Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (121)

Search Parameters:
Keywords = planetary urbanization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4446 KiB  
Article
Counter-Cartographies of Extraction: Mapping Socio-Environmental Changes Through Hybrid Geographic Information Technologies
by Mitesh Dixit, Nataša Danilović Hristić and Nebojša Stefanović
Land 2025, 14(8), 1576; https://doi.org/10.3390/land14081576 (registering DOI) - 1 Aug 2025
Abstract
This paper examines Krivelj, a copper mining village in Serbia, as a critical yet overlooked node within global extractive networks. Despite supplying copper essential for renewable energy and sustainable architecture, Krivelj experiences severe ecological disruption, forced relocations, and socio-spatial destabilization, becoming a “sacrifice [...] Read more.
This paper examines Krivelj, a copper mining village in Serbia, as a critical yet overlooked node within global extractive networks. Despite supplying copper essential for renewable energy and sustainable architecture, Krivelj experiences severe ecological disruption, forced relocations, and socio-spatial destabilization, becoming a “sacrifice zone”—an area deliberately subjected to harm for broader economic interests. Employing a hybrid methodology that combines ethnographic fieldwork with Geographic Information Systems (GISs), this study spatializes narratives of extractive violence collected from residents through walking interviews, field sketches, and annotated aerial imagery. By integrating satellite data, legal documents, environmental sensors, and lived testimonies, it uncovers the concept of “slow violence,” where incremental harm occurs through bureaucratic neglect, ambient pollution, and legal ambiguity. Critiquing the abstraction of Planetary Urbanization theory, this research employs countertopography and forensic spatial analysis to propose a counter-cartographic framework that integrates geospatial analysis with local narratives. It demonstrates how global mining finance manifests locally through tangible experiences, such as respiratory illnesses and disrupted community relationships, emphasizing the potential of counter-cartography as a tool for visualizing and contesting systemic injustice. Full article
42 pages, 5715 KiB  
Article
Development and Fuel Economy Optimization of Series–Parallel Hybrid Powertrain for Van-Style VW Crafter Vehicle
by Ahmed Nabil Farouk Abdelbaky, Aminu Babangida, Abdullahi Bala Kunya and Péter Tamás Szemes
Energies 2025, 18(14), 3688; https://doi.org/10.3390/en18143688 - 12 Jul 2025
Viewed by 476
Abstract
The presence of toxic gas emissions from conventional vehicles is worrisome globally. Over the past few years, there has been a broad adoption of electric vehicles (EVs) to reduce energy usage and mitigate environmental emissions. The EVs are characterized by limited range, cost, [...] Read more.
The presence of toxic gas emissions from conventional vehicles is worrisome globally. Over the past few years, there has been a broad adoption of electric vehicles (EVs) to reduce energy usage and mitigate environmental emissions. The EVs are characterized by limited range, cost, and short range. This prompts the need for hybrid electric vehicles (HEVs). This study describes the conversion of a 2022 Volkswagen Crafter (VW) 35 TDI 340 delivery van from a conventional diesel powertrain into a hybrid electric vehicle (HEV) augmented with synchronous electrical machines (motor and generator) and a BMW i3 60 Ah battery pack. A downsized 1.5 L diesel engine and an electric motor–generator unit are integrated via a planetary power split device supported by a high-voltage lithium-ion battery. A MATLAB (R2024b) Simulink model of the hybrid system is developed, and its speed tracking PID controller is optimized using genetic algorithm (GA) and particle swarm optimization (PSO) methods. The simulation results show significant efficiency gains: for example, average fuel consumption falls from 9.952 to 7.014 L/100 km (a 29.5% saving) and CO2 emissions drop from 260.8 to 186.0 g/km (a 74.8 g reduction), while the vehicle range on a 75 L tank grows by ~40.7% (from 785.7 to 1105.5 km). The optimized series–parallel powertrain design significantly improves urban driving economy and reduces emissions without compromising performance. Full article
Show Figures

