Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (802)

Search Parameters:
Keywords = plasmonic device

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2963 KiB  
Article
Theoretical Design of Composite Stratified Nanohole Arrays for High-Figure-of-Merit Plasmonic Hydrogen Sensors
by Jiyu Feng, Yuting Liu, Xinyi Chen, Mingyu Cheng and Bin Ai
Chemosensors 2025, 13(8), 309; https://doi.org/10.3390/chemosensors13080309 - 15 Aug 2025
Viewed by 223
Abstract
Fast, spark-free detection of hydrogen leaks is indispensable for large-scale hydrogen deployment, yet electronic sensors remain power-intensive and prone to cross-talk. Optical schemes based on surface plasmons enable remote read-out, but single-metal devices offer either weak H2 affinity or poor plasmonic quality. Here [...] Read more.
Fast, spark-free detection of hydrogen leaks is indispensable for large-scale hydrogen deployment, yet electronic sensors remain power-intensive and prone to cross-talk. Optical schemes based on surface plasmons enable remote read-out, but single-metal devices offer either weak H2 affinity or poor plasmonic quality. Here we employ full-wave finite-difference time-domain (FDTD) simulations to map the hydrogen response of nanohole arrays (NAs) that can be mass-produced by colloidal lithography. Square lattices of 200 nm holes etched into 100 nm films of Pd, Mg, Ti, V, or Zr expose an intrinsic trade-off: Pd maintains sharp extraordinary optical transmission modes but shifts by only 28 nm upon hydriding, whereas Mg undergoes a large dielectric transition that extinguishes its resonance. Vertical pairing of a hydride-forming layer with a noble metal plasmonic cap overcomes this limitation. A Mg/Pd bilayer preserves all modes and red-shifts by 94 nm, while the predicted optimum Ag (60 nm)/Mg (40 nm) stack delivers a 163 nm shift with an 83 nm linewidth, yielding a figure of merit of 1.96—surpassing the best plasmonic hydrogen sensors reported to date. Continuous-film geometry suppresses mechanical degradation, and the design rules—noble-metal plasmon generator, buried hydride layer, and thickness tuning—are general. This study charts a scalable route to remote, sub-ppm, optical hydrogen sensors compatible with a carbon-neutral energy infrastructure. Full article
(This article belongs to the Special Issue Innovative Gas Sensors: Development and Application)
Show Figures

Figure 1

45 pages, 5794 KiB  
Review
Nanophotonic Materials and Devices: Recent Advances and Emerging Applications
by Yuan-Fong Chou Chau
Micromachines 2025, 16(8), 933; https://doi.org/10.3390/mi16080933 - 13 Aug 2025
Viewed by 487
Abstract
Nanophotonics, the study of light–matter interactions at the nanometer scale, has emerged as a transformative field that bridges photonics and nanotechnology. Using engineered nanomaterials—including plasmonic metals, high-index dielectrics, two-dimensional (2D) materials, and hybrid systems—nanophotonics enables light manipulation beyond the diffraction limit, unlocking novel [...] Read more.
Nanophotonics, the study of light–matter interactions at the nanometer scale, has emerged as a transformative field that bridges photonics and nanotechnology. Using engineered nanomaterials—including plasmonic metals, high-index dielectrics, two-dimensional (2D) materials, and hybrid systems—nanophotonics enables light manipulation beyond the diffraction limit, unlocking novel applications in sensing, imaging, and quantum technologies. This review provides a comprehensive overview of recent advances (post-2020) in nanophotonic materials, fabrication methods, and their cutting-edge applications. We first discuss the fundamental principles governing nanophotonic phenomena, such as localized surface plasmon resonances (LSPRs), Mie resonances, and exciton–polariton coupling, highlighting their roles in enhancing light–matter interactions. Next, we examine state-of-the-art fabrication techniques, including top-down (e.g., electron beam lithography and nanoimprinting) and bottom-up (e.g., chemical vapor deposition and colloidal synthesis) approaches, as well as hybrid strategies that combine scalability with nanoscale precision. We then explore emerging applications across diverse domains: quantum photonics (single-photon sources, entangled light generation), biosensing (ultrasensitive detection of viruses and biomarkers), nonlinear optics (high-harmonic generation and wave mixing), and integrated photonic circuits. Special attention is given to active and tunable nanophotonic systems, such as reconfigurable metasurfaces and hybrid graphene–dielectric devices. Despite rapid progress, challenges remain, including optical losses, thermal management, and scalable integration. We conclude by outlining future directions, such as machine learning-assisted design, programmable photonics, and quantum-enhanced sensing, and offering insights into the next generation of nanophotonic technologies. This review serves as a timely resource for researchers in photonics, materials science, and nanotechnology. Full article
Show Figures

