Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (520)

Search Parameters:
Keywords = pioneering technologies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 382 KiB  
Review
Physics-Informed Neural Networks: A Review of Methodological Evolution, Theoretical Foundations, and Interdisciplinary Frontiers Toward Next-Generation Scientific Computing
by Zhiyuan Ren, Shijie Zhou, Dong Liu and Qihe Liu
Appl. Sci. 2025, 15(14), 8092; https://doi.org/10.3390/app15148092 - 21 Jul 2025
Viewed by 835
Abstract
Physics-informed neural networks (PINNs) have emerged as a transformative methodology integrating deep learning with scientific computing. This review establishes a three-dimensional analytical framework to systematically decode PINNs’ development through methodological innovation, theoretical breakthroughs, and cross-disciplinary convergence. The contributions include threefold: First, identifying the [...] Read more.
Physics-informed neural networks (PINNs) have emerged as a transformative methodology integrating deep learning with scientific computing. This review establishes a three-dimensional analytical framework to systematically decode PINNs’ development through methodological innovation, theoretical breakthroughs, and cross-disciplinary convergence. The contributions include threefold: First, identifying the co-evolutionary path of algorithmic architectures from adaptive optimization (neural tangent kernel-guided weighting achieving 230% convergence acceleration in Navier-Stokes solutions) to hybrid numerical-deep learning integration (5× speedup via domain decomposition) and second, constructing bidirectional theory-application mappings where convergence analysis (operator approximation theory) and generalization guarantees (Bayesian-physical hybrid frameworks) directly inform engineering implementations, as validated by 72% cost reduction compared to FEM in high-dimensional spaces (p<0.01,n=15 benchmarks). Third, pioneering cross-domain knowledge transfer through application-specific architectures: TFE-PINN for turbulent flows (5.12±0.87% error in NASA hypersonic tests), ReconPINN for medical imaging (SSIM=+0.18±0.04 on multi-institutional MRI), and SeisPINN for seismic systems (0.52±0.18 km localization accuracy). We further present a technological roadmap highlighting three critical directions for PINN 2.0: neuro-symbolic, federated physics learning, and quantum-accelerated optimization. This work provides methodological guidelines and theoretical foundations for next-generation scientific machine learning systems. Full article
Show Figures

Figure 1

21 pages, 2440 KiB  
Article
Dual-Purpose Utilization of Sri Lankan Apatite for Rare Earth Recovery Integrated into Sustainable Nitrophosphate Fertilizer Manufacturing
by D. B. Hashini Indrachapa Bandara, Avantha Prasad, K. D. Anushka Dulanjana and Pradeep Wishwanath Samarasekere
Sustainability 2025, 17(14), 6353; https://doi.org/10.3390/su17146353 - 11 Jul 2025
Viewed by 1174
Abstract
Rare earth elements (REEs) have garnered significant global attention due to their essential role in advanced technologies. Sri Lanka is endowed with various REE-bearing minerals, including the apatite-rich deposit in the Eppawala area, commonly known as Eppawala rock phosphate (ERP). However, direct extraction [...] Read more.
Rare earth elements (REEs) have garnered significant global attention due to their essential role in advanced technologies. Sri Lanka is endowed with various REE-bearing minerals, including the apatite-rich deposit in the Eppawala area, commonly known as Eppawala rock phosphate (ERP). However, direct extraction of REEs from ERP is technically challenging and economically unfeasible. This study introduces a novel, integrated approach for recovering REEs from ERP as a by-product of nitrophosphate fertilizer production. The process involves nitric acid-based acidolysis of apatite, optimized at 10 M nitric acid for 2 h at 70 °C with a pulp density of 2.4 mL/g. During cooling crystallization, 42 wt% of calcium was removed as Ca(NO3)2.4H2O while REEs remained in the solution. REEs were then selectively precipitated as REE phosphates via pH-controlled addition of ammonium hydroxide, minimizing the co-precipitation with calcium. Further separation was achieved through selective dissolution in a sulfuric–phosphoric acid mixture, followed by precipitation as sodium rare earth double sulfates. The process achieved over 90% total REE recovery with extraction efficiencies in the order of Pr > Nd > Ce > Gd > Sm > Y > Dy. Samples were characterized for their phase composition, elemental content, and morphology. The fertilizer results confirmed the successful production of a nutrient-rich nitrophosphate (NP) with 18.2% nitrogen and 13.9% phosphorus (as P2O5) with a low moisture content (0.6%) and minimal free acid (0.1%), indicating strong agronomic value and storage stability. This study represents one of the pioneering efforts to valorize Sri Lanka’s apatite through a novel, dual-purpose, and circular approach, recovering REEs while simultaneously producing high-quality fertilizer. Full article
(This article belongs to the Special Issue Technologies for Green and Sustainable Mining)
Show Figures

