Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = plan asymmetric buildings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 8101 KiB  
Article
Sequential Nonlinear Time History Analysis of Asymmetric Reinforced Concrete Buildings Under the 2011 Great Japan Earthquake and Tsunami
by Pramod Kumar, Seeram Madhuri and Mizan Ahmed
Buildings 2025, 15(13), 2170; https://doi.org/10.3390/buildings15132170 - 21 Jun 2025
Viewed by 401
Abstract
A nonlinear incremental time history analysis is performed on plan and vertical asymmetric reinforced concrete (RC) buildings under sequential events of the 2011 Great Japan earthquake and tsunami. The symmetric and plan asymmetric buildings with a unidirectional eccentricity of 6 m to 18 [...] Read more.
A nonlinear incremental time history analysis is performed on plan and vertical asymmetric reinforced concrete (RC) buildings under sequential events of the 2011 Great Japan earthquake and tsunami. The symmetric and plan asymmetric buildings with a unidirectional eccentricity of 6 m to 18 m with an interval of 6 m are considered. The vertical mass and stiffness asymmetric structures are also analyzed considering material nonlinearity. Maximum inundation depths of 6.0 m and 3.0 m are simulated to account for the near-shore and far-shore conditions. A total time duration of 58.69 min. is taken for the earthquake and tsunami, including a time gap of 30 min. between the earthquake and tsunami. The symmetric structure showed structural adequacy against earthquakes and tsunamis, with a maximum inundation depth of 3.0 m. The plan asymmetric structure with 6.0 m eccentricity has shown displacements below the yield displacement (i.e., the maximum lateral displacement before inelastic behavior) under the earthquake, but yielded under the tsunami a time of structural adequacy (the time duration during which the building remains within elastic limits under sequential loading) of up to 42.56 min. In comparison to the symmetric building, the buildings with higher eccentricities (12.0 m and 18.0 m) failed under seismic loading alone, exhibiting 94.12% and 45.94% greater displacements, respectively, both exceeding the yield threshold. Vertical stiffness asymmetric structures displaced more than yield displacement under the earthquake, whereas mass asymmetric structures with asymmetry at the first or second floors have been found resilient under the sequential earthquake and tsunami up to the inundation depth of 3.0 m. From this, it is concluded that vertical evacuation is limited to the first or second floors of the studied building. It is recommended to construct the RC buildings away from the seashore to ensure the safety of the occupants. The construction of the plan and stiffness of asymmetric structures shall be avoided in the seashore locations. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

35 pages, 259443 KiB  
Article
Application of Topology Optimization as a Tool for the Design of Bracing Systems of High-Rise Buildings
by Paulo Ulisses da Silva, Gustavo Bono and Marcelo Greco
Buildings 2025, 15(7), 1180; https://doi.org/10.3390/buildings15071180 - 3 Apr 2025
Viewed by 686
Abstract
This study examines the impact of surrounding buildings and wind incidence angles on the aerodynamic loads of a high-rise building with a 1:1 base–edges and a 1:6 base–height ratio. CFD simulations were conducted using OpenFOAM with the classic RANS kϵ turbulence [...] Read more.
This study examines the impact of surrounding buildings and wind incidence angles on the aerodynamic loads of a high-rise building with a 1:1 base–edges and a 1:6 base–height ratio. CFD simulations were conducted using OpenFOAM with the classic RANS kϵ turbulence model, validated against experimental data from Tokyo Polytechnic University. The aerodynamic coefficients were analyzed for wind angles of θ = 0°, 15°, 30°, and 45°, varying with the adjacent building height. Additionally, topology optimization via the Bi-directional Evolutionary Structural Optimization (BESO) method was applied to determine the optimal bracing system under wind-induced loads. The results indicate that surrounding buildings significantly modify the aerodynamic response, particularly for asymmetric wind angles, where torsional effects become more pronounced. A shielding effect was observed, reducing drag and base moment but with a lesser influence on lift. The topology optimization results show that material distribution is directly influenced by aerodynamic coefficients, with “X” bracing patterns in case of low torsion and an additional member when torsional effects increase. This study highlights the importance of wind engineering in high-rise structural design and urban planning, emphasizing the necessity of specific wind assessments for accurate load predictions in dense urban environments. Full article
(This article belongs to the Special Issue High-Rise Building Design: Phenomena and Analyses Involved)
Show Figures

