Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (260)

Search Parameters:
Keywords = plastic and ocean

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6687 KiB  
Article
A Gamified Teaching Proposal Using an Escape Box to Explore Marine Plastic Pollution
by Lourdes Aragón and Carmen Brenes-Cuevas
Sustainability 2025, 17(16), 7528; https://doi.org/10.3390/su17167528 (registering DOI) - 20 Aug 2025
Abstract
This work draws on the principles of Environmental Education as a framework for designing meaningful teaching interventions that foster a critical understanding of socio-environmental issues. The proposal focuses on the specific case of plastic pollution and its impact on marine ecosystems, adopting an [...] Read more.
This work draws on the principles of Environmental Education as a framework for designing meaningful teaching interventions that foster a critical understanding of socio-environmental issues. The proposal focuses on the specific case of plastic pollution and its impact on marine ecosystems, adopting an integrative perspective that connects animal, environmental, and human health. To this end, the One Health approach is incorporated, highlighting the close interdependence between the health of ecosystems, animals, and people, which allows the issue to be analyzed from a systemic and global perspective. The intervention is grounded in the principles of Transformative Environmental Education—a pedagogical orientation that seeks to promote deep changes in how students understand their environment and engage with the challenges of today’s world. This approach encourages ethical reflection, critical thinking, and the ability to imagine sustainable futures, as well as the development of competencies for action and civic engagement. The teaching proposal takes the form of a learning experience designed and implemented in three 7th-grade classrooms (1º ESO) in Cádiz, Spain, through a mixed-methods approach with 79 students (12–13 years old), structured around an escape box activity. This is a variation of the escape room format in which students, working in teams, must open a series of boxes by solving a sequence of puzzles. In this case, the escape box is set in a marine context. Through a gamified narrative, students receive a suitcase containing objects, clues, and materials that require the application of scientific knowledge about ocean acidification, biodiversity loss, and types of plastics. Data were collected through field notes, student artifacts, and a final questionnaire. The proposal is designed to foster critical environmental literacy, a holistic vision of environmental challenges, and the capacity to propose collective solutions from a One Health perspective. The results revealed high levels of motivation, engagement with the storyline, and a solid understanding of the link between marine plastic pollution and its effects on animal and human health, aligned with the One Health perspective. Full article
Show Figures

Figure 1

15 pages, 2654 KiB  
Article
Presence and Potential Effect of Microplastics Associated with Anthropic Activity in Two Benthic Fishes Serranus scriba and Lithognathus mormyrus
by Amanda Cohen-Sánchez, Juan Alejandro Sanz, Montserrat Compa, Maria Magdalena Quetglas-Llabrés, Maria del Mar Ribas-Taberner, Lorenzo Gil, Silvia Tejada, Samuel Pinya and Antoni Sureda
Fishes 2025, 10(7), 323; https://doi.org/10.3390/fishes10070323 - 3 Jul 2025
Viewed by 448
Abstract
Plastic pollution poses a massive problem to the environment, particularly seas and oceans. Microplastics (MPs) ingestion by marine species can generate many adverse effects, including causing oxidative stress. This study evaluated the effects of anthropic activity-related MP presence in two coastal fish species— [...] Read more.
Plastic pollution poses a massive problem to the environment, particularly seas and oceans. Microplastics (MPs) ingestion by marine species can generate many adverse effects, including causing oxidative stress. This study evaluated the effects of anthropic activity-related MP presence in two coastal fish species—Serranus scriba (more related to rocky bottoms) and Lithognathus mormyrus (more related to sandy bottoms)—in two areas of Mallorca Island (Western Mediterranean) with varying anthropic pressures with similar mixed rocky/sandy bottoms. A total of eight fish samples per species and per area (total n = 32), as well as three water samples (500 mL each) and three sediment samples per area, were collected and analyzed. The results showed that despite plastic presence in both areas, the area with higher tourism affluence was also the most polluted. Fourier transform infrared spectroscopy analysis confirmed that the majority of recovered polymers were polyethylene and polypropylene. The pattern of MPs presence was reflected in the biomarker analysis, which showed higher values of antioxidants, namely catalase (CAT) and superoxide dismutase (SOD); detoxification, namely glutathione s-transferase (GST); and inflammation, namely myeloperoxidase (MPO)—enzymes in the gastrointestinal tract of fish from the more polluted area. However, no statistical differences were found for malondialdehyde (MDA) as a marker of lipid peroxidation. As for differences between species, S. scriba presented a higher presence of MPs and measured biomarkers than in L. Mormyrus, suggesting higher exposure. In conclusion, these results showed that increased anthropic activity is associated with a higher presence of MPs which, in turn, induces an adaptative response in exposed fish. Moreover, species living in the same area could be differentially affected by MPs, which is probably associated with different behavioural and feeding habits. Full article
(This article belongs to the Section Environment and Climate Change)
Show Figures