Figure 1

19 pages, 16060 KiB  
Article
Synergic Lidar Observations of Ozone Episodes and Transport During 2023 Summer AGES+ Campaign in NYC Region
by Dingdong Li, Yonghua Wu, Thomas Ely, Thomas Legbandt and Fred Moshary
Remote Sens. 2025, 17(13), 2303; https://doi.org/10.3390/rs17132303 - 4 Jul 2025
Viewed by 367
Abstract
We present coordinated observations from ozone Differential Absorption lidar (DIAL), aerosol lidar, and Doppler wind lidar at the City College of New York (CCNY) in northern Manhattan during the summer 2023 AGES+ campaigns across the New York City (NYC) region and Long Island [...] Read more.
We present coordinated observations from ozone Differential Absorption lidar (DIAL), aerosol lidar, and Doppler wind lidar at the City College of New York (CCNY) in northern Manhattan during the summer 2023 AGES+ campaigns across the New York City (NYC) region and Long Island Sound (LIS) areas. The results highlight significant ozone formation within the planetary boundary layer (PBL) and the concurrent transport of ozone/aerosol plumes aloft and mixing into the PBL during 26–28 July 2023. Especially, 26 July experienced the highest ozone concentration within the PBL during the three-day ozone episode despite having a lower temperature than the following two days. In addition, the onset of the afternoon sea breeze contributed to increased ozone levels in the PBL. A mobile ozone DIAL was also deployed at Columbia University’s Lamont–Doherty Earth Observatory (LDEO) in Palisades, NY, 29 km north of NYC, from 11 August to 8 September 2023. A notable high-ozone episode was observed by both ozone DIALs at the CCNY and the LDEO site during an unusual heatwave event in early September. On 7 September, the peak ozone concentration at the LDEO reached 120 ppb, exceeding the ozone levels observed in NYC. This enhancement was associated with urban plume transport, as indicated by wind lidar measurements, the HRRR (High-Resolution Rapid Refresh) model, and the Copernicus Sentinel-5 TROPOMI (TROPOspheric Monitoring Instrument) tropospheric column NO2 product. The results also show that, during both heatwave events, those days with slow southeast to southwest winds experienced significantly higher ozone pollution. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

19 pages, 1074 KiB  
Review
A Review of Data Models and Frameworks in Urban Environments in the Context of AI
by H. Patricia McKenna
Urban Sci. 2025, 9(7), 239; https://doi.org/10.3390/urbansci9070239 - 25 Jun 2025
Viewed by 420
Abstract
This review paper provides a comprehensive review and analysis of the research and practice literature relating to data models and frameworks pertaining to urban and other AI-rich environments, extending to the planetary environment. Elements of focus include the very definition, along with the [...] Read more.
This review paper provides a comprehensive review and analysis of the research and practice literature relating to data models and frameworks pertaining to urban and other AI-rich environments, extending to the planetary environment. Elements of focus include the very definition, along with the nature and stability, of the concept of AI itself; consideration of the notion of “open” in an AI context; data sharing, exchange, access, control, and use; and associated challenges and opportunities. Current gaps and problems in the literature on these data models are identified, giving rise to opportunities for research and practice going forward. One of the key gaps associated with AI models and frameworks lies in meeting the needs of the public, with the current top-down approach to AI design, development, and use emerging as a key problem. Such gaps set the stage for a number of recommendations, including human–AI collaboration; extending understanding of human–AI interactions; risk mitigation associated with artificial superintelligence and agentic approaches; and rethinking current AI models and the very definition of AI. This review paper is significant in that it integrates a SWOT (strengths, weaknesses, opportunities, threats) analysis to synthesize challenges, opportunities, gaps, and problems, offering a roadmap for human–AI interactions and collaborations in urban development. Full article
Show Figures