Figure 1

23 pages, 6325 KiB  
Article
Research on Particle Swarm Optimization-Based UAV Path Planning Technology in Urban Airspace
by Qing Cheng, Zhengyuan Zhang, Yunfei Du and Yandong Li
Drones 2024, 8(12), 701; https://doi.org/10.3390/drones8120701 - 22 Nov 2024
Cited by 4 | Viewed by 2509
Abstract
Urban airspace, characterized by densely packed high-rise buildings, presents complex and dynamically changing environmental conditions. It brings potential risks to UAV flights, such as the risk of collision and accidental entry into no-fly zones. Currently, mainstream path planning algorithms, including the PSO algorithm, [...] Read more.
Urban airspace, characterized by densely packed high-rise buildings, presents complex and dynamically changing environmental conditions. It brings potential risks to UAV flights, such as the risk of collision and accidental entry into no-fly zones. Currently, mainstream path planning algorithms, including the PSO algorithm, have issues such as a tendency to converge to local optimal solutions and poor stability. In this study, an improved particle swarm optimization algorithm (LGPSO) is proposed to address these problems. This algorithm redefines path planning as an optimization problem, constructing a cost function that incorporates safety requirements and operational constraints for UAVs. Stochastic inertia weights are added to balance the global and local search capabilities. In addition, asymmetric learning factors are introduced to direct the particles more precisely towards the optimal position. An enhanced Lévy flight strategy is used to improve the exploration ability, and a greedy algorithm evaluation strategy is designed to evaluate the path more quickly. The configuration space is efficiently searched using the corresponding particle positions and UAV parameters. The experiments, which involved mapping complex urban environments with 3D modeling tools, were carried out by simulations in MATLAB R2023b to assess their algorithmic performance. The results show that the LGPSO algorithm improves by 23% over the classical PSO algorithm and 18% over the GAPSO algorithm in the optimal path distance under guaranteed security. The LGPSO algorithm shows significant improvements in stability and route planning, providing an effective solution for UAV path planning in complex environments. Full article
Show Figures

Figure 1

23 pages, 16601 KiB  
Article
Adaptive Weighted Coherence Ratio Approach for Industrial Explosion Damage Mapping: Application to the 2015 Tianjin Port Incident
by Zhe Su and Chun Fan
Remote Sens. 2024, 16(22), 4241; https://doi.org/10.3390/rs16224241 - 14 Nov 2024
Cited by 1 | Viewed by 1258
Abstract
The 2015 Tianjin Port chemical explosion highlighted the severe environmental and structural impacts of industrial disasters. This study presents an Adaptive Weighted Coherence Ratio technique, a novel approach for assessing such damage using synthetic aperture radar (SAR) data. Our method overcomes limitations in [...] Read more.
The 2015 Tianjin Port chemical explosion highlighted the severe environmental and structural impacts of industrial disasters. This study presents an Adaptive Weighted Coherence Ratio technique, a novel approach for assessing such damage using synthetic aperture radar (SAR) data. Our method overcomes limitations in traditional techniques by incorporating temporal and spatial weighting factors—such as distance from the explosion epicenter, pre- and post-event intervals, and coherence quality—into a robust framework for precise damage classification. This approach effectively captures extreme damage scenarios, including crater formation in inner blast zones, which are challenging for conventional coherence scaling. Through a detailed analysis of the Tianjin explosion, we reveal asymmetric damage patterns influenced by high-rise buildings and demonstrate the method’s applicability to other industrial disasters, such as the 2020 Beirut explosion. Additionally, we introduce a technique for estimating crater dimensions from coherence profiles, enhancing assessment in severely damaged areas. To support structural analysis, we model air pollutant dispersal using HYSPLIT simulations. This integrated approach advances SAR-based damage assessment techniques, providing rapid reliable classifications applicable to various industrial explosions, aiding disaster response and recovery planning. Full article
Show Figures