Figure 1

18 pages, 1096 KiB  
Review
Marine Plastic Waste in Construction: A Systematic Review of Applications in the Built Environment
by Lucas Lopes, Harish Dauari, Paulo Mendonça and Manuela Almeida
Polymers 2025, 17(13), 1729; https://doi.org/10.3390/polym17131729 - 21 Jun 2025
Viewed by 873
Abstract
Marine plastic pollution represents a critical environmental challenge, with millions of tons of plastic waste entering the oceans annually and threatening ecosystems, biodiversity, and human health. This systematic review evaluates the current state of the art in recycling and reusing marine plastic waste [...] Read more.
Marine plastic pollution represents a critical environmental challenge, with millions of tons of plastic waste entering the oceans annually and threatening ecosystems, biodiversity, and human health. This systematic review evaluates the current state of the art in recycling and reusing marine plastic waste within the architecture, engineering, and construction (AEC) sectors, following the PRISMA methodology. Sixty-six peer-reviewed articles published between 2015 and 2025 were analysed, focusing on the integration of plastic waste. The review identifies mechanical recycling as the predominant method, involving washing and shredding plastics into fibres or flakes for use in cementitious composites, asphalt modifiers, bricks, panels, and insulation. Results indicate that recycled plastics, such as PET, HDPE, and PP, can enhance thermal insulation, water resistance, and flexural strength in non-structural applications. However, challenges persist regarding compressive strength, fibre dispersion, and chemical compatibility with cementitious matrices. Although the reuse of marine plastics supports circular economy goals by diverting waste from oceans and landfills, significant gaps remain in long-term durability, microplastic release, end-of-life recyclability, and comprehensive environmental assessments. The findings underscore the need for further research on the broader adoption of life cycle analysis, as well as long-term durability and environmental contamination analyses. Full article
(This article belongs to the Special Issue Environmentally Responsive Polymer Materials)
Show Figures

Figure 1

13 pages, 2162 KiB  
Article
Characterization of Transboundary Transfer Mechanisms for Improved Plastic Waste Management: A Study on the U.S.–Mexico Border
by Carol Maione, Domenico Vito, Gabriela Fernandez and Paolo Trucco
Water 2025, 17(12), 1819; https://doi.org/10.3390/w17121819 - 18 Jun 2025
Viewed by 473
Abstract
The vast majority of ocean plastics originate from land and are transported over long distances to their final sink. Yet, our current understanding of transfer mechanisms through rivers and estuaries remains poor due to a lack of consistent methods for assessing and monitoring [...] Read more.
The vast majority of ocean plastics originate from land and are transported over long distances to their final sink. Yet, our current understanding of transfer mechanisms through rivers and estuaries remains poor due to a lack of consistent methods for assessing and monitoring plastic waste. In this study, we quantify and characterize the abundance of plastics in the Tijuana River estuary, located along the U.S.–Mexico border. We found a total of 2804 plastic debris items, of which 79.3% were sampled during heavy rainfalls and 20.7% during the dry period. Overall, most plastics were attributed to five economic sectors: packaging, food, construction, fishing, and tourism, highlighting losses during the use and waste management phases of the plastic’s value chain. Based on the results of the analysis, consistent monitoring of plastic pollution is recommended for managing variable plastic loads. Full article
(This article belongs to the Special Issue Water Pollution Control and Ecological Restoration)
Show Figures