Figure 1

24 pages, 3151 KiB  
Article
Application of Surface Electromyography (sEMG) in the Analysis of Upper Limb Muscle Activity in Women Aged 50+ During Torqway Riding
by Sylwia Agata Bęczkowska, Iwona Grabarek and Zuzanna Zysk
Sensors 2025, 25(14), 4280; https://doi.org/10.3390/s25144280 - 9 Jul 2025
Viewed by 334
Abstract
The aim of this study was to analyze the activation of selected upper limb muscles. For the purposes of this article, we present results concerning the following muscles: triceps brachii, anterior and posterior deltoid, and trapezius in women aged 50 and above during [...] Read more.
The aim of this study was to analyze the activation of selected upper limb muscles. For the purposes of this article, we present results concerning the following muscles: triceps brachii, anterior and posterior deltoid, and trapezius in women aged 50 and above during simulated riding of the Torqway device, using surface electromyography (sEMG). The primary objective was to compare muscle activity across two movement phases: active and passive. Accordingly, the following research hypotheses were formulated: muscle activity (measured by RMS values) will be significantly higher during the active phase compared to the passive phase, and MPF (mean power frequency) values will decrease over time, indicating the onset of muscle fatigue. Additionally, the potential of surface electromyography was assessed as a diagnostic tool for evaluating ergonomics and muscle effort in the context of designing personalized mobility devices for older adults. As the study of the Torqway device represents a pioneering research effort, this publication makes a significant contribution to the biomechanical analysis of new forms of active mobility supported by wearable sensor technologies. Full article
(This article belongs to the Special Issue Sensors and Data Analysis for Biomechanics and Physical Activity)
Show Figures

Figure 1

13 pages, 624 KiB  
Review
Microgravity Therapy as Treatment for Decelerated Aging and Successful Longevity
by Nadine Mozalbat, Lital Sharvit and Gil Atzmon
Int. J. Mol. Sci. 2025, 26(13), 6544; https://doi.org/10.3390/ijms26136544 - 7 Jul 2025
Viewed by 1015
Abstract
Aging is a complex biological process marked by a progressive decline in cellular function, leading to age-related diseases such as neurodegenerative disorders, cancer, and cardiovascular diseases. Despite significant advancements in aging research, finding effective interventions to decelerate aging remains a challenge. This review [...] Read more.
Aging is a complex biological process marked by a progressive decline in cellular function, leading to age-related diseases such as neurodegenerative disorders, cancer, and cardiovascular diseases. Despite significant advancements in aging research, finding effective interventions to decelerate aging remains a challenge. This review explores microgravity as a novel therapeutic approach to combat aging and promote healthy longevity. The hallmarks of aging, including genomic instability, telomere shortening, and cellular senescence, form the basis for understanding the molecular mechanisms behind aging. Interestingly, microgravity has been shown to accelerate aging-like processes in model organisms and human tissues, making it an ideal environment for studying aging mechanisms in an accelerated manner. Spaceflight studies, such as NASA’s Twins Study and experiments aboard the International Space Station (ISS), reveal striking parallels between the physiological changes induced by microgravity and those observed in aging populations, including muscle atrophy, bone density loss, cardiovascular deconditioning, and immune system decline in a microgravity environment. However, upon microgravity recovery, cellular behavior, gene expression, and tissue regeneration were seen, providing vital insights into aging mechanisms and prospective therapeutic approaches. This review examines the potential of microgravity-based technologies to pioneer novel strategies for decelerating aging and enhancing healthspan under natural gravity, paving the way for breakthroughs in longevity therapies. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

