with the melt method using P407, characterized by solubility, stability, [...] Read more.
In this study, we aimed to develop thermosensitive and bioadhesive in situ gelling systems containing solid dispersions of flurbiprofen (FB-SDs) using poloxamer 407 (P407) and 188 (P188) for ophthalmic delivery. FB-SDs were prepared with the melt method using P407, characterized by solubility, stability, SEM, DSC, TGA, and XRD analyses. Various formulations of poloxamer mixtures and FB-SDs were prepared using the cold method and P407/P188 (15/26.5%), which gels between 32 and 35 °C, was selected to develop an ophthalmic in situ gelling system. Bioadhesive polymers Carbopol 934P (CP) or carboxymethyl cellulose (CMC) were added in three concentrations (0.2, 0.4, and 0.6% (w/w)). Gelation temperature and time, mechanical properties, flow properties, and viscosity values were determined. The in vitro release rate, release kinetics, and the release mechanism of flurbiprofen (FB) from the ophthalmic formulations were analyzed. The results showed that FB-SDs’ solubility in water increased 332-fold compared with FB. The oscillation study results indicated that increasing bioadhesive polymer concentrations decreased gelation temperature and time, and formulations containing CP gel at lower temperatures and in a shorter time. All formulations except F3 and F4 showed Newtonion flow under non-physiological conditions, while all formulations exhibited non-Newtonion pseudoplastic flow under physiological conditions. Viscosity values increased with an increase in bioadhesive polymer concertation at physiological conditions. Texture profile analysis (TPA) showed that CP-containing formulations had higher hardness, compressibility, and adhesiveness, and the gel structure of formulation F4, containing 0.6% CP, exhibited the greatest hardness, compressibility, and adhesiveness. In vitro drug release studies indicated that CP and CMC had no effect below 0.6% concentration. Kinetic evaluation favored first-order and Hixson–Crowell kinetic models. Release mechanism analysis showed that the n values of the formulations were greater than 1 except for formulation F5, suggesting that FB might be released from the ophthalmic formulations by super case II type diffusion. When all the results of this study are evaluated, the in situ gelling formulations prepared with FB-SDs that contained P407/P188 (15/26.5%) and 0.2% CP or 0.2% CMC or 0.4 CMC% (F2, F5, and F6, respectively) could be promising formulations to prolong precorneal residence time and improve ocular bioavailability of FB. Full article
(This article belongs to the Special Issue Antibacterial Gels)
Show Figures

Figure 1

15 pages, 2984 KiB  
Article
Turning Waste into Treasure: The Full Technological Process and Product Performance Characterization of Flushable Wet Wipes Prepared from Corn Stalk
by Lulu Liu, Yeying Wang, Ziying He, Yang Cai, Kai Meng, Ke-Qin Zhang and Huijing Zhao
Materials 2023, 16(22), 7189; https://doi.org/10.3390/ma16227189 - 16 Nov 2023
Cited by 2 | Viewed by 2115
Abstract
As a daily consumable, wet wipes are mostly synthetic fibers, which are incinerated or landfilled after use. The nanoplastics generated during this process will lead to environmental pollution. The application of flushable wet wipes, which are dispersible and fully degradable, is of great [...] Read more.
As a daily consumable, wet wipes are mostly synthetic fibers, which are incinerated or landfilled after use. The nanoplastics generated during this process will lead to environmental pollution. The application of flushable wet wipes, which are dispersible and fully degradable, is of great significance. The main raw material for flushable wipes is wood pulp, which has a long growth cycle and high cost. Corn is widely planted and has a short growth cycle. Currently most corn stalk is treated by incineration, which produces a lot of smoke that pollutes the environment. Therefore, using corn stalk as the raw material for flushable wet wipes, replacing wood pulp, is both cost-effective and environmentally friendly. In this study, aiming at industrial production, we explored the full process of producing flushable wet wipes from corn stalk to pulp board, then to the final wipes. The corn stalk was treated using alkali and a bleaching agent to obtain corn stalk pulp, which was then made into pulp board through the nonwoven wet-laid process. The optimal parameters for the alkali treatment and bleaching were obtained. The properties of the corn stalk pulp board were compared with the commercial wood pulp board. Further, we mixed the corn stalk pulp with Lyocell fiber to prepare wet-laid webs, which were then bonded using a chemical binder poloxamer. Then, the evenness of the web, mechanical properties, absorption, and dispersibility of the flushable wipes were characterized. Results showed that the pulp obtained using the optimal treatment process has a high yield and better whiteness. The properties of the corn stalk pulp board are comparable with the commercial wood pulp board, which can therefore potentially be replaced by the corn stalk board prepared in our study. The prepared flushable wet wipes had good evenness and their water absorption rate was more than 600%. The mechanical strength in dry and wet states achieved 595.94 N/m and 179.00 N/m, respectively. Most importantly, the wet wipes can completely disperse under the standardized testing method. A good balance of dispersibility and wet strength of the wet wipes was achieved. Full article
(This article belongs to the Special Issue Advances in High-Performance Functional Nonwovens)
Show Figures