Figure 1

36 pages, 3275 KiB  
Review
Research Progress of Surface-Enhanced Raman Scattering (SERS) Technology in Food, Biomedical, and Environmental Monitoring
by Rui-Song Xue, Jia-Yi Dai, Xue-Jiao Wang and Ming-Yang Chen
Photonics 2025, 12(8), 809; https://doi.org/10.3390/photonics12080809 - 13 Aug 2025
Viewed by 548
Abstract
Surface-enhanced Raman scattering (SERS) technology, leveraging its single-molecule-level detection sensitivity, molecular fingerprint recognition capability, and capacity for rapid, non-destructive analysis, has emerged as a pivotal analytical tool in food science, life sciences, and environmental monitoring. This review systematically summarizes recent advancements in SERS [...] Read more.
Surface-enhanced Raman scattering (SERS) technology, leveraging its single-molecule-level detection sensitivity, molecular fingerprint recognition capability, and capacity for rapid, non-destructive analysis, has emerged as a pivotal analytical tool in food science, life sciences, and environmental monitoring. This review systematically summarizes recent advancements in SERS technology, encompassing its enhancement mechanisms (synergistic effects of electromagnetic and chemical enhancement), innovations in high-performance substrates (noble metal nanostructures, non-noble metal substrates based on semiconductors/graphene, and hybrid systems incorporating noble metals with functional materials), and its interdisciplinary applications. In the realm of food safety, SERS has enabled the ultratrace detection of pesticide residues, mycotoxins, and heavy metals, with flexible substrates and intelligent algorithms significantly enhancing on-site detection capabilities. Within biomedicine, the technique has been successfully applied to the rapid identification of pathogenic microorganisms, screening of tumor biomarkers, and viral diagnostics. For environmental monitoring, SERS platforms offer sensitive detection of heavy metals, microplastics, and organic pollutants. Despite challenges such as matrix interference and insufficient substrate reproducibility, future research directions aimed at developing multifunctional composite materials, integrating artificial intelligence algorithms, constructing portable devices, and exploring plasmon-catalysis synergy are poised to advance the practical implementation of SERS technology in precision diagnostics, intelligent regulation, and real-time monitoring. Full article
(This article belongs to the Section Biophotonics and Biomedical Optics)
Show Figures

Figure 1

14 pages, 2038 KiB  
Article
Electro-Optic Toffoli Logic Based on Hybrid Surface Plasmons
by Zhixun Liang, Yunying Shi, Yunfei Yi and Yuanyuan Fan
Photonics 2025, 12(8), 805; https://doi.org/10.3390/photonics12080805 - 11 Aug 2025
Viewed by 187
Abstract
Reversible gates theoretically do not result in energy loss during the calculation process. The Toffoli gate is a universal reversible logic gate, and any reversible circuit can be constructed from the Toffoli gate. This paper presents a hybrid electro-optic Toffoli logic that uses [...] Read more.
Reversible gates theoretically do not result in energy loss during the calculation process. The Toffoli gate is a universal reversible logic gate, and any reversible circuit can be constructed from the Toffoli gate. This paper presents a hybrid electro-optic Toffoli logic that uses an HSPP Switch (hybrid surface plasmon polariton switch), waveguide coupler, and Y-shaped splitter. The hybrid electro-optic Toffoli logic operation is applied via voltage regulation, and the FDTD simulation is used for this research. The modeling and simulation results show that the device’s operating speed is up to 61.62 GHz; the power consumption for transmitting 1 bit is only 13.44 fJ; the average insertion loss is 6.4 dB, and the average extinction ratio of each output port is 19.7 dB. Full article
(This article belongs to the Special Issue Thermal Radiation and Micro-/Nanophotonics)
Show Figures