Figure 1

19 pages, 5160 KiB  
Article
Risk Assessment and Spatiotemporal Variation of Microplastic Concentration, Size, and Polymer Type in Mayotte Lagoon’s Surface Water (Comoros Archipelagos)
by Emilie Strady, Johnny Gaspéri, Damien Devault, Marc Pagano, Ngoc Nam Phuong, Sophie Ricordel, Clément Lelabousse, Mathieu Leborgne and Cristèle Chevalier
Microplastics 2025, 4(2), 31; https://doi.org/10.3390/microplastics4020031 - 6 Jun 2025
Viewed by 1368
Abstract
The concentration of microplastics [300–5000 µm] in the surface water of the Mayotte lagoon, Western Indian Ocean, was measured over two snapshot campaigns conducted during the dry and rainy seasons. The concentration in the surface water varied from 0.01 MP m−3 to [...] Read more.
The concentration of microplastics [300–5000 µm] in the surface water of the Mayotte lagoon, Western Indian Ocean, was measured over two snapshot campaigns conducted during the dry and rainy seasons. The concentration in the surface water varied from 0.01 MP m−3 to 1.23 MP m−3 and was higher during the rainy season. All particles were analyzed via µFTIR, enabling systematic polymer and surface area determination. Polypropylene dominated over polyethylene and polystyrene, representing 70% of the microplastic particles observed. The microplastics, which were predominantly in the [0.3–1000 µm] fraction, presented a similar seasonal trend of distribution with respect to their occurrence, suggesting that turbulence and the subsequent settling of microplastics in the lagoon’s surface water were identical during the two campaigns. PCA was performed to deconvolute the effects of season and hydrodynamic features on the observed surface water concentrations and median size distribution. It evidenced a high degree of disparity in concentration and median area in surface water during the rainy season, while a lower concentration of smaller particles was observed during the end of the dry season. A microplastic risk assessment was performed for the surface water of the lagoon and evidenced a low pollution load index and low to high polymer risk assessment and potential ecological risk indexes. Full article
Show Figures

Figure 1

22 pages, 1596 KiB  
Review
Microplastic Pollution: A Global Environmental Crisis Impacting Marine Life, Human Health, and Potential Innovative Sustainable Solutions
by Prithviraj Karak, Afsona Parveen, Anindya Modak, Atin Adhikari and Sankha Chakrabortty
Int. J. Environ. Res. Public Health 2025, 22(6), 889; https://doi.org/10.3390/ijerph22060889 - 2 Jun 2025
Viewed by 2009
Abstract
Pollution, especially plastic pollution, presents a serious worldwide danger to essential environmental resources. Microplastics are tiny plastic fragments varying in size from 50 μm to 5 mm. The primary aim of this article is to develop an extensive review grounded in the latest [...] Read more.
Pollution, especially plastic pollution, presents a serious worldwide danger to essential environmental resources. Microplastics are tiny plastic fragments varying in size from 50 μm to 5 mm. The primary aim of this article is to develop an extensive review grounded in the latest data accessible until 2024, adhering to PRISMA guidelines. A total of 329 data points were collected and 297 of those were removed through filtering, leaving 32 articles for the study, and taking into account the complete evolution of all the publications. This study seeks to enhance public awareness and knowledge among researchers about the harmful effects of plastic pollution on the environment and society by identifying its sources and consequences for humans and ecosystems. A detailed analysis of the sources of microplastics in the oceans and their detrimental effects on marine organisms is presented. This research additionally explores the transport of microplastics through various environmental pathways, including water and air. Aquatic species ingest microplastics, which subsequently transfer up the food chain, including humans, and these risks are discussed. Microplastics may increase the production of reactive oxygen species (ROS), leading to DNA and cellular damage, oxidative stress, alterations in gene expression, and decreased cell viability. Developing clear and effective guidelines and regulations is crucial for addressing the adverse issues related to microplastics. All participants in the policymaking and implementation of these guidelines must understand their roles and responsibilities. Full article
Show Figures