Figure 1

23 pages, 7912 KiB  
Article
Asymmetric Network Combining CNN and Transformer for Building Extraction from Remote Sensing Images
by Junhao Chang, Yuefeng Cen and Gang Cen
Sensors 2024, 24(19), 6198; https://doi.org/10.3390/s24196198 - 25 Sep 2024
Cited by 7 | Viewed by 2072
Abstract
The accurate extraction of buildings from remote sensing images is crucial in fields such as 3D urban planning, disaster detection, and military reconnaissance. In recent years, models based on Transformer have performed well in global information processing and contextual relationship modeling, but suffer [...] Read more.
The accurate extraction of buildings from remote sensing images is crucial in fields such as 3D urban planning, disaster detection, and military reconnaissance. In recent years, models based on Transformer have performed well in global information processing and contextual relationship modeling, but suffer from high computational costs and insufficient ability to capture local information. In contrast, convolutional neural networks (CNNs) are very effective in extracting local features, but have a limited ability to process global information. In this paper, an asymmetric network (CTANet), which combines the advantages of CNN and Transformer, is proposed to achieve efficient extraction of buildings. Specifically, CTANet employs ConvNeXt as an encoder to extract features and combines it with an efficient bilateral hybrid attention transformer (BHAFormer) which is designed as a decoder. The BHAFormer establishes global dependencies from both texture edge features and background information perspectives to extract buildings more accurately while maintaining a low computational cost. Additionally, the multiscale mixed attention mechanism module (MSM-AMM) is introduced to learn the multiscale semantic information and channel representations of the encoder features to reduce noise interference and compensate for the loss of information in the downsampling process. Experimental results show that the proposed model achieves the best F1-score (86.7%, 95.74%, and 90.52%) and IoU (76.52%, 91.84%, and 82.68%) compared to other state-of-the-art methods on the Massachusetts building dataset, the WHU building dataset, and the Inria aerial image labeling dataset. Full article
Show Figures

Figure 1

24 pages, 13122 KiB  
Article
Research on the Deformation Control Measures during the Construction Period of Super High-Rise Buildings with an Asymmetric Plan
by Hua-Ping Wang and Yi-Qing Xiao
Buildings 2024, 14(9), 2904; https://doi.org/10.3390/buildings14092904 - 14 Sep 2024
Viewed by 982
Abstract
Based on the Guangzhou Business Center project, a typical super high-rise building with an asymmetric plan, taking the construction speed, closure time of mega braces and belt trusses as influencing factors, a parametric analysis on its lateral and vertical deformations, as well as [...] Read more.
Based on the Guangzhou Business Center project, a typical super high-rise building with an asymmetric plan, taking the construction speed, closure time of mega braces and belt trusses as influencing factors, a parametric analysis on its lateral and vertical deformations, as well as the maximum stress of key structural members was conducted. The analysis results indicated that the construction speed had a relatively small impact on the deformation and the maximum stress of key members. However, synchronous closure of belt truss compared with the delayed closure would result in smaller horizontal and vertical deformation differences, as well as the stress of belt truss. Meanwhile, the closure timing of the mega braces had little influence on the vertical deformation difference and the stress of belt truss. And the earlier the closure, the smaller the horizontal drift ratio, the greater the maximum stress of the mega braces. Further, deformation control measurements were brought forward. On the one hand, FEM simulation was carried out according to the above construction suggestions. On the other hand, real-time monitoring was also used. Finally, by comparing both results, proposed construction deformation control measures and simulation methods were verified. Full article
(This article belongs to the Topic Resilient Civil Infrastructure)
Show Figures

Figure 1

27 pages, 7658 KiB  
Article
Cluster Optimization for Integrated Energy Systems Considering Multi-Energy Sharing and Asymmetric Profit Allocation: A Case Study of China
by Shiting Cui, Peng Wang, Yao Gao and Ruijin Zhu
Processes 2023, 11(7), 2027; https://doi.org/10.3390/pr11072027 - 6 Jul 2023
Cited by 1 | Viewed by 1453
Abstract
This study proposes a novel integrated energy system (IES) cluster optimization structure that uses multi-energy sharing, multi-Nash games, and asymmetric profit allocation according to the energy supply demand and energy development planning for Tibet. First, it integrates clean energy units such as concentrated [...] Read more.
This study proposes a novel integrated energy system (IES) cluster optimization structure that uses multi-energy sharing, multi-Nash games, and asymmetric profit allocation according to the energy supply demand and energy development planning for Tibet. First, it integrates clean energy units such as concentrated solar power, power to hydrogen to power, and vacuum pressure swing adsorption to build a novel IES including electricity, heat, and oxygen. Second, multiple novel IESs are combined to form an IES cluster and the IES cluster is divided into three stages of optimization: the first stage is to achieve optimal multi-energy sharing under cluster optimization, the second stage is to conduct multi-Nash games to achieve optimal sharing cost, and the third stage is to conduct asymmetric profit allocation. Finally, the case study is conducted and the results show that the multi-Nash games and asymmetric profit allocation can effectively improve the renewable energy consumption of the IES cluster, reduce the operation cost of the cluster, and reduce the cost of multi-energy sharing compared to only considering the cluster energy supply price as the sharing price, thereby improving the economy of multi-energy sharing. Full article
(This article belongs to the Special Issue Advances in Electrical Systems and Power Networks)
Show Figures

