Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (772)

Search Parameters:
Keywords = plant growth promoting rhizobacteria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2350 KB  
Article
New Type of Superabsorbent Polymer Reinforced with Vermicompost and Biochar to Enhance Salt Tolerance of Sesbania cannabina in Severely Saline-Alkali Soils
by Hongji Ding, Haoyue Qin, Mengli Liu and Chong Wang
Agronomy 2026, 16(2), 252; https://doi.org/10.3390/agronomy16020252 - 21 Jan 2026
Abstract
In severely saline-alkali soils, surface salt accumulation caused by intense water evaporation results in elevated salinity, low organic matter content, and suppressed microbial activity, collectively impairing plant physiological metabolism and growth. Superabsorbent polymers hold significant potential for ameliorating saline-alkali soils by regulating soil [...] Read more.
In severely saline-alkali soils, surface salt accumulation caused by intense water evaporation results in elevated salinity, low organic matter content, and suppressed microbial activity, collectively impairing plant physiological metabolism and growth. Superabsorbent polymers hold significant potential for ameliorating saline-alkali soils by regulating soil water–salt dynamics. Biochar, a carbon-rich organic material, plays a pivotal role in enhancing soil organic matter storage, whereas vermicompost, a microbiologically active organic amendment, contributes substantially to improving soil microbial functions. Therefore, this study developed a novel superabsorbent polymer reinforced with vermicompost and biochar (VB-SAP) and further investigated its effects on metabolic pathways associated with enhanced S. cannabina stress resistance in severely saline-alkali soils. The results showed that VB-SAPs significantly increased soil water and organic matter contents by 10.9% and 38.7% (p < 0.05), respectively, and decreased topsoil salinity of saline soils by 44.9% (p < 0.05). The application of VB-SAP altered the soil bacterial community structure and increased the complexity of the bacterial co-occurrence network, specifically enriching members of the phylum Pseudomonadota, which are widely recognized as common plant growth-promoting rhizobacteria. Moreover, VB-SAPs significantly upregulated root-associated salt tolerance genes involved in phenylpropanoid biosynthesis, tryptophan metabolism, and arginine–proline pathways, thereby enhancing root biomass accumulation, nutrient uptake, and shoot growth of S. cannabina. Collectively, these findings reveal that the new type of superabsorbent polymer reinforced with vermicompost and biochar may enhance the salt tolerance and growth of S. cannabina by reshaping the rhizosphere microenvironment, including reducing soil salinity, increasing soil water and organic matter contents, and promoting beneficial bacteria in severely saline-alkali soil, thereby providing novel strategies for the integrated improvement of saline soils. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

19 pages, 2278 KB  
Article
Differential Effects of Single and Combined PGPR Inoculation on Growth and Physiology of Atriplex canescens Under Saline Irrigation
by Lu Dong, Jing Pan, Pinglin Guo, Quangang You, Qinqin Lv and Xian Xue
Agronomy 2026, 16(2), 235; https://doi.org/10.3390/agronomy16020235 - 19 Jan 2026
Viewed by 26
Abstract
Salinity stress severely constrains plant growth and ecosystem functioning in arid and semi-arid regions, and plant growth-promoting rhizobacteria (PGPR) have been increasingly applied to enhance plant salt tolerance. Hoswever, it remains unclear whether different PGPR inoculation strategies confer salt resistance through similar or [...] Read more.
Salinity stress severely constrains plant growth and ecosystem functioning in arid and semi-arid regions, and plant growth-promoting rhizobacteria (PGPR) have been increasingly applied to enhance plant salt tolerance. Hoswever, it remains unclear whether different PGPR inoculation strategies confer salt resistance through similar or distinct physiological pathways, particularly in perennial halophytes adapted to saline environments. In this study, a field experiment was conducted to evaluate the effects of single- and multi-strain PGPR inoculation on the growth performance, physiological responses, and stress regulation of Atriplex canescens under saline conditions. Plant biomass allocation, photosynthetic traits, osmotic adjustment substances, antioxidant enzyme activities, and comprehensive stress tolerance indices were systematically assessed. The results showed that PGPR inoculation significantly improved plant growth and stress tolerance; however, the magnitude and underlying mechanisms varied across inoculation strategies. Single-strain inoculation predominantly enhanced root development and antioxidant regulation, whereas multi-strain inoculation tended to promote aboveground growth and photosynthetic performance. In contrast, certain strain combinations did not produce additive benefits, suggesting potential incompatibility among microbial consortia under salt stress. Multivariate analyses further indicated that improvements in stress tolerance were more closely associated with coordinated physiological regulation than with biomass accumulation alone. Overall, our findings demonstrate that PGPR-mediated salt tolerance in A. canescens is strategy-dependent and involves distinct resource allocation and stress-defense pathways. These results highlight the importance of considering inoculation strategies and functional compatibility when applying PGPR to improve plant performance in saline ecosystems. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