Figure 1

20 pages, 912 KiB  
Article
Adherence to the EAT-Lancet Diet Among Urban and Rural Latin American Adolescents: Associations with Micronutrient Intake and Ultra-Processed Food Consumption
by Rulamán Vargas-Quesada, Rafael Monge-Rojas, Sonia Rodríguez-Ramírez, Jacqueline Araneda-Flores, Leandro Teixeira Cacau, Gustavo Cediel, Diego Gaitán-Charry, Tito Pizarro Quevedo, Anna Christina Pinheiro Fernandes, Alicia Rovirosa, Tania G. Sánchez-Pimienta and María Elisa Zapata
Nutrients 2025, 17(12), 2048; https://doi.org/10.3390/nu17122048 - 19 Jun 2025
Viewed by 1295
Abstract
Background/Objectives: Adolescents in Latin America are experiencing rising rates of overweight/obesity and non-communicable diseases, while public health nutrition efforts targeting this group remain limited. This study explores adherence to the EAT-Lancet diet and its relationship with micronutrient adequacy and ultra-processed food (UPF) consumption. [...] Read more.
Background/Objectives: Adolescents in Latin America are experiencing rising rates of overweight/obesity and non-communicable diseases, while public health nutrition efforts targeting this group remain limited. This study explores adherence to the EAT-Lancet diet and its relationship with micronutrient adequacy and ultra-processed food (UPF) consumption. Methods: Cross-sectional data from national nutrition surveys of 19,601 adolescents across six Latin American countries were analyzed. Data on sociodemographics, anthropometrics, and dietary habits were collected using standardized questionnaires and 24 h dietary recalls or food records. Nutrient intake was estimated via statistical modeling, and nutrient adequacy ratios were based on age- and sex-specific requirements. UPF intake was classified using the NOVA system, and adherence to the EAT-Lancet diet was assessed with the Planetary Health Diet Index. Results: Overall adherence to the EAT-Lancet diet was low (mean score: 28.3%). Rural adolescents had higher adherence than urban adolescents, and those aged 10–13 and 17–19 showed better adherence compared to adolescents aged 14–16. Adolescents from lower socioeconomic backgrounds adhered more than those from higher socioeconomic backgrounds. Adherence varied from 20.2% in Argentina to 30.2% in Brazil and Chile. Higher adherence was associated with lower UPF intake. Among urban adolescents, greater adherence was linked to a higher risk of inadequate riboflavin, niacin, and cobalamin intake, a trend not observed in rural adolescents. Conclusions: Adherence to the EAT-Lancet diet is low among Latin American adolescents, particularly in urban areas. Public health efforts should prioritize reducing UPF consumption, improving access to nutrient-dense, culturally appropriate foods, and supporting fortified staple foods. Full article
(This article belongs to the Section Nutritional Epidemiology)
Show Figures

Figure 1

17 pages, 8234 KiB  
Article
Modeling the Atmospheric CO2 Concentration in the Beijing Region and Assessing the Impacts of Fossil Fuel Emissions
by Zhoutong Liang, Qixiang Cai, Ning Zeng, Wenhan Tang, Pengfei Han, Yu Zhang, Weijun Quan, Bo Yao, Pucai Wang and Zhiqiang Liu
Environments 2025, 12(5), 156; https://doi.org/10.3390/environments12050156 - 8 May 2025
Viewed by 431
Abstract
Reducing anthropogenic fossil fuel CO2 (FFCO2) emissions in urban areas is key to mitigating climate change. To better understand the spatial characteristics and temporal variations in urban CO2 levels in the Beijing (BJ) region, we conducted a long-term CO [...] Read more.
Reducing anthropogenic fossil fuel CO2 (FFCO2) emissions in urban areas is key to mitigating climate change. To better understand the spatial characteristics and temporal variations in urban CO2 levels in the Beijing (BJ) region, we conducted a long-term CO2 simulation study by using the Weather Research and Forecasting WRF-Chem model and CO2 observation data. To assess the model performance, three representative sites with high-precision CO2 observation data were chosen in this study: the rural regional background Shangdianzi (SDZ) site, the suburban Xianghe (XH) site, and the urban BJ site. The simulation results generally captured the observed variations at these three sites, but the model performed much better at the SDZ and XH sites, with mean biases of −0.7 ppm and −2.3 ppm, respectively, and RMSE of 12.3 ppm and 21.4 ppm, respectively. The diurnal variations in the model results agreed well with those in the observed CO2 concentrations at the SDZ and XH sites during all seasons. In the meanwhile, the diurnal variations in the modeled FFCO2 were similar to those in the CO2 observation with a positive bias at the BJ site, which may have been caused by higher emissions especially in winter. Moreover, both the modeled FFCO2 and biospheric CO2 (BIOCO2) have positive correlations with the observed CO2 concentration, whereas the planetary boundary layer height (PBLH) and observed CO2 concentration exhibited negative correlations at all sites. In addition, the contributions of FFCO2 and BIOCO2 to CO2 varies depending on the seasons and the location of sites. Full article
Show Figures