Figure 1

21 pages, 6935 KiB  
Article
Internal Structure and Inclusions: Constraints on the Origin of the Tancheng Alluvial Diamonds from the North China Craton
by Qing Lv, Fei Liu, Yue-Jin Ge, Zhao-Ying Li, Xiao Liu, Yong-Lin Yao, Yu-Feng Wang, Hai-Qin Wang, Sheng-Hu Li, Xiao-Dong Ma, Yong Zhang, Jia-Hong Xu and Ahmed E. Masoud
Minerals 2025, 15(6), 588; https://doi.org/10.3390/min15060588 - 30 May 2025
Viewed by 449
Abstract
The internal growth patterns and surface micromorphology of diamonds provide a record of their multi-stage evolution, from initial formation within the mantle to their eventual ascent to the Earth’s surface via deeply derived kimberlite magmas. In this study, gemological microscopic examination, Diamond View [...] Read more.
The internal growth patterns and surface micromorphology of diamonds provide a record of their multi-stage evolution, from initial formation within the mantle to their eventual ascent to the Earth’s surface via deeply derived kimberlite magmas. In this study, gemological microscopic examination, Diamond ViewTM, Raman spectroscopy, and electron probe analysis were employed to analyze the surface features, internal patterns, and inclusions of the Tancheng alluvial diamonds in Shandong Province, China. The results show that surface features of octahedra with triangular and sharp edges, thick steps with irregular contours or rounded edges, and thin triangular or serrated layers are developed on diamonds during deep-mantle storage, as well as during the growth process of diamonds, when they are not subjected to intense dissolution. The rounding of octahedral and cubic diamond edges and their transformation into tetrahedral (THH) shapes are attributed to resorption in kimberlitic magma. These characteristics indicate that the Tancheng diamonds were commonly resorbed by carbonate–silicate melts during mantle storage. Abnormal birefringence phenomena, including irregular extinction patterns, petaloid and radial extinction patterns, and banded birefringence, were formed during the diamond growth stage. In contrast, fine grid extinction patterns and composite superimposed extinction patterns are related to later plastic deformation. The studied diamonds mainly contain P-type inclusions of olivine and graphite, with a minority of E-type inclusions, including coesite and omphacite. The pressure of entrapment of olivine inclusions within the Tancheng diamonds ranges from 4.3 to 5.9 GPa, which is consistent with that of coesite inclusions, which yield pressure ranging from 5.2 to 5.5 GPa, and a temperature range of 1083–1264 °C. Overall, the evidence suggests that Tancheng diamonds probably originated from hybrid mantle sources metasomatized by the subduction of ancient oceanic lithosphere. Full article
Show Figures

Graphical abstract

20 pages, 1118 KiB  
Review
Atmospheric Microplastics: Inputs and Outputs
by Christine C. Gaylarde, José Antônio Baptista Neto and Estefan M. da Fonseca
Micro 2025, 5(2), 27; https://doi.org/10.3390/micro5020027 - 30 May 2025
Viewed by 1805
Abstract
The dynamic relationship between microplastics (MPs) in the air and on the Earth’s surface involves both natural and anthropogenic forces. MPs are transported from the ocean to the air by bubble scavenging and sea spray formation and are released from land sources by [...] Read more.
The dynamic relationship between microplastics (MPs) in the air and on the Earth’s surface involves both natural and anthropogenic forces. MPs are transported from the ocean to the air by bubble scavenging and sea spray formation and are released from land sources by air movements and human activities. Up to 8.6 megatons of MPs per year have been estimated to be in air above the oceans. They are distributed by wind, water and fomites and returned to the Earth’s surface via rainfall and passive deposition, but can escape to the stratosphere, where they may exist for months. Anthropogenic sprays, such as paints, agrochemicals, personal care and cosmetic products, and domestic and industrial procedures (e.g., air conditioning, vacuuming and washing, waste disposal, manufacture of plastic-containing objects) add directly to the airborne MP load, which is higher in internal than external air. Atmospheric MPs are less researched than those on land and in water, but, in spite of the major problem of a lack of standard methods for determining MP levels, the clothing industry is commonly considered the main contributor to the external air pool, while furnishing fabrics, artificial ventilation devices and the presence and movement of human beings are the main source of indoor MPs. The majority of airborne plastic particles are fibers and fragments; air currents enable them to reach remote environments, potentially traveling thousands of kilometers through the air, before being deposited in various forms of precipitation (rain, snow or “dust”). The increasing preoccupation of the populace and greater attention being paid to industrial ecology may help to reduce the concentration and spread of MPs and nanoparticles (plastic particles of less than 100 nm) from domestic and industrial activities in the future. Full article
Show Figures