Figure 1

36 pages, 8164 KiB  
Review
Technology Landscape Review of In-Sensor Photonic Intelligence: From Optical Sensors to Smart Devices
by Hong Zhou, Dongxiao Li and Chengkuo Lee
AI Sens. 2025, 1(1), 5; https://doi.org/10.3390/aisens1010005 - 14 Jul 2025
Cited by 1 | Viewed by 1473
Abstract
Optical sensors have undergone significant evolution, transitioning from discrete optical microsystems toward sophisticated photonic integrated circuits (PICs) that leverage artificial intelligence (AI) for enhanced functionality. This review systematically explores the integration of optical sensing technologies with AI, charting the advancement from conventional optical [...] Read more.
Optical sensors have undergone significant evolution, transitioning from discrete optical microsystems toward sophisticated photonic integrated circuits (PICs) that leverage artificial intelligence (AI) for enhanced functionality. This review systematically explores the integration of optical sensing technologies with AI, charting the advancement from conventional optical microsystems to AI-driven smart devices. First, we examine classical optical sensing methodologies, including refractive index sensing, surface-enhanced infrared absorption (SEIRA), surface-enhanced Raman spectroscopy (SERS), surface plasmon-enhanced chiral spectroscopy, and surface-enhanced fluorescence (SEF) spectroscopy, highlighting their principles, capabilities, and limitations. Subsequently, we analyze the architecture of PIC-based sensing platforms, emphasizing their miniaturization, scalability, and real-time detection performance. This review then introduces the emerging paradigm of in-sensor computing, where AI algorithms are integrated directly within photonic devices, enabling real-time data processing, decision making, and enhanced system autonomy. Finally, we offer a comprehensive outlook on current technological challenges and future research directions, addressing integration complexity, material compatibility, and data processing bottlenecks. This review provides timely insights into the transformative potential of AI-enhanced PIC sensors, setting the stage for future innovations in autonomous, intelligent sensing applications. Full article
Show Figures

Figure 1

20 pages, 5206 KiB  
Article
Self-Powered Photodetectors with Ultra-Broad Spectral Response and Thermal Stability for Broadband, Energy Efficient Wearable Sensing and Optoelectronics
by Peter X. Feng, Elluz Pacheco Cabrera, Jin Chu, Badi Zhou, Soraya Y. Flores, Xiaoyan Peng, Yiming Li, Liz M. Diaz-Vazquez and Andrew F. Zhou
Molecules 2025, 30(14), 2897; https://doi.org/10.3390/molecules30142897 - 8 Jul 2025
Viewed by 458
Abstract
This work presents a high-performance novel photodetector based on two-dimensional boron nitride (BN) nanosheets functionalized with gold nanoparticles (Au NPs), offering ultra-broadband photoresponse from 0.25 to 5.9 μm. Operating in both photovoltaic and photoconductive modes, the device features rapid response times (<0.5 ms), [...] Read more.
This work presents a high-performance novel photodetector based on two-dimensional boron nitride (BN) nanosheets functionalized with gold nanoparticles (Au NPs), offering ultra-broadband photoresponse from 0.25 to 5.9 μm. Operating in both photovoltaic and photoconductive modes, the device features rapid response times (<0.5 ms), high responsivity (up to 1015 mA/W at 250 nm and 2.5 V bias), and thermal stability up to 100 °C. The synthesis process involved CO2 laser exfoliation of hexagonal boron nitride, followed by gold NP deposition via RF sputtering and thermal annealing. Structural and compositional analyses confirmed the formation of a three-dimensional network of atomically thin BN nanosheets decorated with uniformly distributed gold nanoparticles. This architecture facilitates plasmon-enhanced absorption and efficient charge separation via heterojunction interfaces, significantly boosting photocurrent generation across the deep ultraviolet (DUV), visible, near-infrared (NIR), and mid-infrared (MIR) spectral regions. First-principles calculations support the observed broadband response, confirming bandgap narrowing induced by defects in h-BN and functionalization by gold nanoparticles. The device’s self-driven operation, wide spectral response, and durability under elevated temperatures underscore its strong potential for next-generation broadband, self-powered, and wearable sensing and optoelectronic applications. Full article
(This article belongs to the Special Issue Novel Nanomaterials: Sensing Development and Applications)
Show Figures