Figure 1

25 pages, 2706 KiB  
Article
Spatiotemporal Analysis of Air Pollution and Climate Change Effects on Urban Green Spaces in Bucharest Metropolis
by Maria Zoran, Dan Savastru, Marina Tautan, Daniel Tenciu and Alexandru Stanciu
Atmosphere 2025, 16(5), 553; https://doi.org/10.3390/atmos16050553 - 7 May 2025
Viewed by 722
Abstract
Being an essential issue in global climate warming, the response of urban green spaces to air pollution and climate variability because of rapid urbanization has become an increasing concern at both the local and global levels. This study explored the response of urban [...] Read more.
Being an essential issue in global climate warming, the response of urban green spaces to air pollution and climate variability because of rapid urbanization has become an increasing concern at both the local and global levels. This study explored the response of urban vegetation to air pollution and climate variability in the Bucharest metropolis in Romania from a spatiotemporal perspective during 2000–2024, with a focus on the 2020–2024 period. Through the synergy of time series in situ air pollution and climate data, and derived vegetation biophysical variables from MODIS Terra/Aqua satellite data, this study applied statistical regression, correlation, and linear trend analysis to assess linear relationships between variables and their pairwise associations. Green spaces were measured with the MODIS normalized difference vegetation index (NDVI), leaf area index (LAI), photosynthetically active radiation (FPAR), evapotranspiration (ET), and net primary production (NPP), which capture the complex characteristics of urban vegetation systems (gardens, street trees, parks, and forests), periurban forests, and agricultural areas. For both the Bucharest center (6.5 km × 6.5 km) and metropolitan (40.5 km × 40.5 km) test areas, during the five-year investigated period, this study found negative correlations of the NDVI with ground-level concentrations of particulate matter in two size fractions, PM2.5 (city center r = −0.29; p < 0.01, and metropolitan r = −0.39; p < 0.01) and PM10 (city center r = −0.58; p < 0.01, and metropolitan r = −0.56; p < 0.01), as well as between the NDVI and gaseous air pollutants (nitrogen dioxide—NO2, sulfur dioxide—SO2, and carbon monoxide—CO. Also, negative correlations between NDVI and climate parameters, air relative humidity (RH), and land surface albedo (LSA) were observed. These results show the potential of urban green to improve air quality through air pollutant deposition, retention, and alteration of vegetation health, particularly during dry seasons and hot summers. For the same period of analysis, positive correlations between the NDVI and solar surface irradiance (SI) and planetary boundary layer height (PBL) were recorded. Because of the summer season’s (June–August) increase in ground-level ozone, significant negative correlations with the NDVI (r = −0.51, p < 0.01) were found for Bucharest city center and (r = −76; p < 0.01) for the metropolitan area, which may explain the degraded or devitalized vegetation under high ozone levels. Also, during hot summer seasons in the 2020–2024 period, this research reported negative correlations between air temperature at 2 m height (TA) and the NDVI for both the Bucharest city center (r = −0.84; p < 0.01) and metropolitan scale (r = −0.90; p < 0.01), as well as negative correlations between the land surface temperature (LST) and the NDVI for Bucharest (city center r = −0.29; p< 0.01) and the metropolitan area (r = −0.68, p < 0.01). During summer seasons, positive correlations between ET and climate parameters TA (r = 0.91; p < 0.01), SI (r = 0.91; p < 0.01), relative humidity RH (r = 0.65; p < 0.01), and NDVI (r = 0.83; p < 0.01) are associated with the cooling effects of urban vegetation, showing that a higher vegetation density is associated with lower air and land surface temperatures. The negative correlation between ET and LST (r = −0.92; p < 0.01) explains the imprint of evapotranspiration in the diurnal variations of LST in contrast with TA. The decreasing trend of NPP over 24 years highlighted the feedback response of vegetation to air pollution and climate warming. For future green cities, the results of this study contribute to the development of advanced strategies for urban vegetation protection and better mitigation of air quality under an increased frequency of extreme climate events. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