18 pages, 2144 KB  
Article
Bacillus velezensis SQR9-Emitted Volatiles Enhance Arabidopsis Salt Tolerance via ROS Scavenging and Ion Transport Regulation
by Yucong Li, Liming Xia, Yanqiong Meng, Xinyu Shen, Xiang Wan, Fangqun Gan and Ruifu Zhang
Plants 2026, 15(2), 218; https://doi.org/10.3390/plants15020218 - 10 Jan 2026
Viewed by 251
Abstract
Salinity stress severely limits crop productivity worldwide. While plant growth-promoting rhizobacteria (PGPR) are known to alleviate abiotic stress, the specific mechanisms mediated by their volatile organic compounds (VOCs) remain largely elusive. In this study, an in vitro split-plate system was used to investigate [...] Read more.
Salinity stress severely limits crop productivity worldwide. While plant growth-promoting rhizobacteria (PGPR) are known to alleviate abiotic stress, the specific mechanisms mediated by their volatile organic compounds (VOCs) remain largely elusive. In this study, an in vitro split-plate system was used to investigate the effects of VOCs emitted by Bacillus velezensis SQR9 on Arabidopsis thaliana seedlings under salt stress. Exposure to SQR9 VOCs significantly enhanced Arabidopsis salt tolerance, evidenced by increased biomass and root growth. Mechanistically, SQR9 VOCs mitigated salt-induced damage by increasing chlorophyll content, modulating osmolytes, and reducing malondialdehyde (MDA) levels. SQR9 VOCs alleviated oxidative stress by decreasing ROS (H2O2, O2) accumulation and enhancing antioxidant enzyme (SOD, CAT, POD) activities. Furthermore, SQR9 VOCs maintained ion homeostasis by significantly reducing leaf Na+ accumulation, maintaining a high K+/Na+ ratio, and upregulating key ion transporter genes. Analysis of the headspace from SQR9 cultured on MSgg medium identified 2,3-butanediol (2,3-BD) as a major active VOC. Exogenous application of 2,3-BD successfully mimicked the growth-promoting and salt-tolerance-enhancing effects of SQR9. Our findings demonstrate that SQR9 VOCs, particularly 2,3-BD, systemically prime Arabidopsis for salt tolerance by co-activating the antioxidant defense system and the SOS ion homeostasis pathway. Full article
Show Figures

Figure 1

23 pages, 803 KB  
Systematic Review
Role of Biostimulants in Sustainable Soybean (Glycine max L.) Production: A Systematic Review
by Ebenezer Ayew Appiah, Muhoja Sylivester Nyandi, Akasairi Ocwa, Enoch Jeffery Duodu and Erika Tünde Kutasy
Sustainability 2026, 18(2), 636; https://doi.org/10.3390/su18020636 - 8 Jan 2026
Viewed by 378
Abstract
This systematic review critically evaluates and synthesizes current evidence on the efficacy of biostimulants in enhancing soybean seed yield and quality. A comprehensive literature search was conducted following the PRISMA approach using the Web of Science (WoS) database, focusing on peer-reviewed studies from [...] Read more.
This systematic review critically evaluates and synthesizes current evidence on the efficacy of biostimulants in enhancing soybean seed yield and quality. A comprehensive literature search was conducted following the PRISMA approach using the Web of Science (WoS) database, focusing on peer-reviewed studies from 2014 to 2025 reporting on the effects of biostimulants applied alone or in combination with other agro-inputs on soybean performance. Over 500 publications were retrieved from the database, of which 72 were included in this review. Extracted data were used to calculate changes in yield (kg ha−1), percentage yield increase (%), oil content (%), and protein concentration (%). Our synthesis demonstrated that the sole application of biostimulants, including seaweed extracts, humic acids, amino acids, and beneficial microbes (Bradyrhizobium, PGPR, AMF), consistently enhanced soybean yield by 4% to 65%, while their interaction with other agro-inputs was shown to be capable of increasing yield by more than 150% under abiotic stress conditions, indicating strong synergistic effects. These improvements are mediated through various physiological mechanisms such as enhanced nutrient uptake, improved root growth, increased photosynthetic efficiency, and elevated stress tolerance. Furthermore, biostimulant application positively affects seed quality, increasing oil and protein content by 0.4–5.5% and 0.5–7.3%, respectively, by optimizing source–sink relationships and metabolic pathways. Overall, the greatest benefits are frequently observed through synergistic combinations of biostimulants with one another or with reduced rates of mineral fertilizers, highlighting a promising pathway toward sustainable crop intensification in soybean systems. Full article
Show Figures