Figure 1

28 pages, 63037 KiB  
Review
Advances in 2D Photodetectors: Materials, Mechanisms, and Applications
by Ambali Alade Odebowale, Andergachew Mekonnen Berhe, Dinelka Somaweera, Han Wang, Wen Lei, Andrey E. Miroshnichenko and Haroldo T. Hattori
Micromachines 2025, 16(7), 776; https://doi.org/10.3390/mi16070776 - 30 Jun 2025
Cited by 1 | Viewed by 1238
Abstract
Two-dimensional (2D) materials have revolutionized the field of optoelectronics by offering exceptional properties such as atomically thin structures, high carrier mobility, tunable bandgaps, and strong light–matter interactions. These attributes make them ideal candidates for next-generation photodetectors operating across a broad spectral range—from ultraviolet [...] Read more.
Two-dimensional (2D) materials have revolutionized the field of optoelectronics by offering exceptional properties such as atomically thin structures, high carrier mobility, tunable bandgaps, and strong light–matter interactions. These attributes make them ideal candidates for next-generation photodetectors operating across a broad spectral range—from ultraviolet to mid-infrared. This review comprehensively examines the recent progress in 2D material-based photodetectors, highlighting key material classes including graphene, transition metal dichalcogenides (TMDCs), black phosphorus (BP), MXenes, chalcogenides, and carbides. We explore their photodetection mechanisms—such as photovoltaic, photoconductive, photothermoelectric, bolometric, and plasmon-enhanced effects—and discuss their impact on critical performance metrics like responsivity, detectivity, and response time. Emphasis is placed on material integration strategies, heterostructure engineering, and plasmonic enhancements that have enabled improved sensitivity and spectral tunability. The review also addresses the remaining challenges related to environmental stability, scalability, and device architecture. Finally, we outline future directions for the development of high-performance, broadband, and flexible 2D photodetectors for diverse applications in sensing, imaging, and communication technologies. Full article
Show Figures

Figure 1

14 pages, 2161 KiB  
Article
Enhanced Power Distribution and Symmetry in Terahertz Waveguides Using Graphene-Based Power Dividers
by Amin Honarmand, Hamed Dehdashti Jahromi, Mohsen Maesoumi, Masoud Jabbari and Farshad Pesaran
Photonics 2025, 12(7), 658; https://doi.org/10.3390/photonics12070658 - 30 Jun 2025
Viewed by 326
Abstract
This paper investigates a graphene-on-insulator power divider designed for terahertz applications based on spoof surface plasmon polaritons. We optimize structural parameters to maximize signal transmission from input to output ports while achieving a uniform and symmetrical electric field distribution at the output cross-section. [...] Read more.
This paper investigates a graphene-on-insulator power divider designed for terahertz applications based on spoof surface plasmon polaritons. We optimize structural parameters to maximize signal transmission from input to output ports while achieving a uniform and symmetrical electric field distribution at the output cross-section. Our findings indicate that utilizing three graphene layers significantly enhances power distribution and symmetry at output ports. We demonstrate electrical control over waveguide transmission properties by modulating the graphene chemical potential from 0 to 0.5 eV. The proposed device holds promise for applications in plasmonic circuits and on-chip interconnects operating within the terahertz frequency range. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