38 pages, 12283 KiB  
Article
Learning Along the GreenWay: An Experiential, Transdisciplinary Outdoor Classroom for Planetary Health Education
by Susan M. Thompson and Nick Chapman
Sustainability 2025, 17(9), 4143; https://doi.org/10.3390/su17094143 - 3 May 2025
Viewed by 893
Abstract
Built environment professionals are instrumental in envisioning, implementing and managing the urban realm to ensure that it is health supportive and sustainable. Central to their education is developing a deep understanding and appreciation of this responsibility and opportunity. Despite some progress in the [...] Read more.
Built environment professionals are instrumental in envisioning, implementing and managing the urban realm to ensure that it is health supportive and sustainable. Central to their education is developing a deep understanding and appreciation of this responsibility and opportunity. Despite some progress in the classroom, challenges continue given the long history of siloed and separated disciplines and curricula. The climate emergency, ongoing chronic health conditions, and more recently the global pandemic demand a continued reframing of education away from the tradition of sequential, separated and unlinked faculty and school-based subjects to be transdisciplinary, experiential and authentic. Such principles are embraced by the Planetary Health Educational Framework and One Health. Against this theoretical context, we present our long-term educational practice using the GreenWay in Sydney, Australia, as an outdoor classroom for school and tertiary students. This multi-purpose, complex and nature-based green corridor in the urban heart of an international city facilitates experiential and transdisciplinary learning from a planetary health perspective. Based on the successes and challenges of our teaching, we reflect on the implications for environmental educators to deliver authentic and experiential outdoor education that inspires and empowers the next generation to create health-supportive and sustainable environments. Full article
Show Figures

Figure 1

15 pages, 1102 KiB  
Article
Exploring Regional Food Futures in Peri-Urban Austria—Participatory Generation of Scenarios and Policy Recommendations
by Niklas Gudowsky-Blatakes and Mahshid Sotoudeh
Sustainability 2025, 17(9), 3800; https://doi.org/10.3390/su17093800 - 23 Apr 2025
Viewed by 563
Abstract
Current food systems provide relative food security but compromise planetary health and largely fail to address climate change challenges. Regional food supplies can contribute to sustainable production and consumption, reducing the dependence on global supply chains. However, food systems’ complexity and rigidity hinder [...] Read more.
Current food systems provide relative food security but compromise planetary health and largely fail to address climate change challenges. Regional food supplies can contribute to sustainable production and consumption, reducing the dependence on global supply chains. However, food systems’ complexity and rigidity hinder the implementation of climate-conscious, healthier practices. The City.Food.Basket project explored regional food baskets in urban and peri-urban settings in Austria for the City of Graz and its surroundings, developing models for regional, healthy, and low-climate-impact diets. Against this background, we present a qualitative study that generated three explorative scenarios for promoting regional diets using a Delphi-based expert-stakeholder survey method with participatory elements. A scenario workshop elaborated on interconnecting actions to strengthen regional food supply, including making regional food a tender criterion, reducing waste, ensuring affordability, and shifting subsidies to climate-conscious practices for Graz. While the method successfully provides socio-technical futures for policy orientation, its direct policy impact remains low due to time constraints, short project duration, limited project resources, and differing rationalities between research and policymaking. This study highlights the need for improved connectivity between transdisciplinary research, foresight methods, and regional policy cycles to enhance such projects’ effectiveness. Full article
Show Figures