Figure 1

26 pages, 9733 KiB  
Article
Effects of Multi-Directional Seismic Input on Non-Linear Static Analysis of Existing Reinforced Concrete Structures
by Cristina Cantagallo, Marco Terrenzi, Enrico Spacone and Guido Camata
Buildings 2023, 13(7), 1656; https://doi.org/10.3390/buildings13071656 - 28 Jun 2023
Cited by 4 | Viewed by 1753
Abstract
Recent studies have shown the importance of including the seismic input directionality in nonlinear analyses for an accurate prediction of the structural demand on frame structures. This paper proposes a new method that includes the multi-directionality of the input seismic forces in Nonlinear [...] Read more.
Recent studies have shown the importance of including the seismic input directionality in nonlinear analyses for an accurate prediction of the structural demand on frame structures. This paper proposes a new method that includes the multi-directionality of the input seismic forces in Nonlinear Static Analyses (NSAs). Conventionally, the pushover (PO) analyses apply monotonically increasing lateral loads in two directions that typically correspond with the building X and Y directions, that in the case of a rectangular plan are parallel to the building sides. Since in general the direction of the seismic input is a priori unknown, the effects of applying the PO load patterns along varying angles are studied in this paper. Two non-code-conforming reinforced concrete buildings are used as a case study. They have identical structural design but the first one is doubly symmetric while the second one has a significant plan asymmetry due to the translation of the center of mass. PO loads are applied to both structures at angles between 0° and 360° with 15° increments. The results of the NSAs are compared with those of multi-directional NHAs applied at the same angles. The structural demands show that the multi-directional NSAs are more conservative than the conventional NSAs, especially at the corners of the asymmetric- plan building where they can yield significantly higher demands. The base shear capacities in the X and Y directions decrease for intermediate angles due to the interaction between the responses in the X and Y directions that can be captured thanks to the columns’ fiber section discretization. On average the results of the multi-directional NSAs are closer to those of the NHAs, even though they are generally lower. Full article
(This article belongs to the Special Issue Seismic Vulnerability Analysis and Mitigation of Building Systems)
Show Figures

Figure 1

27 pages, 9144 KiB  
Article
Experimental Evaluation of Rigidity Center
by Fuat Korkut, Enes Aksoy and Barış Erdil
Appl. Sci. 2023, 13(13), 7452; https://doi.org/10.3390/app13137452 - 23 Jun 2023
Viewed by 2358
Abstract
It is known that when a reinforced concrete building exposed to a horizontal load is subjected to torsional moments around its center of rigidity, additional shear stresses occur in the vertical load-carrying elements, such as the columns and shear walls. Therefore, in order [...] Read more.
It is known that when a reinforced concrete building exposed to a horizontal load is subjected to torsional moments around its center of rigidity, additional shear stresses occur in the vertical load-carrying elements, such as the columns and shear walls. Therefore, in order to estimate the additional stresses caused by the torsion, the rigidity center should be calculated precisely. It is known that there are several analytical approaches to calculating the rigidity center location. These approaches do not calculate the rigidity centers close to each other in asymmetric buildings. As significant differences were observed in the calculation of the rigidity center using analytical methods, it was decided to seek verification by conducting an experimental study. In order to calculate and verify the location of the rigidity center, an extensive experimental study was planned. A total of 20 scaled and revised buildings were built, and they were tested in the specially designed test setup. The tested buildings had square, rectangular and irregular floor plans. In addition, vertical load-carrying members were either symmetrically placed on the floor plan or kept asymmetrical to see the effect of their location on the rigidity center. All the buildings were tested under their self-weight, and the corresponding displacements were recorded. Additionally, all the buildings were modeled using ETABS to verify the theoretical background of the rigidity center. From the test results, it was found that the resultant shear force can be calculated by multiplying the displacements of each member of a given story found from the tests on its bending stiffness, and this will give the location of the rigidity center. The rigidity center was found to be identical to the results obtained from the 3D model analysis using ETABS, although it uses a different procedure. As the results from the experiment and 3D model are close to each other, it can be said that the rigidity center of reinforced concrete buildings can be found from simple tests using any material that has almost uniform mechanical properties. Full article
(This article belongs to the Special Issue Advances on Structural Engineering, Volume III)
Show Figures