Figure 1

21 pages, 4767 KiB  
Article
Mapping the Distribution and Discharge of Plastic Pollution in the Ganga River
by Ekta Sharma, Aishwarya Ramachandran, Pariva Dobriyal, Srishti Badola, Heather Koldewey, Syed Ainul Hussain and Ruchi Badola
Sustainability 2025, 17(11), 4932; https://doi.org/10.3390/su17114932 - 27 May 2025
Viewed by 1314
Abstract
The Ganga River, a lifeline for millions and a critical freshwater ecosystem, is under threat from escalating plastic pollution driven by widespread usage and inadequate disposal practices. While marine ecosystems have garnered extensive research attention, freshwater systems—particularly in the Global South—remain underexplored, leaving [...] Read more.
The Ganga River, a lifeline for millions and a critical freshwater ecosystem, is under threat from escalating plastic pollution driven by widespread usage and inadequate disposal practices. While marine ecosystems have garnered extensive research attention, freshwater systems—particularly in the Global South—remain underexplored, leaving critical gaps in understanding plastic pollution’s sources and pathways. Addressing these gaps, the study documents the prevalence and typology of plastic debris in urban and underexplored rural communities along the Ganga River, India, aiming to suggest mechanisms for a reduction in source-based pollution. A stratified random sampling approach was used to select survey sites and plastic debris was quantified and categorised through transect surveys. A total of 37,730 debris items were retrieved, dominated by packaging debris (52.46%), fragments (23.38%), tobacco-related debris (5.03%), and disposables (single-use plastic cutleries) (4.73%) along the surveyed segments with varying abundance trends. Floodplains displayed litter densities nearly 28 times higher than river shorelines (6.95 items/m2 vs. 0.25 items/m2), with minor variations between high- and low-population-density areas (7.14 items/m vs. 6.7 items/m2). No significant difference was found between rural and urban areas (V = 41, p = 0.19), with mean densities of 0.87 items/m2 and 0.81 items/m2, respectively. Seasonal variations were insignificant (V = 13, p = 0.30), but treatment sites displayed significant variance (Chi2 = 10.667, p = 0.004) due to flood impacts. The findings underscore the urgent need for tailored waste management strategies integrating industrial reforms, decentralised governance, and community-driven efforts. Enhanced baseline information and coordinated multi-sectoral efforts, including Extended Producer Responsibility (EPR), are crucial for mitigating plastic pollution and protecting freshwater ecosystems, given rivers’ significant contribution to ocean pollution. Full article
Show Figures