20 pages, 23355 KiB  
Article
Unveiling Thickness-Dependent Oxidation Effect on Optical Response of Room Temperature RF-Sputtered Nickel Ultrathin Films on Amorphous Glass: An Experimental and FDTD Investigation
by Dylan A. Huerta-Arteaga, Mitchel A. Ruiz-Robles, Srivathsava Surabhi, S. Shiva Samhitha, Santhosh Girish, María J. Martínez-Carreón, Francisco Solís-Pomar, A. Martínez-Huerta, Jong-Ryul Jeong and Eduardo Pérez-Tijerina
Materials 2025, 18(12), 2891; https://doi.org/10.3390/ma18122891 - 18 Jun 2025
Viewed by 552
Abstract
Nickel (Ni) ultrathin films exhibit phase-dependent electrical, magnetic, and optical characteristics that are significantly influenced by deposition methods. However, these films are inherently prone to rapid oxidation, with the oxidation rate dependent on substrate, temperature, and deposition parameters. The focus of this research [...] Read more.
Nickel (Ni) ultrathin films exhibit phase-dependent electrical, magnetic, and optical characteristics that are significantly influenced by deposition methods. However, these films are inherently prone to rapid oxidation, with the oxidation rate dependent on substrate, temperature, and deposition parameters. The focus of this research is to investigate the temporal oxidation of RF-sputtered Ni ultrathin films on Corning glass under ambient atmospheric conditions and its impact on their structural, surface, and optical characteristics. Controlled film thicknesses were achieved through precise manipulation of deposition parameters, enabling the analysis of oxidation-induced modifications. Atomic force microscopy (AFM) revealed that films with high structural integrity and surface uniformity are exhibiting roughness values (Rq) from 0.679 to 4.379 nm of corresponding thicknesses ranging from 4 to 85 nm. Scanning electron microscopy (SEM) validated the formation of Ni grains interspersed with NiO phases, facilitating SPR-like effects. UV-visible spectroscopy is demonstrating thickness-dependent spectral (plasmonic peak) shifts. Finite Difference Time Domain (FDTD) simulations corroborate the observed thickness-dependent optical absorbance and the resultant shifts in the absorbance-induced plasmonic peak position and bandgap. Increased NiO presence primarily drives the enhancement of electromagnetic (EM) field localization and the direct impact on power absorption efficiency, which are modulated by the tunability of the plasmonic peak position. Our work demonstrates that controlled fabrication conditions and optimal film thickness selection allow for accurate manipulation of the Ni oxidation process, significantly altering their optical properties. This enables the tailoring of these Ni films for applications in transparent conductive electrodes (TCEs), magneto-optic (MO) devices, spintronics, wear-resistant coatings, microelectronics, and photonics. Full article
Show Figures

Graphical abstract

11 pages, 2010 KiB  
Article
Metasurface-Enhanced Infrared Photodetection Using Layered van der Waals MoSe2
by Jinchun Li, Zhixiang Xie, Tianxiang Zhao, Hongliang Li, Di Wu and Xuechao Yu
Nanomaterials 2025, 15(12), 913; https://doi.org/10.3390/nano15120913 - 12 Jun 2025
Viewed by 519
Abstract
Transition metal dichalcogenide (TMD) materials have demonstrated promising potential for applications in photodetection due to their tunable bandgaps, high carrier mobility, and strong light absorption capabilities. However, limited by their intrinsic bandgaps, TMDs are unable to efficiently absorb photons with energies below the [...] Read more.
Transition metal dichalcogenide (TMD) materials have demonstrated promising potential for applications in photodetection due to their tunable bandgaps, high carrier mobility, and strong light absorption capabilities. However, limited by their intrinsic bandgaps, TMDs are unable to efficiently absorb photons with energies below the bandgap, resulting in a significant attenuation of photoresponse in spectral regions beyond the bandgap. This inherently restricts their broadband photodetection performance. By introducing metasurface structures consisting of subwavelength optical elements, localized plasmon resonance effects can be exploited to overcome this absorption limitation, significantly enhancing the light absorption of TMD films. Additionally, the heterogeneous integration process between the metasurface and two-dimensional materials offers low-temperature compatibility advantages, effectively avoiding the limitations imposed by high-temperature doping processes in traditional semiconductor devices. Here, we systematically investigate metasurface-enhanced two-dimensional MoSe2 photodetectors, demonstrating broadband responsivity extension into the mid-infrared spectrum via precise control of metasurface structural dimensions. The optimized device possesses a wide spectrum response ranging from 808 nm to 10 μm, and the responsivity (R) and specific detection rate (D*) under 4 μm illumination achieve 7.1 mA/W and 1.12 × 108 Jones, respectively. Distinct metasurface configurations exhibit varying impacts on optical absorption characteristics and detection spectral ranges, providing experimental foundations for optimizing high-performance photodetectors. This work establishes a practical pathway for developing broadband optoelectronic devices through nanophotonic structure engineering. Full article
Show Figures