Figure 1

22 pages, 7303 KiB  
Article
Ground Segmentation for LiDAR Point Clouds in Structured and Unstructured Environments Using a Hybrid Neural–Geometric Approach
by Antonio Santo, Enrique Heredia, Carlos Viegas, David Valiente and Arturo Gil
Technologies 2025, 13(4), 162; https://doi.org/10.3390/technologies13040162 - 16 Apr 2025
Viewed by 2029
Abstract
Ground segmentation in LiDAR point clouds is a foundational capability for autonomous systems, enabling safe navigation in applications ranging from urban self-driving vehicles to planetary exploration rovers. Reliably distinguishing traversable surfaces in geometrically irregular or sensor-sparse environments remains a critical challenge. This paper [...] Read more.
Ground segmentation in LiDAR point clouds is a foundational capability for autonomous systems, enabling safe navigation in applications ranging from urban self-driving vehicles to planetary exploration rovers. Reliably distinguishing traversable surfaces in geometrically irregular or sensor-sparse environments remains a critical challenge. This paper introduces a hybrid framework that synergizes multi-resolution polar discretization with sparse convolutional neural networks (SCNNs) to address these challenges. The method hierarchically partitions point clouds into adaptive sectors, leveraging PCA-derived geometric features and dynamic variance thresholds for robust terrain modeling, while a SCNN resolves ambiguities in data-sparse regions. Evaluated in structured (SemanticKITTI) and unstructured (Rellis-3D) environments, two different versions of the proposed method are studied, including a purely geometric method and a hybrid approach that exploits deep learning techniques. A comparison of the proposed method with its purely geometric version is made for the purpose of highlighting the strengths of each approach. The hybrid approach achieves state-of-the-art performance, attaining an F1-score of 95.4% in urban environments, surpassing the purely geometric (91.4%) and learning-based baselines. Conversely, in unstructured terrains, the geometric variant demonstrates superior metric balance (80.8% F1) compared to the hybrid method (75.8% F1), highlighting context-dependent trade-offs between precision and recall. The framework’s generalization is further validated on custom datasets (UMH-Gardens, Coimbra-Liv), showcasing robustness to sensor variations and environmental complexity. The code and datasets are openly available to facilitate reproducibility. Full article
(This article belongs to the Special Issue Advanced Autonomous Systems and Artificial Intelligence Stage)
Show Figures

Graphical abstract

47 pages, 3071 KiB  
Article
The Nexus of Industrial–Urban Sustainability, the Circular Economy, and Climate–Ecosystem Resilience: A Synthesis
by Yee Keong Choy, Ayumi Onuma and Khai Ern Lee
Sustainability 2025, 17(6), 2620; https://doi.org/10.3390/su17062620 - 16 Mar 2025
Cited by 1 | Viewed by 1292
Abstract
Circular economic strategies have been widely deployed across the world to decouple industrial–urban growth from resource use and carbon emissions, aiming to mitigate environmental degradation. Despite these efforts, the global circularity gap has widened, and widespread crisis-ridden environmental repercussions continue to drive our [...] Read more.
Circular economic strategies have been widely deployed across the world to decouple industrial–urban growth from resource use and carbon emissions, aiming to mitigate environmental degradation. Despite these efforts, the global circularity gap has widened, and widespread crisis-ridden environmental repercussions continue to drive our planetary system closer to ecosystem collapse and climate breakdown. This article critically analyzes this circularity paradox based on an integrated conceptual framework grounded in environmental economic principles, system theory, the laws of thermodynamics, and empirical case studies. The analysis elucidates the macro-level dynamics and intricate feedback mechanisms between industrial–urban systems and environmental systems, revealing the underlying ecological conflicts and environmental forces that drive deleterious changes in ecosystems and the climate system. These changes causally impede sustainable industrial–urban development. The findings underscore that addressing environmental threats to industrial–urban sustainability requires not only enhancing the efficient use and sustainable management of natural resources but, more importantly, prioritizing the preservation and restoration of ecosystem resilience and climate system stability. Full article
Show Figures