Graphical abstract

12 pages, 2223 KiB  
Article
Enhancing Antifungal Treatment of Candida albicans with Hypericin-Loaded Nanostructured Lipid Carriers in Hydrogels: Characterization, In Vitro, and In Vivo Photodynamic Evaluation
by Mariana Rillo Sato, João Augusto Oshiro-Junior, Camila Fernanda Rodero, Fernanda Isadora Boni, Victor Hugo Sousa Araújo, Taís Maria Bauab, Dean Nicholas, John Francis Callan and Marlus Chorilli
Pharmaceuticals 2023, 16(8), 1094; https://doi.org/10.3390/ph16081094 - 1 Aug 2023
Cited by 12 | Viewed by 2257
Abstract
Background: Vulvovaginal candidiasis (VVC) is a worldwide public health problem caused predominantly by the opportunistic polymorphic fungus Candida albicans, whose pathogenicity is associated with its morphological adaptability. To potentiate the treatment of C. albicans-induced VVC by an alternative method as photodynamic [...] Read more.
Background: Vulvovaginal candidiasis (VVC) is a worldwide public health problem caused predominantly by the opportunistic polymorphic fungus Candida albicans, whose pathogenicity is associated with its morphological adaptability. To potentiate the treatment of C. albicans-induced VVC by an alternative method as photodynamic therapy (PDT), hypericin (Hy), a potent photosensitizer compound was incorporated into a nanostructured lipid carrier (NLC) and dispersed in hydrogel (HG). Methods: After preparation of the sonication process, an NLC loaded with Hy was dispersed in HG based on Poloxamer 407 and chitosan obtaining Hy.NLC-HG. This hydrogel system was physically and chemically characterized and its in vitro and in vivo photodynamic and antifungal effects were evaluated. Results: Through scanning electron microscopy, it was possible to observe a hydrogel system with a porous polymeric matrix and irregular microcavities. The Hy.NLC-HG system showed mucoadhesive properties (0.45 ± 0.08 N) and a satisfactory injectability (15.74 ± 4.75 N.mm), which indicates that it can be easily applied in the vaginal canal, in addition to a controlled and sustained Hy release profile from the NLC-HG of 28.55 ± 0.15% after 720 min. The in vitro antibiofilm assay significantly reduced the viability of C. albicans (p < 0.001) by 1.2 log10 for Hy.NLC-HG/PDT and 1.9 log10 for PS/PDT, Hy.NLC/PDT, and free RB/PDT, compared to the PBS/PDT negative control. The in vivo antifungal evaluation showed that animals treated with the vaginal cream (non-PDT) and the PDT-mediated Hy.NLC-HG system showed a significant difference of p < 0.001 in the number of C. albicans colonies (log) in the vaginal canal, compared to the inoculation control group. Conclusions: Thus, we demonstrate the pharmaceutical, antifungal, and photodynamic potential of hydrogel systems for Hy vaginal administration. Full article
(This article belongs to the Special Issue Photodynamic Therapy 2023)
Show Figures