Figure 1

17 pages, 1157 KB  
Article
Isolation and Characterization of Phosphate-Solubilizing Rhizobacteria from Solanum tuberosum with Plant Growth-Promoting Activity
by Michel Leiva-Mora, Pamela Elizabeth Mera Guzmán, Rafael Isaías Mera-Andrade, Alicia Monserrath Zabala Haro, Luis Rodrigo Saa, Paúl Loján, Catherine Lizzeth Silva Agurto, Luis Fabián Salazar-Garcés, Betty Beatriz González Osorio, Dariel Cabrera Mederos and Orelvis Portal
Appl. Microbiol. 2026, 6(1), 8; https://doi.org/10.3390/applmicrobiol6010008 - 3 Jan 2026
Viewed by 281
Abstract
Phosphate-solubilizing rhizobacteria associated with the Solanum tuberosum L. cultivar ‘Superchola’ were isolated and characterized to improve our understanding of plant growth promotion in agricultural systems. Bacteria were isolated by serial dilutions, and the morphology of the colonies was characterized on nutrient agar culture [...] Read more.
Phosphate-solubilizing rhizobacteria associated with the Solanum tuberosum L. cultivar ‘Superchola’ were isolated and characterized to improve our understanding of plant growth promotion in agricultural systems. Bacteria were isolated by serial dilutions, and the morphology of the colonies was characterized on nutrient agar culture medium. In addition, morphological identification was achieved by Gram staining. The ability to solubilize phosphate was assessed in Pikovskaya agar culture medium, while molecular identification involved the amplification of the partial 16S rRNA gene using the polymerase chain reaction. In the Píllaro canton, the highest number of colony-forming units per gram of soil was recorded at 9.72 × 109. Among the isolated strains, 62% exhibited circular morphology, 92% had a smooth texture, and 85% displayed entire margins. Notably, 83% of the isolates were Gram-negative, with 50% exhibiting a bacillary form. The most effective phosphate solubilizers were from the Mocha canton, particularly the isolate CC-FCAGP-BSF6, which showed superior solubilization capacity. Molecular identification revealed bacterial isolates from four genera, i.e., Bacillus, Pseudomonas, Lysinibacillus, and Paenibacillus. These strains exhibited significant phosphate solubilization in vitro and resulted in increased leaf area (0.21–0.49, p = 0.038), fresh mass (0.46–0.87, p = 0.014), dry mass (0.092–0.096, p = 0.047), and leaf area index (0.14–0.33, p = 0.026) in the S. tuberosum cultivar ‘Superchola’ in vitro plants. This study identifies bacterial species associated with the rhizosphere of S. tuberosum in Ecuador and highlights their potential for promoting plant growth and solubilizing phosphates. Full article
(This article belongs to the Special Issue Microorganisms: A Way Forward for Sustainable Development?)
Show Figures