Figure 1

20 pages, 10796 KiB  
Article
Customized Cost-Effective Cranioplasty for Large Asymmetrical Defects
by Khaja Moiduddin, Syed Hammad Mian, Hisham Alkhalefah, Sundar Ramalingam and Abdul Sayeed
Processes 2023, 11(6), 1760; https://doi.org/10.3390/pr11061760 - 9 Jun 2023
Cited by 3 | Viewed by 3055
Abstract
Cranioplasty or cranial reconstruction is always a challenging procedure even for experienced surgeons. In this study, two different design techniques for customized cranial prostheses are assessed for cranial reconstruction. Mirror reconstruction is one of the commonly used reconstruction techniques that fails when cranial [...] Read more.
Cranioplasty or cranial reconstruction is always a challenging procedure even for experienced surgeons. In this study, two different design techniques for customized cranial prostheses are assessed for cranial reconstruction. Mirror reconstruction is one of the commonly used reconstruction techniques that fails when cranial defects cross the midline of symmetry. Hence, there is a need for a design technique for the reconstruction of cranial defects irrespective of their location on the symmetrical plane. The anatomical reconstruction technique demonstrates its applicability for a wide spectrum of complex skull defects irrespective of the defective position in the anatomical structure. The paper outlines a methodological procedure involving a multi-disciplinary approach involving physicians and engineers in the design and reconstruction of customized cranial implants for asymmetrical skull defects. The proposed methodology is based on five foundation pillars including the multi-disciplinary approach, implant design process, additive-manufactured implant, implant fitting analysis, and cost and time analysis for the customized implant. The patient’s computed tomography scan data are utilized to model a customized cranial implant, which is then fabricated using electron beam melting technology. The dimensional validation of the designed and fabricated titanium implant based on the anatomical approach results in a precision of 0.6345 mm, thus indicating a better fit than the standard mirroring method. The results of fitting accuracy also reveal that the manufactured implant’s average deviation is very close to the planned reconstruction area with an error less than 1 mm, suggesting that the customized titanium implant fits the skull model quite precisely. The cost and time analysis reports that the cost for producing a customized cranial implant using electron beam melting technology is around USD 217.5 and the time taken to build is approximately 14 h and 27 min, which is low when compared to other studies. The cost and time analysis also demonstrates that the proposed design would be less burdensome to patients when compared to standard practice. Therefore, the new anatomical design process can be used effectively and efficiently to treat a number of diverse cranial abnormalities with the enhanced cranial implant design. Full article
(This article belongs to the Special Issue Computer-Aided Manufacturing Technologies in Mechanical Field)
Show Figures

Figure 1

20 pages, 6196 KiB  
Article
The Effect of Sequential Excitations on Asymmetrical Reinforced Concrete Low-Rise Framed Structures
by Paraskevi K. Askouni
Symmetry 2023, 15(5), 968; https://doi.org/10.3390/sym15050968 - 24 Apr 2023
Cited by 5 | Viewed by 2063
Abstract
In the current research, the elastoplastic behaviour of symmetrical and asymmetrical reinforced concrete buildings is explored by dynamic analysis. The used ground excitations are of sequential type, which is found in the literature to possibly strongly affect the dynamic structural behaviour. The contemporary [...] Read more.
In the current research, the elastoplastic behaviour of symmetrical and asymmetrical reinforced concrete buildings is explored by dynamic analysis. The used ground excitations are of sequential type, which is found in the literature to possibly strongly affect the dynamic structural behaviour. The contemporary seismic codes neglect the impact of sequential earthquakes on the seismic response, highlighting a scientific gap necessary to be studied. Within the scope of this study, ordinary 3D reinforced concrete low-rise building frames are forced to sequential ground excitations, as well as to a respective single-occurrence corresponding ground excitation, for comparability reasons. In the present dynamic analyses, the two horizontal directions of the excitations, along with the vertical one, are included in the analysis input. The nonlinear behaviour of reinforced concrete sections under strong strain is considered in the present analyses. The geometrical in-plan asymmetry of the 3D models is expressed by a simply defined ratio. Selected unitless resulting plots of the current dynamic analyses are presented and appropriately discussed given the relative geometrical asymmetry. The role of sequential ground excitations on the dynamic response is recognized, along with the role of simple geometrical symmetry or asymmetry, in the resulting response plots. Thus, useful conclusions are acquired, pointing to remarks on the geometrical structural design helpful for the development of recommendations of seismic provisions. Full article
(This article belongs to the Special Issue Applied Mechanics, Engineering and Modeling - Volume II)
Show Figures