Figure 1

17 pages, 48559 KiB  
Article
The Alternative Food Geography in Europe: An Elaboration Through the Socio-Metabolic Approach
by Emel Karakaya Ayalp, Sevim Pelin Öztürk and Feral Geçer Sargın
Sustainability 2025, 17(4), 1603; https://doi.org/10.3390/su17041603 - 14 Feb 2025
Viewed by 665
Abstract
This study applies the socio-metabolic approach and relatedly the concept of planetary urbanization understanding to detect the identity of the “alternative zones” embedded in the food supply chain of cities (FSC). To achieve shortened and sustainable FSCs for cities, strong alternative food networks [...] Read more.
This study applies the socio-metabolic approach and relatedly the concept of planetary urbanization understanding to detect the identity of the “alternative zones” embedded in the food supply chain of cities (FSC). To achieve shortened and sustainable FSCs for cities, strong alternative food networks (AFNs) should be developed and sustained. The precious element of a strong AFN is its urban areas, which serve as niche alternative food initiatives (AFIs) for sustainability transitions in food supply chains (FSCs). To achieve shorter and more sustainable FSCs in cities, it is crucial to develop and sustain empowered alternative food networks (AFNs) by deploying their AFIs. Within this context, this study examines AFIs in 12 European FUSILLI cities to understand the potential of the intrinsic AFN to accelerate the sustainable transition in FSCs. Considering the results of AFNs in accelerating sustainability transitions in FSCs. Results through spatial analyses of food ecosystems of FUSILLI cities, although there are prominent examples with a strong short and alternative food network, it is obvious that the sustainable transition into an alternative food network has proceeded; however, the analysis of AFNs in FUSILLI cities demonstrates that sustainability transitions have advanced through vigorous AFNs. However, extended urban areas still have room to supersede their place in conventional/industrial agricultural production, which remains embedded in these spaces. The same inference applies to urban—rural linkages, which need to be strengthened to support the relocation of the food system in the development of AFNs in urban areas and to create more sustainable and shortened FSCs. Also, it is obvious that cities with greater extended AFNs, for example, Rome, due to its great number of AFIs and geographical extent of AFN covering concentrated urban areas and to strengthen the rural–urban linkage for shortened food supply chains, as well as extended urban areas, and Oslo, due to its great variety of AFIs embedded in concentrated urban areas with alternative food production areas in its (erstwhile rural areas) extended urban areas. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Figure 1

15 pages, 19055 KiB  
Technical Note
Ground-Based MAX-DOAS Observations of Tropospheric Ozone and Its Precursors for Diagnosing Ozone Formation Sensitivity
by Yuanyuan Qian, Dan Wang, Zhiyan Li, Ge Yan, Minjie Zhao, Haijin Zhou, Fuqi Si and Yuhan Luo
Remote Sens. 2025, 17(4), 658; https://doi.org/10.3390/rs17040658 - 14 Feb 2025
Viewed by 564
Abstract
Diagnosing ozone (O3) formation sensitivity using tropospheric observations of O3 and its precursors is important for formulating O3 pollution control strategies. Photochemical reactions producing O3 occur at the earth’s surface and in the elevated layers, indicating the importance [...] Read more.
Diagnosing ozone (O3) formation sensitivity using tropospheric observations of O3 and its precursors is important for formulating O3 pollution control strategies. Photochemical reactions producing O3 occur at the earth’s surface and in the elevated layers, indicating the importance of diagnosing O3 formation sensitivity at different layers. Synchronous measurements of tropospheric O3 and its precursors nitrogen dioxide (NO2) and formaldehyde (HCHO) were performed in urban Hefei to diagnose O3 formation sensitivity at different atmospheric layers using multi-axis differential optical absorption spectroscopy observations. The retrieved surface NO2 and O3 were validated with in situ measurements (correlation coefficients (R) = 0.81 and 0.80), and the retrieved NO2 and HCHO vertical column densities (VCDs) were consistent with TROPOMI results (R = 0.81 and 0.77). The regime transitions of O3 formation sensitivity at different layers were derived using HCHO/NO2 ratios and O3 profiles, with contributions of VOC-limited, VOC-NOx-limited, and NOx-limited regimes of 74.19%, 7.33%, and 18.48%, respectively. In addition, the surface O3 formation sensitivity between HCHO/NO2 ratios and O3 (or increased O3, ΔO3) had similar regime transitions of 2.21–2.46 and 2.39–2.71, respectively. Moreover, the O3 formation sensitivity of the lower planetary boundary layer on polluted and non-polluted days was analyzed. On non-polluted days, the contributions of the VOC-limited regime were predominant in the lower planetary boundary layer, whereas those of the NOx-limited regime were predominant in the elevated layers during polluted days. These results will help us understand the evolution of O3 formation sensitivity and formulate O3 mitigation strategies in the Yangtze River Delta region. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