Figure 1

25 pages, 5934 KB  
Article
Impact of Bradyrhizobium elkanii and Azospirillum brasilense Co-Inoculation on Nitrogen Metabolism, Nutrient Uptake, and Soil Fertility Indicators in Phaseolus lunatus Genotypes
by Gislayne Kayne Gomes da Cruz, José Aliff da Silva de Souza, José Félix de Brito Neto, Cristiano dos Santos Sousa, Samara Lima Brito, Maria Geovana Martins Souza, Evandro Franklin de Mesquita, Rodrigo Santana Macedo, Raíres Liliane de Oliveira Cruz, Vicente Victor Lima de Andrade, Walter Esfrain Pereira and Rennan Fernandes Pereira
Plants 2026, 15(1), 135; https://doi.org/10.3390/plants15010135 - 2 Jan 2026
Viewed by 309
Abstract
Lima bean (Phaseolus lunatus L.), an important legume in semiarid environments, often exhibits low yield, requiring strategies to enhance symbiotic nitrogen fixation and nutrient-use efficiency. This study evaluated the effects of single and combined inoculation with Bradyrhizobium elkanii (strain BR 2003) and [...] Read more.
Lima bean (Phaseolus lunatus L.), an important legume in semiarid environments, often exhibits low yield, requiring strategies to enhance symbiotic nitrogen fixation and nutrient-use efficiency. This study evaluated the effects of single and combined inoculation with Bradyrhizobium elkanii (strain BR 2003) and Azospirillum brasilense (strain Ab-V5) on nitrogen metabolism, nutrient uptake, plant growth, and residual soil fertility in P. lunatus. Four varieties were subjected to four treatments: control (nitrogen fertilization), single inoculation with B. elkanii or A. brasilense, and co-inoculation. All inoculation strategies significantly increased root nodulation, nitrogen assimilation, and the accumulation of key macronutrients. Root nodulation increased from 1 to 12 nodules per plant in the control treatments to up to 277 nodules per plant under inoculation, while shoot nitrogen content increased by up to 91% in ‘Raio de Sol’ and 87% in ‘Cearense’. Increases in P and K were also observed, including a 48% increase in shoot P in ‘Manteiga’ and up to a 100% increase in shoot K in ‘Raio de Sol’, whereas root K increased by up to 90% under co-inoculation. The ‘Raio de Sol’ and ‘Manteiga’ varieties exhibited the most pronounced increases in growth and biomass. Additionally, inoculation improved post-cultivation soil indicators, including pH and available P and K in specific genotype-microbe combinations, and reduced electrical conductivity. These results demonstrate the strong contribution of microbial inoculation to nitrogen assimilation and nutrient acquisition, supporting its use as a promising alternative to conventional nitrogen fertilization in lima bean cultivation. Full article
Show Figures

Figure 1

21 pages, 2849 KB  
Review
Arbuscular Mycorrhizal Fungi Mitigate Crop Multi-Stresses Under Mediterranean Climate: A Systematic Review
by Claudia Formenti, Giovanni Mauromicale, Gaetano Pandino and Sara Lombardo
Agronomy 2026, 16(1), 113; https://doi.org/10.3390/agronomy16010113 - 1 Jan 2026
Viewed by 424
Abstract
Agricultural systems in Mediterranean-type climates are increasingly threatened by drought, salinity, extreme temperatures, heavy metal contamination, and pathogen pressure, all of which undermine crop productivity and agroecosystem stability. In this context, arbuscular mycorrhizal fungi (AMF), natural symbionts of most terrestrial plants, emerge as [...] Read more.
Agricultural systems in Mediterranean-type climates are increasingly threatened by drought, salinity, extreme temperatures, heavy metal contamination, and pathogen pressure, all of which undermine crop productivity and agroecosystem stability. In this context, arbuscular mycorrhizal fungi (AMF), natural symbionts of most terrestrial plants, emerge as key biological agents capable of enhancing crop resilience. Following PRISMA guidelines, this systematic review synthesizes current knowledge on the role of AMF in mitigating abiotic and biotic stresses, highlighting their potential as a central component of sustainable Mediterranean agriculture. The available evidence demonstrates that AMF symbiosis significantly increases plant tolerance to multiple stressors across major crop families, including Poaceae, Fabaceae, Solanaceae, and Asteraceae. Under abiotic constraints, AMF improve water and nutrient uptake via extensive hyphal networks, modulate ion homeostasis under salinity, enhance tolerance to thermal extremes, and reduce heavy metal toxicity by immobilizing contaminants. Regarding biotic stresses, AMF induce systemic resistance to pathogens, stimulate secondary metabolite production that deters herbivores, and suppress parasitic nematode populations. Moreover, co-inoculation with other biostimulants, such as plant growth-promoting rhizobacteria, shows synergistic benefits, further improving crop productivity and resource-use efficiency. Overall, AMF represent an effective and multifunctional nature-based tool for improving the sustainability of Mediterranean agroecosystems. However, further research is required to evaluate AMF performance under simultaneous multiple stress factors, thereby reflecting real-world conditions and enabling a more integrated understanding of their agronomic potential. Full article
(This article belongs to the Special Issue Adaptations and Responses of Cropping Systems to Climate Change)
Show Figures