Figure 1

20 pages, 5237 KiB  
Article
Bigel Formulations of Nanoencapsulated St. John’s Wort Extract—An Approach for Enhanced Wound Healing
by Yoana Sotirova, Viliana Gugleva, Stanila Stoeva, Iliyan Kolev, Rositsa Nikolova, Maria Marudova, Krastena Nikolova, Yoana Kiselova-Kaneva, Minka Hristova and Velichka Andonova
Gels 2023, 9(5), 360; https://doi.org/10.3390/gels9050360 - 25 Apr 2023
Cited by 14 | Viewed by 4744
Abstract
This study aimed to develop a semisolid vehicle for topical delivery of nanoencapsulated St. John’s wort (SJW) extract, rich in hyperforin (HP), and explore its wound-healing potential. Four nanostructured lipid carriers (NLCs) were obtained: blank and HP-rich SJW extract-loaded (HP-NLC). They comprised glyceryl [...] Read more.
This study aimed to develop a semisolid vehicle for topical delivery of nanoencapsulated St. John’s wort (SJW) extract, rich in hyperforin (HP), and explore its wound-healing potential. Four nanostructured lipid carriers (NLCs) were obtained: blank and HP-rich SJW extract-loaded (HP-NLC). They comprised glyceryl behenate (GB) as a solid lipid, almond oil (AO), or borage oil (BO) representing the liquid lipid, along with polyoxyethylene (20) sorbitan monooleate (PSMO) and sorbitan monooleate (SMO) as surfactants. The dispersions demonstrated anisometric nanoscale particles with acceptable size distribution and disrupted crystalline structure, providing entrapment capacity higher than 70%. The carrier exhibiting preferable characteristics (HP-NLC2) was gelled with Poloxamer 407 (PM407) to serve as the hydrophilic phase of a bigel, to which the combination of BO and sorbitan monostearate (SMS) organogel was added. The eight prepared bigels with different proportions (blank and nanodispersion-loaded) were characterized rheologically and texturally to investigate the impact of the hydrogel-to-oleogel ratio. The therapeutic potential of the superior formulation (HP-NLC-BG2) was evaluated in vivo on Wistar male rats through the tensile strength test on a primary-closed incised wound. Compared with a commercial herbal semisolid and a control group, the highest tear resistance (7.764 ± 0.13 N) was achieved by HP-NLC-BG2, proving its outstanding wound-healing effect. Full article
(This article belongs to the Special Issue Multifunctional Hydrogel for Wound Healing and Tissue Repair)
Show Figures

Graphical abstract

18 pages, 5097 KiB  
Article
Vitamin E TPGS-Poloxamer Nanoparticles Entrapping a Novel PI3Kα Inhibitor Potentiate Its Activity against Breast Cancer Cell Lines
by Suhair Sunoqrot, Sundos Aliyeh, Samah Abusulieh and Dima Sabbah
Pharmaceutics 2022, 14(9), 1977; https://doi.org/10.3390/pharmaceutics14091977 - 19 Sep 2022
Cited by 10 | Viewed by 3765
Abstract
N-(2-fluorphenyl)-6-chloro-4-hydroxy-2-quinolone-3-carboxamide (R19) is a newly synthesized phosphatidylinositol 3-kinase alpha (PI3Kα) inhibitor with promising activity against cancer cells. The purpose of this study was to develop a polymeric nanoparticle (NP) formulation for R19 to address its poor aqueous solubility and to facilitate its future [...] Read more.
N-(2-fluorphenyl)-6-chloro-4-hydroxy-2-quinolone-3-carboxamide (R19) is a newly synthesized phosphatidylinositol 3-kinase alpha (PI3Kα) inhibitor with promising activity against cancer cells. The purpose of this study was to develop a polymeric nanoparticle (NP) formulation for R19 to address its poor aqueous solubility and to facilitate its future administration in preclinical and clinical settings. NPs were prepared by nanoprecipitation using two polymers: D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS) and the poloxamer Pluronic P123 in different ratios. Physicochemical characterization of the NPs revealed them to be around 100 nm in size with high monodispersity, a spherical morphology, and an almost neutral surface charge. The NPs achieved ~60% drug loading efficiency and sustained release of R19 for up to 96 h, with excellent colloidal stability in serum-containing cell culture media. NPs containing TPGS enhanced R19’s potency against MCF-7 and MDA-MB-231 breast cancer cells in vitro, with half-maximal inhibitory concentrations (IC50) ranging between 1.8 and 4.3 µM compared to free R19, which had an IC50 of 14.7–17.0 µM. The NPs also demonstrated low cytotoxicity against human dermal fibroblasts and more significant induction of apoptosis compared to the free drug, which was correlated with their cellular uptake efficiency. Our findings present a biocompatible NP formulation for the delivery of a cancer-targeted PI3Kα inhibitor, R19, which can further enhance its potency for the treatment of breast cancer and potentially other cancer types. Full article
(This article belongs to the Special Issue Kinase Inhibitor for Cancer Therapy)
Show Figures