Figure 1

18 pages, 3266 KiB  
Article
Nautical Tourism Vessels as a Source of Seafloor Litter: An ROV Survey in the North Adriatic Sea
by Livia Maglić, Lovro Maglić and Antonio Blažina
J. Mar. Sci. Eng. 2025, 13(6), 1012; https://doi.org/10.3390/jmse13061012 - 23 May 2025
Viewed by 569
Abstract
Marine litter threatens ocean ecosystems, and nautical tourism, as a source of litter, contributes significantly. This paper presents a qualitative and quantitative study of seafloor litter in the Bay of Selehovica in the northern Adriatic Sea. The bay is accessible only by sea [...] Read more.
Marine litter threatens ocean ecosystems, and nautical tourism, as a source of litter, contributes significantly. This paper presents a qualitative and quantitative study of seafloor litter in the Bay of Selehovica in the northern Adriatic Sea. The bay is accessible only by sea and is attractive to nautical tourism vessels. The survey was conducted using a remotely operated vehicle across 22,100 m2 of seafloor, before and after the tourist season (summer) in 2024. The analysis shows a 25.90% increase in litter items after one season. The predominant litter category is plastic, followed by glass, metal, rubber, and textiles. The abundance of marine litter increased from 1.3 to 1.7 items per 100 m2 in the post-season, reflecting a measurable rise in litter density. Due to non-normal data distribution (Shapiro–Wilk test, p < 0.001), the Wilcoxon Signed-Rank Test was used, revealing a statistically significant increase in marine litter (W = 0, p < 0.001) with a large effect size (Cohen’s d = 0.89). A strong positive correlation between the pre- and post-season values was observed (Spearman’s r = 0.96, p < 0.001), suggesting that areas with higher initial litter levels tend to accumulate more over time. The results point to the necessity of targeted management strategies to reduce the pressure of nautical tourism on marine ecosystems and to protect the marine environment. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

15 pages, 1322 KiB  
Article
Viscosity of Polycaprolactone Microplastic Dispersions and Nonlinear Kinetic Models of Plastic Fragmentation
by Vincenzo Villani and Pier Luigi Gentili
Molecules 2025, 30(10), 2235; https://doi.org/10.3390/molecules30102235 - 21 May 2025
Viewed by 444
Abstract
Viscosimetric experiments and microscopy measurements on microdispersions of polycaprolactone (PCL) plastics showed an unexpected exponential decrease in viscosity over the first 3 months and a plateau for a further 4 months of observations. This behavior is due to the release of nanoplastics from [...] Read more.
Viscosimetric experiments and microscopy measurements on microdispersions of polycaprolactone (PCL) plastics showed an unexpected exponential decrease in viscosity over the first 3 months and a plateau for a further 4 months of observations. This behavior is due to the release of nanoplastics from semicrystalline particles that reduce the viscosity of the dispersion, and leave stable and fine crystalline microplastics ranging in size from 30 to 180 μm. The development of nonlinear kinetic models for the fragmentation process from macro- to meso-, micro-, and nanoplastics reveals complex behavior that we call a cracking–leaching mechanism. The autocatalytic mechanical cracking of macroplastics larger than 5 mm is followed by a logistic-type mechanical cracking of mesoplastics between 5 and 1 mm. Therefore, microplastics smaller than 1 mm experience the leaching diffusion modeled via nonlinear coupled kinetic differential equations: semicrystalline microplastics quickly release nanoplastics from the amorphous fraction, followed by fine and stable crystalline microplastics. This proposed mechanism explains the size distribution of floating plastic debris in the oceans, with an unexpected gap of microplastics. Considering the outcome, a general reflection is made on the critical issues that currently appear unsolvable regarding plastic pollution. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Figure 1