Figure 1

25 pages, 3696 KiB  
Review
Research Progress on Multiplexed Pathogen Detection Using Optical Biosensors
by Yue Wu, Xing Xu, Yinchu Zhu, Jiaxin Wan, Xingbo Wang, Xin Zhou, Xiangjun Li and Weidong Zhou
Biosensors 2025, 15(6), 378; https://doi.org/10.3390/bios15060378 - 12 Jun 2025
Cited by 1 | Viewed by 1396
Abstract
The rapid and precise identification of multiple pathogens is critical for ensuring food safety, controlling epidemics, diagnosing diseases, and monitoring the environment. However, traditional detection methods are hindered by complex workflows, the need for skilled operators, and reliance on sophisticated equipment, making them [...] Read more.
The rapid and precise identification of multiple pathogens is critical for ensuring food safety, controlling epidemics, diagnosing diseases, and monitoring the environment. However, traditional detection methods are hindered by complex workflows, the need for skilled operators, and reliance on sophisticated equipment, making them unsuitable for rapid, on-site testing. Optical biosensors, known for their rapid analysis, portability, high sensitivity, and multiplexing capabilities, offer a promising solution for simultaneous multi-pathogenic identification. This paper explores recent advancements in the utilization of optical biosensors for multiple pathogenic detection. First, it provides an overview of key sensing principles, focusing on colorimetric, fluorescence-based, surface-enhanced Raman scattering (SERS), and surface plasmon resonance (SPR) techniques, as well as their applications in pathogenic detection. Then, the research progress and practical applications of optical biosensors for multiplex pathogenic detection are discussed in detail from three perspectives: microfluidic devices, nucleic acid amplification technology (NAAT), and nanomaterials. Finally, the challenges presented by optical biosensing technologies in multi-pathogen detection are discussed, along with future prospects and potential innovations in the field. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Figure 1

11 pages, 1957 KiB  
Article
Highly Efficient Upconversion Emission Platform Based on the MDM Cavity Effect in Aluminum Nanopillar Metasurface
by Xiaofeng Wu, Xiangyuan Mao, Shengbin Cheng, Haiou Li and Shiping Zhan
Photonics 2025, 12(6), 582; https://doi.org/10.3390/photonics12060582 - 7 Jun 2025
Viewed by 470
Abstract
Rare earth-doped upconversion nanoparticles (UCNPs) can convert low-energy photons (NIRs) into high-energy photons (visible light), offering advantages such as low background signal, good stability, and excellent biocompatibility. However, exploring a strategy to combine the advantages of high efficiency, low cost, and easy fabrication [...] Read more.
Rare earth-doped upconversion nanoparticles (UCNPs) can convert low-energy photons (NIRs) into high-energy photons (visible light), offering advantages such as low background signal, good stability, and excellent biocompatibility. However, exploring a strategy to combine the advantages of high efficiency, low cost, and easy fabrication of a plasmonics–UCNPs system is still a challenge. Here, we reported a metal–dielectric–metal (MDM)-type plasmonic platform based on the aluminum metasurface, which can efficiently enhance the luminescence intensity of magnetic and non-magnetic rare earth-doped UCNPs. Attributed to the strong local field effect of the nanocavities formed by the aluminum anti-transmission layer at the bottom, the fluorescence of the two types of UCNPs in such a platform can be enhanced by over 1000 folds compared with that in the conventional substrate. It is found that the deposited UCNPs amount and the aluminum pillar size can both impact the enhancement. We confirmed that the constructed MDM nanocavities could enhance and regulate the local field strength, and the optimum enhancement can be achieved by choosing proper parameters. All these findings provide an efficient way of exploring the plasmon-enhanced UCNPs luminescence system with low cost, high efficiency, and easy fabrication and can be promising in the fields of biosensing and photovoltaic devices. Full article
Show Figures

Figure 1

22 pages, 5216 KiB  
Review
The Use of Core-Shell Nanoparticles in Photovoltaics
by Alexander Quandt, Daniel Wamwangi and Sandile Kumalo
Photonics 2025, 12(6), 555; https://doi.org/10.3390/photonics12060555 - 31 May 2025
Cited by 1 | Viewed by 1021
Abstract
The field of photovoltaics (PV) continually seeks innovative materials solutions to enhance the efficiency and the stability of their standard devices. Core-shell nanoparticles have emerged as a promising new technology with unique structural attributes and widely tunable properties. This paper reviews the use [...] Read more.
The field of photovoltaics (PV) continually seeks innovative materials solutions to enhance the efficiency and the stability of their standard devices. Core-shell nanoparticles have emerged as a promising new technology with unique structural attributes and widely tunable properties. This paper reviews the use of plasmonic core-shell nanoparticles in PV applications through various experimental validations. We describe advancements in the design and in the control over the properties of core-shell nanoparticles and highlight their integration into various solar cells, based on their ability to finely tune optical, electronic, and chemical properties. We also discuss experimental results for organic, perovskite, and dye-sensitized solar cells, where core-shell nanoparticles have been successfully deployed. Additionally, we identify gaps in the current research, such as the need for scalable synthesis methods and long-term stability assessments, and we will point out promising new developments at the frontier of that field. Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Nonlinear Photonics)
Show Figures