Figure 1

22 pages, 9176 KiB  
Article
Assessment of Torsional Amplification of Drift Demand in a Building Employing Site-Specific Response Spectra and Accelerograms
by Yao Hu, Prashidha Khatiwada, Elisa Lumantarna and Hing Ho Tsang
CivilEng 2023, 4(1), 248-269; https://doi.org/10.3390/civileng4010015 - 28 Feb 2023
Cited by 2 | Viewed by 2281
Abstract
This paper aims at giving structural designers guidance on how to transform seismic demand on a building structure from two-dimensional (2D) to three-dimensional (3D) in an expedient manner, taking into account amplification of the torsional actions. This paper is to be read in [...] Read more.
This paper aims at giving structural designers guidance on how to transform seismic demand on a building structure from two-dimensional (2D) to three-dimensional (3D) in an expedient manner, taking into account amplification of the torsional actions. This paper is to be read in conjunction with either paper #3 or #4. Torsional amplification of the drift demand in a building is of major concern in the structural design for countering seismic actions on the building. Code-based seismic design procedures based on elastic analyses may understate torsional actions in a plan of asymmetric building. This is because the inability of elastic analyses to capture the abrupt increase in the torsional action as the limit of yield of the supporting structural walls is surpassed. Nonlinear dynamic analysis can provide accurate assessment of torsional actions in a building which has been excited to respond in the inelastic range. However, a 3D whole building analysis of a multi-storey building can be costly and challenging, and hence not suited to day-to-day structural design. To simplify the analysis and reduce the scale of the computation, closed-form expressions are introduced in this paper for estimation of the Δ3D/Δ2D drift demand ratio for elastic conditions when buildings are subjected to moderate-intensity ground shaking. The drift demand of the 3D model can be estimated as a product of the 2D drift demand and the Δ3D/Δ2D drift demand ratio. In dealing with higher-intensity ground shaking causing yielding to occur, a macroscopic modelling methodology may be employed. The estimated Δ3D/Δ2D drift demand ratio of an equivalent single-storey building is combined with separate analysis for determination of the 2D drift demand. The deflection profile of the multi-storey prototype taking into account 3D effects, including torsional actions, is hence obtained. The accuracy of the presented methodologies has been verified by case studies in which drift estimates generated by the proposed calculation procedure were compared against results from whole building analyses, employing a well-established computer software. Full article
(This article belongs to the Special Issue Site-Specific Seismic Design of Buildings)
Show Figures

Figure 1

16 pages, 2749 KiB  
Article
Exploring Pedestrian Satisfaction in Old and New Town: An Impact-Asymmetry Analysis
by Liu Han, Dewei Fang, Shan Sun, Lixuan Zhao, Qian Zheng, Jingxu Lan and Xue Wang
Sustainability 2023, 15(3), 2414; https://doi.org/10.3390/su15032414 - 29 Jan 2023
Cited by 4 | Viewed by 2144
Abstract
In the context of the global construction of low-carbon cities and residents’ pursuit of healthy living, the improvement in the urban walking environment has gradually been emphasized in the field of planning and transportation research. Using Harbin, China, as an example, this paper [...] Read more.
In the context of the global construction of low-carbon cities and residents’ pursuit of healthy living, the improvement in the urban walking environment has gradually been emphasized in the field of planning and transportation research. Using Harbin, China, as an example, this paper combines gradient boosting decision trees (GBDTs) and impact-asymmetry analysis (IAA) methods to explore the differences in residents’ preferences for the pedestrian environment needs in old and new urban areas, analyze the asymmetric relationship between walking environment factors and overall satisfaction, and provide a sound basis for the renewal and reconstruction of the walking environment in old urban areas and the improvement of the walking environment in new urban areas. The factors affecting the pedestrian environment in the old and new urban areas are similar and different, with the aesthetics and safety and the aesthetics and comfort of the pedestrian environment having a greater impact on the old and new urban areas, respectively. According to the results of the IAA, the old city should focus on improving green landscaping, street furniture, the uncivilized behavior of pedestrians, pavement encroachment, barrier-free facilities, and the speed of motor vehicles; the new city should focus on improving the building facade effect, the uncivilized behavior of pedestrians, and green landscaping. Full article
Show Figures