23 pages, 527 KiB  
Article
A Framework of Core Competencies for Effective Hotel Management in an Era of Turbulent Economic Fluctuations and Digital Transformation: The Case of Shanghai, China
by Yuanhang Li, Stelios Marneros, Andreas Efstathiades and George Papageorgiou
Tour. Hosp. 2025, 6(3), 130; https://doi.org/10.3390/tourhosp6030130 - 7 Jul 2025
Viewed by 533
Abstract
In the context of macroeconomic recovery and accelerating digital transformation in the post-pandemic era, the hotel industry in China is undergoing profound structural changes. This research investigates the core competencies required for hotel managers to navigate these challenges. Data was collected via a [...] Read more.
In the context of macroeconomic recovery and accelerating digital transformation in the post-pandemic era, the hotel industry in China is undergoing profound structural changes. This research investigates the core competencies required for hotel managers to navigate these challenges. Data was collected via a quantitative survey involving a structured questionnaire, was conducted among hotel managers in Shanghai, China, resulting in 404 valid responses. Employing exploratory factor analysis using SPSS, this study identifies seven key competency dimensions encompassing 36 ranked items, including interpersonal communication, leadership, operational knowledge, human resource management, financial analysis, technology, and administrative management. The results show that economic recovery has brought new opportunities but also challenges to the hotel industry, and that managers must possess a diverse set of core competencies to adapt to the demanding new market changes. The novelty of this research lies in its empirical grounding and its focus on the intersection of digitalization and economic recovery within China’s hotel industry. It pioneers a dynamic strategic competency framework tailored to the evolving demands of the hotel industry during a period of economic volatility, providing empirical evidence and advice for optimizing the industry’s talent training systems. Simultaneously, it brings a new perspective for dealing with the recovery path for the hotel enterprises in other urban and travel destinations, aiming to promote industry sustainability and competitive advantages. Future research could extend the proposed framework by exploring its applicability across different cultural and economic contexts. Full article
Show Figures

Figure 1

9 pages, 989 KiB  
Proceeding Paper
Motion Capture System in Performance Assessment of Playing Piano: Establishing the Center for Music Performance Science and Musicians’ Medicine in China
by Qing Yang, Chieko Mibu and Yuchi Zhang
Eng. Proc. 2025, 98(1), 28; https://doi.org/10.3390/engproc2025098028 - 1 Jul 2025
Viewed by 372
Abstract
This article introduces China’s first Center for Music Performance Science and Musicians’ Medicine. In the center, motion capture (MoCap) technology is used to study piano performance and musicians’ health. An idea and methodology to assess the performance of piano performance are developed in [...] Read more.
This article introduces China’s first Center for Music Performance Science and Musicians’ Medicine. In the center, motion capture (MoCap) technology is used to study piano performance and musicians’ health. An idea and methodology to assess the performance of piano performance are developed in the center. The center uses high-precision MoCap system to analyze movement efficiency, posture, joint angles, and coordination of pianists. By addressing physical challenges, the center promotes healthier, more efficient practice ways, especially for adolescent piano learners. The pioneering research results bridge the gap between music performance (art) and science, positioning China as a leader in music performance science and musicians’ health. Full article
Show Figures

Figure 1

17 pages, 1873 KiB  
Article
Intracytoplasmic Sperm Injection Using 20-Year-Old Cryopreserved Sperm Results in Normal, Viable, and Reproductive Offspring in Xenopus laevis: A Major Pioneering Achievement for Amphibian Conservation
by Louise Péricard, Sébastien Le Mével, Olivier Marquis, Yann Locatelli and Laurent Coen
Animals 2025, 15(13), 1941; https://doi.org/10.3390/ani15131941 - 1 Jul 2025
Viewed by 971
Abstract
The significant decline in amphibians worldwide is demanding the development of reliable techniques to save species and their genetic diversity. Considerable efforts are currently in progress to develop assisted reproductive technologies (ARTs), focusing mainly on sperm cryopreservation and in vitro fertilization (IVF). In [...] Read more.
The significant decline in amphibians worldwide is demanding the development of reliable techniques to save species and their genetic diversity. Considerable efforts are currently in progress to develop assisted reproductive technologies (ARTs), focusing mainly on sperm cryopreservation and in vitro fertilization (IVF). In Xenopus, a simple and efficient transgenesis method based on the intracytoplasmic injection (ICSI) of cryoconserved sperm was developed several decades ago, allowing for quick generation of large numbers of transgenic animals, for biological research. Such a methodology could be critical for the recovery of species and their genetic diversity, contributing to amphibian conservation. However, this approach raised the question of whether the sperm preservation method used with ICSI is compatible with long-term storage. To address this question, animals were generated by ICSI using a twenty-year-old cryopreserved sperm preparation. Their development, behavior, and reproduction ability were compared with those of animals obtained using a recently frozen sperm preparation and those of animals obtained via IVF using fresh semen. Although lower than with IVF, we showed that fertilization rates using ICSI after 20 years of cryopreservation are similar to those of a recent preparation, with viable offspring leading to normal F2 generation. This pioneering achievement is proof of concept for long-term sperm cryopreservation using simple and readily available technologies for the conservation of endangered amphibians. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