Figure 1

22 pages, 2282 KiB  
Article
Enhancement of Photovoltaic Systems Using Plasmonic Technology
by Humam Al-Baidhani, Saif Hasan Abdulnabi and Maher A. R. Sadiq Al-Baghdadi
Processes 2025, 13(5), 1568; https://doi.org/10.3390/pr13051568 - 19 May 2025
Viewed by 567
Abstract
The rise in temperature worldwide, especially in hot regions with extreme weather conditions, has made climate change one of the critical issues that degrades the solar photovoltaic (PV) system performance. In this paper, a new design of solar cells based on plasmonic thin-film [...] Read more.
The rise in temperature worldwide, especially in hot regions with extreme weather conditions, has made climate change one of the critical issues that degrades the solar photovoltaic (PV) system performance. In this paper, a new design of solar cells based on plasmonic thin-film Silver (Ag) technology is introduced. The new design is characterized by enhancing thermal effects, optical power absorption, and output power significantly, thus compensating for the deterioration in the solar cells efficiency when the ambient temperature rises to high levels. The temperature distribution on a PV solar module is determined using a three-dimensional computational fluid dynamics (CFD) model that includes the front glass, crystalline cells, and back sheet. Experimental and analytical results are presented to validate the CFD model. The parameters of temperature distribution, absorbed optical power, and output electrical power are considered to evaluate the device performance during daylight hours in summer. The effects of solar radiation falling on the solar cell, actual temperature of the environment, and wind speed are investigated. The results show that the proposed cells’ temperature is reduced by 1.2 °C thanks to the plasmonic Ag thin-film technology, which leads to enhance 0.48% real value as compared to that in the regular solar cells. Consequently, the absorbed optical power and output electrical power of the new solar cells are improved by 2.344 W and 0.38 W, respectively. Full article
Show Figures

Figure 1

18 pages, 4240 KiB  
Article
Experimental Validation of Designs for Permeable Diffractive Lenses Based on Photon Sieves for the Sensing of Running Fluids
by Veronica Pastor-Villarrubia, Angela Soria-Garcia, Joaquin Andres-Porras, Jesus del Hoyo, Mahmoud H. Elshorbagy, Luis Miguel Sanchez-Brea and Javier Alda
Photonics 2025, 12(5), 486; https://doi.org/10.3390/photonics12050486 - 14 May 2025
Viewed by 409
Abstract
This study reports the experimental validation of several designs of photon sieves with focusing capabilities. These permeable optical elements were implemented with a spatial light modulator working in pure-amplitude mode. The focal region was scanned using a traveling stage, holding a camera. Using [...] Read more.
This study reports the experimental validation of several designs of photon sieves with focusing capabilities. These permeable optical elements were implemented with a spatial light modulator working in pure-amplitude mode. The focal region was scanned using a traveling stage, holding a camera. Using this experimental setup, we characterized the focal region of the photon sieves and determined some parameters of interest, such as the depth of focus and the transverse extent of the focal region. These parameters and their evolution were measured and analyzed to compare the optical performance of different designs. Moreover, the permeability of the mask was also evaluated and is included in the discussion. When the photon sieve is intended to be used as an optical element for the monitoring of running fluids, one of the designs studied, labeled the Ring-by-Ring method, behaves in a quite balanced manner and thus has become the preferred choice. Through simulations for a refractometric sensor, we obtained the Figure of Merit of the Ring-by-Ring mask, which reached a maximum value of 7860 RIU−1, which is competitive with plasmonic sensing devices. Full article
(This article belongs to the Special Issue Advanced Photonic Integration Technology and Devices)
Show Figures

Graphical abstract

Back to TopTop