Figure 1

13 pages, 2674 KiB  
Article
Evaluation of the Ground Settlement in an Urban Area Resulting from a Small Curvature Tunneling Construction
by Lixian Tang, Qiang Zhou, Shoulong Wang, Wenjie Yao, Bowei Zhang, Ke Xiang, Alfrendo Satyanaga and Jin Tao
Sustainability 2022, 14(23), 16230; https://doi.org/10.3390/su142316230 - 5 Dec 2022
Cited by 5 | Viewed by 2227
Abstract
The transportation system is one of the major infrastructures in urban areas, and it serves 56% of the world’s population. Nowadays, metro lines are developing fast in urban areas. Due to the restrictions of urban fields, metro lines are usually not planned straight, [...] Read more.
The transportation system is one of the major infrastructures in urban areas, and it serves 56% of the world’s population. Nowadays, metro lines are developing fast in urban areas. Due to the restrictions of urban fields, metro lines are usually not planned straight, and a curved line is required to connect stations in different locations in a city. As a result, small curvature tunnels are commonly constructed in urban areas. The tunneling construction in a city area may cause ground settlement, which is sensitive to surrounding buildings and underground utilities. The aim of this study is to explore the impact of curvature alignment on the ground settlement. In this paper, ground settlements induced by small curvature shield tunneling were evaluated by using a numerical analysis. A total of six cases were selected for the analysis. The results obtained from the numerical simulations were compared with Peck’s equation. It is observed that Peck’s equation can be used for the estimation of the maximum settlement. However, the ground settlements on both sides of the central axis of the curved tunnel are asymmetrical, and Peck’s equation, which provides a symmetrical settlement, may not be applicable in the case of small curvature tunnels. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

27 pages, 5053 KiB  
Article
Center of Stiffness, Principal Axes and Principal Start Point of Thin-Walled Open-Sections of Cores: A New Modified Calculation Technique Based on Vlasov Torsion Theory
by Triantafyllos K. Makarios and Asimina Athanatopoulou
Buildings 2022, 12(11), 1804; https://doi.org/10.3390/buildings12111804 - 27 Oct 2022
Cited by 2 | Viewed by 3783
Abstract
The present paper deals with the exact calculation of the Principal Elastic Reference System of R/C Cores, which have thin-walled open section. A new modified technique based on Vlasov torsion theory is developed that examines the warping phenomenon of cores. The exact position [...] Read more.
The present paper deals with the exact calculation of the Principal Elastic Reference System of R/C Cores, which have thin-walled open section. A new modified technique based on Vlasov torsion theory is developed that examines the warping phenomenon of cores. The exact position of the elastic center (or shear center) of a core and the orientation of the principal axes of elasticity, as well as the exact calculation of warping constant, are special parameters since, on the one hand it strongly affects the in plan stiffness distribution of the building members, and on the other hand it affects the values of the building eigen-frequencies and mode-shapes. These parameters are particularly critical in seismic design of asymmetric multistorey buildings. Based on Vlasov torsion theory of cores with thin-walled open sections, a repetitive mathematical procedure about the calculation of the location of the elastic center of core and the principal start point of the section is proposed. This new modified technique can be applied to cores of any shape. Afterwards, the exact diagram of sectorial coordinates of the section, as well as the warping constant, are calculated. All the above-mentioned parameters are very useful in the simulation of the cores in numerical models that are going to use in linear and nonlinear seismic analysis of the structures. Knowing all mentioned parameters, the numerical accuracy of the finite element method on cores can be checked. Finally, a numerical example, where the proposed new modified technique is applied on a fully asymmetric core, is presented. Full article
(This article belongs to the Section Building Structures)
Show Figures

Graphical abstract

Back to TopTop