Figure 1

27 pages, 6999 KB  
Article
Enhanced Salt Stress Tolerance in Maize Using Biostimulant and Biosurfactant Applications
by Zeynep Gul, Melek Ekinci, Melike Akca, Metin Turan, Esma Yigider, Murat Aydin, Nazlı Ilke Eken Türer and Ertan Yildirim
Agronomy 2026, 16(1), 100; https://doi.org/10.3390/agronomy16010100 - 29 Dec 2025
Viewed by 359
Abstract
This research was conducted to investigate effects of biostimulants containing plant growth-promoting rhizobacteria and enriched biosurfactants, which were tested individually and in combination (biostimulant + enriched biosurfactant) on plant growth parameters, physiological and biochemical properties of maize seedlings under different salinity conditions (0, [...] Read more.
This research was conducted to investigate effects of biostimulants containing plant growth-promoting rhizobacteria and enriched biosurfactants, which were tested individually and in combination (biostimulant + enriched biosurfactant) on plant growth parameters, physiological and biochemical properties of maize seedlings under different salinity conditions (0, 100, 200 mM NaCl). In the experiment, biostimulant (B: 0.3 g/L), enriched biosurfactant (E-S: 3 mL/L), and their combination (B + E-S) were applied by foliar spray at each NaCl level. Salt stress negatively affected the growth and physiological traits of maize seedlings, while biostimulant and enriched biosurfactant improved these parameters. Under severe salinity stress (200 mM NaCl), the biostimulant, enriched biosurfactant, and their combined application markedly mitigated oxidative and osmotic damage. Compared with the untreated 200 mM NaCl group, these treatments (B, ES, B + ES) reduced proline accumulation by 65%, 52%, and 70%; hydrogen peroxide (H2O2) level by 53%, 39%, and 58%; and malondialdehyde (MDA) content by 72%, 50%, and 73%, respectively. These reductions indicate a substantial decrease in oxidative stress and membrane lipid peroxidation. In conclusion, biostimulant and enriched biosurfactant applications may be a promising approach to reduce the negative effects of salinity stress on maize. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

16 pages, 20444 KB  
Article
Plant-Mediated Soil Sickness: Steering the Rhizosphere into a Pathogenic Niche
by Jichao Li, Mingju Qi, Jinyu Zhang and Yingmei Zuo
Microorganisms 2026, 14(1), 52; https://doi.org/10.3390/microorganisms14010052 - 25 Dec 2025
Viewed by 328
Abstract
Continuous monoculture of Panax notoginseng leads to severe replant disease, yet the mechanisms by which root exudates mediate rhizosphere microbiome assembly and pathogen enrichment remain poorly understood. Here, we demonstrate that long-term root exudate accumulation acts as an ecological filter, driving the fungal [...] Read more.
Continuous monoculture of Panax notoginseng leads to severe replant disease, yet the mechanisms by which root exudates mediate rhizosphere microbiome assembly and pathogen enrichment remain poorly understood. Here, we demonstrate that long-term root exudate accumulation acts as an ecological filter, driving the fungal community toward a phylogenetically impoverished, pathogen-dominated state. Specifically, exudates enriched the soil-borne pathogen Fusarium while reducing the abundance of potentially antagonistic fungi. In contrast, bacterial communities exhibited higher resilience, with exudates selectively enriching oligotrophic taxa such as Terrimonas and MND1, but suppressing nitrifying bacteria (e.g., Nitrospira) and plant-growth-promoting rhizobacteria (PGPR). Microbial functional profiling revealed a shift in nitrogen cycling, characterized by suppressed nitrification and enhanced nitrate reduction. Crucially, co-occurrence network analysis identified bacterial taxa strongly negatively correlated with Fusarium, providing a synthetic community blueprint for biocontrol strategies. Our study establishes a mechanistic link between root exudate accumulation and negative plant–soil feedback in monoculture systems, highlighting microbiome reprogramming as a key driver of replant disease. These insights offer novel avenues for manipulating rhizosphere microbiomes to sustain crop productivity in intensive agricultural systems. Full article
(This article belongs to the Special Issue State-of-the-Art Environmental Microbiology in China 2025)
Show Figures