14 pages, 4014 KiB  
Article
Microplastics in Cronius ruber: Links to Wastewater Discharges
by Sofía Huelbes, May Gómez, Ico Martínez, Raül Triay-Portella, Miguel González-Pleiter and Alicia Herrera
Animals 2025, 15(10), 1420; https://doi.org/10.3390/ani15101420 - 14 May 2025
Viewed by 511
Abstract
Microplastic pollution in the ocean is a growing problem. It affects the entire ecosystem and, therefore, the species that inhabit it. Plastics can be filtered or ingested by organisms, entering and negatively affecting individuals. Among the populations affected are crustaceans. In previous studies, [...] Read more.
Microplastic pollution in the ocean is a growing problem. It affects the entire ecosystem and, therefore, the species that inhabit it. Plastics can be filtered or ingested by organisms, entering and negatively affecting individuals. Among the populations affected are crustaceans. In previous studies, fibers have been found mainly in the stomach contents of these animals, although other types, such as pellets, have also been found. This study examines the presence of microplastics in Cronius ruber, an invasive crab species in the Canary Islands, and investigates their potential links to nearby wastewater discharges. A total of 63 crabs were sampled from four beaches in Gran Canaria in 2021, and their stomach contents were analyzed through alkaline digestion, filtration, and micro-Fourier transform infrared spectroscopy (micro-FTIR). Microplastics were detected in 52% of individuals; the particles averaged 0.7 ± 0.5 mm in length, with an average of 1.73 ± 1.02 particles per crab. Fibers constituted 89% of the microplastics, with blue and black being the predominant colors. Rayon, commonly used in textiles, was the most frequently identified polymer (52%), highlighting the role of wastewater from laundry processes as a significant pollution source. Beaches close to unauthorized wastewater discharges, such as Anfi del Mar (n = 3) and El Puertillo (n = 32), showed the highest contamination levels, with a frequency of occurrence (FO) of microplastic particles of 67% and 58%, respectively. Playa de Las Nieves was the one with the lowest contamination level (n = 22), with a frequency of occurrence of microplastic particles of 41%. This is the first study to document microplastic ingestion in C. ruber, raising concerns about its ecological presence and the potential bioaccumulation of contaminants in marine ecosystems. Further research is essential to understand the long-term consequences of microplastic exposure on invasive species and their possible roles in pollutant transfer through food webs. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

29 pages, 5063 KiB  
Article
Beyond the Bloom: Invasive Seaweed Sargassum spp. as a Catalyst for Sustainable Agriculture and Blue Economy—A Multifaceted Approach to Biodegradable Films, Biostimulants, and Carbon Mitigation
by Elena Martínez-Martínez, Alexander H. Slocum, María Laura Ceballos, Paula Aponte and Andrés Guillermo Bisonó-León
Sustainability 2025, 17(8), 3498; https://doi.org/10.3390/su17083498 - 14 Apr 2025
Cited by 3 | Viewed by 2297
Abstract
The Anthropocene has ushered in unprecedented environmental challenges, with invasive seaweed blooms emerging as a critical yet understudied facet of climate change. These blooms, driven by nutrient runoff and oceanic alterations, disrupt ecosystems, threaten biodiversity, and impose economic and public health burdens on [...] Read more.
The Anthropocene has ushered in unprecedented environmental challenges, with invasive seaweed blooms emerging as a critical yet understudied facet of climate change. These blooms, driven by nutrient runoff and oceanic alterations, disrupt ecosystems, threaten biodiversity, and impose economic and public health burdens on coastal communities. However, invasive seaweeds also present an opportunity as a sustainable resource. This study explores the valorization of Sargassum spp. for agricultural applications, focusing on the development of biodegradable bioplastics and biostimulants. Field trials demonstrated the effectiveness of Marine Symbiotic® Sargassum-derived biostimulant in distinct agricultural contexts. In the Dominican Republic, trials on pepper crops showed significant improvements, including a 33.26% increase in fruit weight, a 21.94% rise in fruit set percentage, a 45% higher yield under high-stress conditions, and a 48.42% reduction in fruit rejection compared to control. In Colombia, trials across four leafy green varieties revealed biomass increases of up to 360%, a 50% reduction in synthetic input dependency, and enhanced crop coloration, improving marketability. Additionally, Sargassum-based biofilms exhibited favorable mechanical properties and biodegradability, offering a sustainable alternative to conventional agricultural plastics. Carbon credit quantification revealed that valorizing Sargassum could prevent up to 89,670 tons of CO2-equivalent emissions annually using just one Littoral Collection Module® harvesting system, while biostimulant application enhanced carbon sequestration in crops. These findings underscore the potential of invasive seaweed valorization to address multiple climate challenges, from reducing plastic pollution and GHG emissions to enhancing agricultural resilience, thereby contributing to a sustainable Blue Economy and aligning with global sustainability goals. Full article
Show Figures