28 pages, 10473 KiB  
Article
Urbanization Effect on Local Summer Climate in Arid Region City of Urumqi: A Numerical Case Study
by Aerzuna Abulimiti, Yongqiang Liu, Qing He, Ali Mamtimin, Junqiang Yao, Yong Zeng and Abuduwaili Abulikemu
Remote Sens. 2025, 17(3), 476; https://doi.org/10.3390/rs17030476 - 30 Jan 2025
Cited by 1 | Viewed by 963
Abstract
The urbanization effect (UE) on local or regional climate is a prominent research topic in the research field of urban climates. However, there is little research on the UE of Urumqi, a typical arid region city, concerning various climatic factors and their spatio–temporal [...] Read more.
The urbanization effect (UE) on local or regional climate is a prominent research topic in the research field of urban climates. However, there is little research on the UE of Urumqi, a typical arid region city, concerning various climatic factors and their spatio–temporal characteristics. This study quantitatively investigates the UE of Urumqi on multiple climatic factors in summer based on a decade-long period of WRF–UCM (Weather Research and Forecasting model coupled with the Urban Canopy Model) simulation data. The findings reveal that the UE of Urumqi has resulted in a reduction in the diurnal temperature range (DTR) within the urban area by causing an increase in night-time minimum temperatures, with the maximum decrease reaching −2.5 °C. Additionally, the UE has also led to a decrease in the water vapor mixing ratio (WVMR) and relative humidity (RH) at 2 m, with the maximum reductions being 0.45 g kg−1 and −6.5%, respectively. Furthermore, the UE of Urumqi has led to an increase in planetary boundary layer height (PBLH), with a more pronounced effect in the central part of the city than in its surroundings, reaching a maximum increase of over 750 m at 19:00 Local Solar Time (LST, i.e., UTC + 6). The UE has also resulted in an increase in precipitation in the northern part of the city by up to 7.5 mm while inhibiting precipitation in the southern part by more than 6 mm. Moreover, the UE of Urumqi has enhanced precipitation both upstream and downstream of the city, with a maximum increase of 7.9 mm. The UE of Urumqi has also suppressed precipitation during summer mornings while enhancing it in summer afternoons. The UE has exerted certain influences on the aforementioned climatic factors, with the UE varying across different directions for each factor. Except for precipitation and PBLH, the UE on the remaining factors exhibit a greater magnitude in the northern region compared to the southern region of Urumqi. Full article
Show Figures

Figure 1

21 pages, 8974 KiB  
Article
Seasonal Analysis of Planetary Boundary Layer and Turbulence in Warsaw, Poland Through Lidar and LES Simulations
by Rayonil G. Carneiro, Maciej Karasewicz, Camilla K. Borges, Lucja Janicka, Dongxiang Wang, Gilberto Fisch and Iwona S. Stachlewska
Remote Sens. 2024, 16(24), 4728; https://doi.org/10.3390/rs16244728 - 18 Dec 2024
Viewed by 1225
Abstract
We analyzed the planetary boundary layer (PBL) characteristics in Warsaw, Poland for a day of summer, autumn, winter, and spring of 2021 by integrating and comparing measured and simulated data. Using remote sensing lidar sensor data, the PBLH was calculated using wavelet covariance [...] Read more.
We analyzed the planetary boundary layer (PBL) characteristics in Warsaw, Poland for a day of summer, autumn, winter, and spring of 2021 by integrating and comparing measured and simulated data. Using remote sensing lidar sensor data, the PBLH was calculated using wavelet covariance transform (WCT) and the gradient method (GM). Also, simulations of turbulent fluxes were performed utilizing the large eddy simulation (LES) from the Parallel Large Eddy Simulation Model (PALM) to better understand how turbulence and convection behave across different seasons in Warsaw. The PBLH diurnal cycles showed pronounced changes in their vertical structure as a function of the season: the winter heights were shallow (~0.7 km), while summer heights were deeper (~1.7 km). The spring and autumn presented transient characteristics of PBLH around 1.0 km. This study is crucial for enhancing urban air quality and climate modeling. The PBLH simulations from PALM showed agreement with the measured data, with an underestimation of approximately 10% in both methods. Through PALM, it was possible to observe that summer exhibited increased convection, enhanced mixing efficiency, and a deeper boundary layer compared to other seasons throughout the daily cycle. Winter has a lower sensible heat flux and little convection throughout the day. Spring and autumn showed intermediate characteristics. In this way, the effectiveness of the applicability of the PALM model to obtain flows within the PBL and their heights is highlighted, because correlations ranged from strong to very strong (r ≥ 0.70). Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

Back to TopTop