Figure 1

19 pages, 1565 KB  
Article
Multifunctional Maize Rhizobacteria: Isolation, Characterization and Prospects for Sustainable Agriculture
by Zhuldyz Batykova, Aida Kistaubayeva, Malika Abdulzhanova, Gulina Doktyrbay, Laila Saidullayeva, Zhamila Baimirzayeva, Moldir Turaliyeva and Zhuldyz Ibraimova
Int. J. Plant Biol. 2026, 17(1), 2; https://doi.org/10.3390/ijpb17010002 - 23 Dec 2025
Viewed by 266
Abstract
The increasing environmental challenges facing modern agriculture necessitate development of sustainable, eco-friendly alternatives to chemical inputs. This study aimed to isolate and characterize rhizophilic bacterial strains from the rhizosphere of the maize hybrid Turan 480 SV (Zea mays L.), with a focus on [...] Read more.
The increasing environmental challenges facing modern agriculture necessitate development of sustainable, eco-friendly alternatives to chemical inputs. This study aimed to isolate and characterize rhizophilic bacterial strains from the rhizosphere of the maize hybrid Turan 480 SV (Zea mays L.), with a focus on their plant growth-promoting and biocontrol traits. A total of 23 bacterial isolates were obtained, including 15 Gram-negative and 8 Gram-positive strains. Among these, three strains—CR14, CR18 and CR22—were selected for detailed analysis. All three demonstrated significant indole-3-acetic acid (IAA) production, phosphate and zinc solubilization, nitrogen fixation and antifungal activity. CR14 synthesized 56.01 mg L−1 of IAA and demonstrated the highest zinc solubilization, while CR18 exhibited superior phosphate solubilization and protease activity. CR22 produced the highest IAA (61.46 mg L−1) and demonstrated strong cellulase and amylase activity. In antagonism tests, CR14 suppressed Alternaria alternata with an 80 mm inhibition zone, while CR18 and CR22 effectively inhibited both A. alternata and Fusarium graminearum. Phylogenetic analysis based on 16S rRNA sequencing identified CR18 as Serratia quinivorans, CR14 as Pantoea agglomerans and CR22 as Pantoea sp. The functional diversity of rhizobacteria holds promise as bioinoculants for enhancing maize growth and protecting against soil-borne pathogens in sustainable agriculture. Full article
(This article belongs to the Section Plant–Microorganisms Interactions)
Show Figures

Graphical abstract

27 pages, 3698 KB  
Article
Biocontrol and Plant Growth-Promoting Potential of Bacillus and Actinomycetes Isolated from the Rhizosphere and Phyllosphere of Potato (Solanum tuberosum L.) from Different Agroecological Zones of Peru
by Lizbeth Mamani-Rojas, Raihil Rengifo, Leslie Velarde-Apaza, Max Ramírez-Rojas and Hector Cántaro-Segura
Appl. Microbiol. 2026, 6(1), 2; https://doi.org/10.3390/applmicrobiol6010002 - 23 Dec 2025
Viewed by 361
Abstract
Potato (Solanum tuberosum L.) is a key staple crop in the Peruvian Andes, but its productivity is threatened by fungal pathogens such as Rhizoctonia solani and Alternaria alternata. In this study, 71 native bacterial strains (39 from phyllosphere and 32 from [...] Read more.
Potato (Solanum tuberosum L.) is a key staple crop in the Peruvian Andes, but its productivity is threatened by fungal pathogens such as Rhizoctonia solani and Alternaria alternata. In this study, 71 native bacterial strains (39 from phyllosphere and 32 from rhizosphere) were isolated from potato plants across five agroecological zones of Peru and characterized for their plant growth-promoting (PGPR) and antagonistic traits. Actinomycetes demonstrated broader enzymatic profiles, with 2ACPP4 and 2ACPP8 showing high proteolytic (68.4%, 63.4%), lipolytic (59.5%, 60.6%), chitinolytic (32.7%, 35.5%) and amylolytic activity (76.3%, 71.5%). Strain 5ACPP5 (Streptomyces decoyicus) produced 42.8% chitinase and solubilized both dicalcium (120.6%) and tricalcium phosphate (122.3%). The highest IAA production was recorded in Bacillus strain 2BPP8 (95.4 µg/mL), while 5ACPP6 was the highest among Actinomycetes (83.4 µg/mL). Siderophore production was highest in 5ACPP5 (412.4%) and 2ACPP4 (406.8%). In vitro antagonism assays showed that 5ACPP5 inhibited R. solani and A. alternata by 86.4% and 68.9%, respectively, while Bacillus strain BPP4 reached 51.0% inhibition against A. alternata. In greenhouse trials, strain 4BPP8 significantly increased fresh tuber weight (11.91 g), while 5ACPP5 enhanced root biomass and reduced stem canker severity. Molecular identification confirmed BPP4 as Bacillus halotolerans and 5ACPP5 as Streptomyces decoyicus. These strains represent promising candidates for the development of bioinoculants for sustainable potato cultivation in Andean systems. Full article
Show Figures