Figure 1

12 pages, 2801 KiB  
Article
Effects of Green Tea and Green Tea Incorporated in Nanoparticle Lyotropic Liquid Crystal on Exercise Adaptations: A High-Intensity Interval Training Pre-Clinical Study
by Vitor Nieri, Juliana Ferreira de Souza, Talita Cristina Mena Segato, Érika Leão Ajala Caetano, Fernanda Gomes Leite, Marco Vinícius Chaud and Denise Grotto
Nutrients 2022, 14(15), 3226; https://doi.org/10.3390/nu14153226 - 7 Aug 2022
Viewed by 2958
Abstract
Green tea (GT) is a natural antioxidant, sensitive to oxidation after preparation. Lyotropic liquid crystals (LLCs) are nanostructured systems used to incorporate bioactive compounds. High-intensity interval training (HIIT) is a workout modality that increases the production of reactive oxygen species (ROS). Thus, this [...] Read more.
Green tea (GT) is a natural antioxidant, sensitive to oxidation after preparation. Lyotropic liquid crystals (LLCs) are nanostructured systems used to incorporate bioactive compounds. High-intensity interval training (HIIT) is a workout modality that increases the production of reactive oxygen species (ROS). Thus, this research aimed to compare the effects of GT and GT loaded in LLC in animals subjected to HIIT, considering hematological, biochemical and histological parameters, redox status, and body mass. Monoolein, GT in infusion and Poloxamer 407 were mixed to obtain nanoparticles of LLC (NP-LLC). Healthy male rats were randomized into six groups (n = 6/group): Control (C), GT, GT-NP-LLC, Exercise (Ex), GT+Ex, GT-NP-LLC+Ex. Body weight was significantly lower in all groups subjected to HIIT compared to C. The percentages of body mass reduction were 11.3, 13.0, 10.0 and 11.0% for Ex, GT+Ex, GT-NP-LLC and GT-NP-LLC+Ex, respectively, compared to control. GT-NP-LLC and Ex reduced triglycerides compared to C. GT and GT-NP-LLC supplementation combined with HIIT presented higher muscle hypertrophy (25 and 21%, respectively), better physical conditioning, and reduced body weight gain rate compared to HIIT by itself. Moreover, the effects of GT-NP-LLC itself on body mass and biochemical parameters are promising, suggesting NP-LLC could improve the bioavailability of GT. Full article
(This article belongs to the Section Sports Nutrition)
Show Figures