Figure 1

30 pages, 6442 KiB  
Review
Macroissues with Microplastics: A Review on Distribution, Environmental Impacts, Pollutant Interactions, Toxicity, Analytical Methodology and Mitigation Strategies
by Aleksandra Anić-Vučinić, Dunja Turk and Anja Bek
Appl. Sci. 2025, 15(7), 4057; https://doi.org/10.3390/app15074057 - 7 Apr 2025
Viewed by 1525
Abstract
Although plastic has many desirable properties and numerous social benefits, it is a serious ecological problem due to massive application and difficult decomposing. Various environmental and anthropogenic impacts indicate that plastic breaks down into small particles that are ubiquitous in the environment. Microplastics [...] Read more.
Although plastic has many desirable properties and numerous social benefits, it is a serious ecological problem due to massive application and difficult decomposing. Various environmental and anthropogenic impacts indicate that plastic breaks down into small particles that are ubiquitous in the environment. Microplastics (MPs) are detected in oceans and seas, freshwater, wastewater, glaciers, soils, air, sediments, precipitation, plants, animals, humans, food and drinking water worldwide. Traces of MPs have been found even in remote and sparsely populated areas, indicating far-reaching movement through environmental compartments. Inadequate waste management and wastewater treatment is considered the major source of MP pollution. MPs are persistent contaminants that can adversely affect the ecological balance of the environment and may damage the health of living organisms, including humans. This review emphasizes the current global problems of MP pollution. It covers different areas of MPs, which include basic characteristics, interactions with other pollutants, occurrence and impacts in the environment, toxic effects on living organisms, sampling, sample pre-treatment and analytical methodology for the identification and quantification of MPs in different matrices as well as potential reduction and remediation strategies and the possibilities for effective control of MPs in the environment. Various interesting and useful previously published knowledge collected in this review can serve as a valuable foundation for further MP research. Full article
Show Figures

Figure 1

24 pages, 10936 KiB  
Article
Surface Current Observations in the Southeastern Tropical Indian Ocean Using Drifters
by Prescilla Siji and Charitha Pattiaratchi
J. Mar. Sci. Eng. 2025, 13(4), 717; https://doi.org/10.3390/jmse13040717 - 3 Apr 2025
Viewed by 1220
Abstract
The Southeastern Tropical Indian Ocean (SETIO) forms part of the global ocean conveyor belt and thermohaline circulation that has a significant influence in controlling the global climate. This region of the ocean has very few observations using surface drifters, and this study presents, [...] Read more.
The Southeastern Tropical Indian Ocean (SETIO) forms part of the global ocean conveyor belt and thermohaline circulation that has a significant influence in controlling the global climate. This region of the ocean has very few observations using surface drifters, and this study presents, for the first time, paths of satellite tracked drifters released in the Timor Sea (123.3° E, 13.8° S). The drifter data were used to identify the ocean dynamics, forcing mechanisms and connectivity in the SETIO region. The data set has high temporal (~5 min) and spatial (~120 m) resolution and were collected over an 8-month period between 17 September 2020 and 25 May 2021. At the end of 250 days, drifters covered a region separated by ~8000 km (83–137° E, 4–21° S) and transited through several forcing mechanisms including semidiurnal and diurnal tides, submesoscale and mesoscale eddies, channel and headland flows, and inertial currents generated by tropical storms. Initially, all the drifters moved as a single cluster, and at 120° E longitude they entered a region of high eddy kinetic energy defined here as the ‘SETIO Mixing Zone’ (SMZ), and their movement was highly variable. All the drifters remained within the SMZ for periods between 3 and 5 months. Exiting the SMZ, drifters followed the major ocean currents in the system (either South Java or South Equatorial Current). Two of the drifters moved north through Lombok and Sape Straits and travelled to the east as far as Aru Islands. The results of this study have many implications for connectivity and transport of buoyant materials (e.g., plastics), as numerical models do not have the ability to resolve many of the fine-scale physical processes that contribute to surface transport and mixing in the ocean. Full article
(This article belongs to the Special Issue Monitoring of Ocean Surface Currents and Circulation)
Show Figures

Figure 1

Back to TopTop