Figure 1

26 pages, 6197 KB  
Article
Bacillus mojavensis dxk33 Modulates Rhizosphere Microbiome and Suppresses Root Rot in Cunninghamia lanceolata
by Xiaokang Dai, Pengfei Yang, Chuan Zhou, Zebang Chen, Shuying Li and Tianhui Zhu
Microorganisms 2026, 14(1), 34; https://doi.org/10.3390/microorganisms14010034 - 22 Dec 2025
Viewed by 264
Abstract
Soil-borne pathogens cause devastating root rot diseases in forest ecosystems, often by inducing dysbiosis in the rhizosphere microbiome. While antagonistic bacteria can suppress disease, their effects frequently extend beyond direct inhibition to include ecological restructuring of resident microbial communities. However, the causal relationships [...] Read more.
Soil-borne pathogens cause devastating root rot diseases in forest ecosystems, often by inducing dysbiosis in the rhizosphere microbiome. While antagonistic bacteria can suppress disease, their effects frequently extend beyond direct inhibition to include ecological restructuring of resident microbial communities. However, the causal relationships between such microbiome restructuring and disease suppression in tree species remain poorly understood. Here, we show that the antagonistic bacterium B. mojavensis dxk33 effectively suppresses F. solani-induced root rot in C. lanceolata, and that this disease suppression coincides with a partial reversal of pathogen-associated dysbiosis in the rhizosphere. Inoculation with dxk33 significantly promoted plant growth and reduced the disease index by 72.19%, while concurrently enhancing soil nutrient availability and key C-, N- and P-cycling enzyme activities. High-throughput sequencing revealed that dxk33 inoculation substantially reshaped the rhizosphere microbiome, counteracting the pathogen’s negative impact on microbial diversity and coinciding with a shift toward a more stable community structure. Under pathogen stress, dxk33 enriched beneficial bacterial taxa such as Pseudomonas and Sphingomonas and suppressed pathogenic fungi while promoting beneficial fungi such as Mortierella. Linear discriminant analysis and functional prediction further indicated that dxk33 remodeled ecological guilds enriched for mycorrhizal and saprotrophic fungi, and reactivated bacterial metabolic pathways and signaling networks that were suppressed by the pathogen. Taken together, our findings are consistent with a multi-tiered mode of action in which direct antagonism by B. mojavensis dxk33 operates alongside associated changes in the rhizosphere microbiome that resemble a disease-suppressive state, although the present experimental design does not allow a strictly causal role for microbiome reconfiguration in disease suppression to be established. This study provides a mechanistic framework for understanding how microbiome engineering may mitigate soil-borne diseases in perennial trees and highlights the potential of targeted microbial interventions for sustainable forest management. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

26 pages, 1337 KB  
Article
Enhanced Biochemical and Structural Defense in PGPR-Inoculated Sweet Basil Under Aphid Herbivory
by Jimena Sofía Palermo, Tamara Belén Palermo, Lorena del Rosario Cappellari, Gerd Ulrich Balcke and Erika Banchio
Plants 2026, 15(1), 15; https://doi.org/10.3390/plants15010015 - 20 Dec 2025
Viewed by 396
Abstract
Plants are naturally exposed to various biotic stresses, including pathogen attacks and insect herbivory, which activate distinct signaling pathways as part of their defense responses. Inoculation with beneficial microorganisms, such as plant growth-promoting rhizobacteria (PGPR), can trigger induced systemic resistance (ISR) in plants, [...] Read more.
Plants are naturally exposed to various biotic stresses, including pathogen attacks and insect herbivory, which activate distinct signaling pathways as part of their defense responses. Inoculation with beneficial microorganisms, such as plant growth-promoting rhizobacteria (PGPR), can trigger induced systemic resistance (ISR) in plants, a defense response that resembles the one activated by herbivore attack in terms of signaling pathways and physiological effects. However, these interactions have typically been studied independently, limiting our understanding of their combined effects. In this study, we examined the effects of aphid (Acyrthosiphon pisum) herbivory on Ocimum basilicum plants and assessed how these responses are modulated when the plants are inoculated with the PGPR strain Bacillus amyloliquefaciens GB03, with a particular focus on biochemical and structural defense mechanisms. Aphid herbivory significantly increased total essential oil (EO) content and volatile organic compound (VOC) emission and induced a greater density of glandular trichomes while also modifying the phytohormone profile. In contrast, total phenolic content remained unchanged. When aphid herbivory occurred on GB03-inoculated plants, the effects on defense-related parameters became more pronounced. EO and eugenol contents were further increased compared with inoculated controls, jasmonates remained comparable to levels induced by either factor alone, and SA levels nearly doubled relative to aphid-infested plants. Feeding assays revealed that aphids preferred inoculated plants over controls, a response that may be explained by the increased emission of eugenol in inoculated basil. These results demonstrate that GB03 inoculation modifies several defenses-related responses in O. basilicum upon aphid herbivory, including by hormonal signaling, specialized metabolites accumulation, and structural barriers such as glandular trichomes. These findings suggest that PGPR may contribute to modulating plant responses to herbivory under certain conditions, highlighting their context-dependent influence within plant–microbe–insect interactions. Full article
(This article belongs to the Special Issue Advances in Microbial Solutions for Sustainable Agriculture)
Show Figures