Figure 1

17 pages, 2212 KiB  
Article
Development and Evaluation of Cannabidiol Orodispersible Tablets Using a 23-Factorial Design
by Robert-Alexandru Vlad, Paula Antonoaea, Nicoleta Todoran, Emöke-Margit Rédai, Magdalena Bîrsan, Daniela-Lucia Muntean, Silvia Imre, Gabriel Hancu, Lénárd Farczádi and Adriana Ciurba
Pharmaceutics 2022, 14(7), 1467; https://doi.org/10.3390/pharmaceutics14071467 - 14 Jul 2022
Cited by 12 | Viewed by 3053
Abstract
Orodispersible tablets (ODTs) are pharmaceutical formulations used to obtain fast therapeutic effects, usually recommended for geriatric and pediatric patients due to their improved compliance, bioavailability, ease of administration, and good palatability. This study aimed to develop ODTs with cannabidiol (CBD) phytocannabinoid extracted from [...] Read more.
Orodispersible tablets (ODTs) are pharmaceutical formulations used to obtain fast therapeutic effects, usually recommended for geriatric and pediatric patients due to their improved compliance, bioavailability, ease of administration, and good palatability. This study aimed to develop ODTs with cannabidiol (CBD) phytocannabinoid extracted from Cannabis sativa used in the treatment of Lennox–Gastaut and Dravet syndromes. The tablets were obtained using an eccentric tableting machine and 9 mm punches. To develop CBD ODTs, the following parameters were varied: the Poloxamer 407 concentration (0 and 10%), the type of co-processed excipient (Prosolv® ODT G2—PODTG2 and Prosolv® EasyTab sp—PETsp), and the type of superdisintegrant (Croscarmellose—CCS, and Soy Polysaccharides—Emcosoy®—EMCS), resulting in eleven formulations (O1–O11). The following dependent parameters were evaluated: friability, disintegration time, crushing strength, and the CBD dissolution at 1, 3, 5, 10, 15, and 30 min. The dependent parameters were verified according to European Pharmacopoeia (Ph. Eur.) requirements. All the tablets obtained were in accordance with quality requirements in terms of friability (less than 1%), and disintegration time (less than 180 s). The crushing strength was between 19 N and 80 N. Regarding the dissolution test, only four formulations exhibited an amount of CBD released higher than 80% at 30 min. Taking into consideration the results obtained and using the Modde 13.1 software, an optimal formulation was developed (O12), which respected the quality criteria chosen (friability 0.23%, crushing strength of 37 N, a disintegration time of 27 s, and the target amount of CBD released in 30 min of 99.3 ± 6%). Full article
(This article belongs to the Special Issue Development of Orally Dispersible Dosage Forms)
Show Figures

Figure 1

19 pages, 3887 KiB  
Article
Stereomicroscope with Imaging Analysis: A Versatile Tool for Wetting, Gel Formation and Erosion Rate Determinations of Eutectic Effervescent Tablet
by Pornsit Chaiya, Siriporn Okonogi and Thawatchai Phaechamud
Pharmaceutics 2022, 14(6), 1280; https://doi.org/10.3390/pharmaceutics14061280 - 16 Jun 2022
Cited by 4 | Viewed by 3155
Abstract
Wettability, gel formation and erosion behaviors could influence the drug release pattern of solid dosage forms. Typically, these parameters are evaluated using a variety of techniques. Nonetheless, there has been no previous research on versatile tool development for evaluating several tablet characteristics with [...] Read more.
Wettability, gel formation and erosion behaviors could influence the drug release pattern of solid dosage forms. Typically, these parameters are evaluated using a variety of techniques. Nonetheless, there has been no previous research on versatile tool development for evaluating several tablet characteristics with a single tool. The aim of this study was to develop the versatile tool for measuring various physical properties of eutectic effervescent tablets and also investigate the relationship between these parameters with parameters from drug dissolution. Ibuprofen (IBU)-poloxamer 407 (P407) eutectic effervescent tablets were fabricated with a direct compression method. Their wetting properties, gel formation and erosion behaviors were investigated using a stereomicroscope with imaging analysis in terms of the liquid penetration distance, gel thickness and erosion boundary diameter, respectively. In addition, the dissolution rate (k) and disintegration time of eutectic effervescent tablets in 0.1 N HCl buffer pH 1.2 were also determined. Incorporation of P407 into the IBU tablet improved the tablet wetting properties with increasing liquid penetration distance under stereoscope. CO2 liberation from effervescent agents promoted tablet surface roughness from matrix erosion. The relationship between observed physical properties and disintegration and dissolution parameters suggested that the combination of erosion by effervescent agents and gel formation by P407 had a potential influence on dissolution enhancement of the formulation. Therefore, a developed stereomicroscope with an imaging analysis technique was exhibited as an alternative versatile tool for determining the wetting properties, gel formation and erosion behaviors of pharmaceutical solid dosage forms. Full article
(This article belongs to the Special Issue Smart Drug Delivery Strategies Based on Porous Materials)
Show Figures

Figure 1

Back to TopTop