Figure 1

24 pages, 35618 KB  
Article
Saline–Alkaline Stress-Driven Rhizobacterial Community Restructuring and Alleviation of Stress by Indigenous PGPR in Alfalfa
by Min Wang, Ting Han, Fenghua Huang, Xiaochen Li, Jiayao Shan, Dongmei Zhang, Zhongbao Shen, Jianli Wang and Kun Qiao
Plants 2025, 14(24), 3844; https://doi.org/10.3390/plants14243844 - 17 Dec 2025
Viewed by 520
Abstract
Background: The Songnen Plain in China contains soda saline–alkaline soil, wherein salinity and alkalinity severely constrain crop productivity. Alfalfa (Medicago sativa L.) is a forage legume that has adapted to moderate saline–alkaline conditions, but how its rhizosphere microbial community facilitated this adaptation [...] Read more.
Background: The Songnen Plain in China contains soda saline–alkaline soil, wherein salinity and alkalinity severely constrain crop productivity. Alfalfa (Medicago sativa L.) is a forage legume that has adapted to moderate saline–alkaline conditions, but how its rhizosphere microbial community facilitated this adaptation remains unclear. Methods: Using 16S rRNA gene sequencing, we compared alfalfa rhizosphere bacteria in saline–alkaline soil (AS) and control soil. Bacteria isolated from AS were screened for plant growth-promoting traits, with the most effective strains validated in pot experiments involving 50 mM NaHCO3. Results: Compared with the control soil bacterial community, the AS bacterial community was significantly enriched with Methylomirabilota and unclassified bacteria (phylum level), with the genus RB41 identified as the most discriminative biomarker. Gene functions predicted using PICRUSt2 reflected the responsiveness of this community to environmental stressors. Inoculations with Pseudomonas laurentiana strain M73 and Stenotrophomonas maltophilia strain M81, which were isolated from AS, significantly improved alfalfa growth and health under NaHCO3 stress. Conclusions: Saline–alkaline conditions in the Songnen Plain reshape the alfalfa rhizosphere bacterial community, enriching for specific taxa and potentially enhancing microbial functions associated with stress resistance. Strains M73 and M81 can effectively promote stress tolerance, making them useful microbial resources for improving soil conditions. Full article
Show Figures

Figure 1

24 pages, 5025 KB  
Review
Plant Growth-Promoting Rhizobacteria and Biochar as Drought Defense Tools: A Comprehensive Review of Mechanisms and Future Directions
by Faezeh Parastesh, Behnam Asgari Lajayer and Bernard Dell
Curr. Issues Mol. Biol. 2025, 47(12), 1040; https://doi.org/10.3390/cimb47121040 - 12 Dec 2025
Viewed by 905
Abstract
Drought stress, exacerbated by climate change, is a serious threat to global food security. This review examines the synergistic potential of plant growth-promoting rhizobacteria (PGPR) and biochar as a sustainable strategy for enhancing crop drought resilience. Biochar’s porous structure creates a protective “charosphere” [...] Read more.
Drought stress, exacerbated by climate change, is a serious threat to global food security. This review examines the synergistic potential of plant growth-promoting rhizobacteria (PGPR) and biochar as a sustainable strategy for enhancing crop drought resilience. Biochar’s porous structure creates a protective “charosphere” microhabitat, enhancing PGPR colonization and survival. This partnership, in turn, induces multifaceted plant responses through: (1) the modulation of key phytohormones, including abscisic acid (ABA), ethylene (via 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity), and auxins; (2) improved nutrient solubilization and uptake; and (3) the activation of robust antioxidant defense systems. These physiological benefits are orchestrated by a profound reprogramming of the plant transcriptome, which shifts the plant’s expression profile from a stressed to a resilient state by upregulating key genes (e.g., Dehydration-Responsive Element-Binding protein (DREB), Light-Harvesting Chlorophyll B-binding protein (LHCB), Plasma membrane Intrinsic Proteins (PIPs)) and downregulating stress-senescence markers. To realize a climate-resilient farming future, research must be strategically directed toward customizing biochar–PGPR combinations, validating their long-term performance in agronomic environments, and uncovering the molecular bases of their action. Full article
Show Figures

Figure 1

Back to TopTop