30 pages, 1033 KiB  
Article
Agile by Design: Embracing Resilient Built Environment Principles in Architectural and Urban Pedagogy
by Anosh Nadeem Butt, Ashraf M. Salama and Carolina Rigoni
Architecture 2025, 5(3), 45; https://doi.org/10.3390/architecture5030045 - 30 Jun 2025
Viewed by 968
Abstract
Climate change, urbanization, and socio-economic inequality are increasing the severity of urban challenges, emphasizing the imperative for a resilient built environment. Yet, architectural education has lagged in adopting resilience principles into its central curricula. This paper critiques dominant pedagogical paradigms and identifies shortcomings [...] Read more.
Climate change, urbanization, and socio-economic inequality are increasing the severity of urban challenges, emphasizing the imperative for a resilient built environment. Yet, architectural education has lagged in adopting resilience principles into its central curricula. This paper critiques dominant pedagogical paradigms and identifies shortcomings in interdisciplinary collaboration, digital tool adoption, and practical problem-solving. Moving its focus from local to international best practices for resilience, the study extracts key dimensions for learning architecture and explores case studies in leading schools that reflect pioneering, resilience-centric pedagogies. The findings highlight the importance of scenario-based learning, participatory design, and the use of technologies like AI, GIS, and digital twins to strengthen resilience. The article also explores how policy reformulation, accreditation mandates, and cross-sector collaborations can enforce the institutionalization of resilience education. It demands a pedagogical shift toward climate adaptation design studios, inter/transdisciplinary methods, and technological skills. The study ends with action guidelines for teachers, policymakers, and industry professionals who want to ensure that architectural education becomes responsive to resilient urban futures. Full article
Show Figures

Figure 1

31 pages, 7991 KiB  
Review
Research and Overview of Crop Straw Chopping and Returning Technology and Machine
by Peng Liu, Chunyu Song, Jin He, Rangling Li, Min Cheng, Chao Zhang, Qinliang Li, Haihong Zhang and Mingxu Wang
Machines 2025, 13(7), 564; https://doi.org/10.3390/machines13070564 - 28 Jun 2025
Viewed by 314
Abstract
Crop straw chopping and returning technology has gained global implementation to enhance soil structure and fertility, facilitating increased crop yield. Nevertheless, technological adoption faces challenges from inherent limitations in machinery performance, including poor chopping and returning quality and high energy consumption. Consequently, this [...] Read more.
Crop straw chopping and returning technology has gained global implementation to enhance soil structure and fertility, facilitating increased crop yield. Nevertheless, technological adoption faces challenges from inherent limitations in machinery performance, including poor chopping and returning quality and high energy consumption. Consequently, this review first presented a theoretical framework that described the mechanical properties of straw, its fracture dynamics, interactions with airflow, and motion characteristics during the chopping process. Then, based on the straw returning process, the chopping devices were classified into five types: the chopped blade, the chopping machine, the chopping device combined with a no-tillage or reduced-tillage seeder, the chopping and ditch-burying machine, the chopping and mixing machine, and the harvester-powered chopping device. Advancements in spreading devices were also summarized. Finally, six key directions for future research were proposed: developing an intelligent field straw distribution mapping system, engineering adaptive self-regulating mechanisms for chopping and returning equipment, elucidating the mechanics and kinematics of straw in the chopping and returning process, implementing real-time quality assessment systems for straw returning operations, pioneering high forward-speed (>8 km/h) straw returning machines, and establishing context-specific straw residue management frameworks. This review provided a reference and offered support for the global application of straw returning technology. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

21 pages, 1024 KiB  
Review
Non-Invasive Micro-Test Technology in Plant Physiology Under Abiotic Stress: From Mechanism to Application
by Tianpeng Zhang, Peipei Yin, Xinghong Yang, Yunqi Liu and Ruirui Xu
Plants 2025, 14(13), 1932; https://doi.org/10.3390/plants14131932 - 23 Jun 2025
Viewed by 570
Abstract
Non-invasive Micro-test Technology (NMT) represents a pioneering approach in the study of physiological functions within living organisms. This technology possesses the remarkable capability to monitor the flow rates and three-dimensional movement directions of ions or molecules as they traverse the boundaries of living [...] Read more.
Non-invasive Micro-test Technology (NMT) represents a pioneering approach in the study of physiological functions within living organisms. This technology possesses the remarkable capability to monitor the flow rates and three-dimensional movement directions of ions or molecules as they traverse the boundaries of living organisms without sample destruction. The advantages of NMT are multifaceted, encompassing real-time, non-invasive assessment, a wide array of detection indicators, and compatibility with diverse sample types. Consequently, it stands as one of the foremost tools in contemporary plant physiological research. This comprehensive review delves into the applications and research advancements of NMT within the field of plant abiotic stress physiology, including drought, salinity, extreme temperature, nutrient deficiency, ammonium toxicity, acid stress, and heavy metal toxicity. Furthermore, it offers a forward-looking perspective on the potential applications of NMT in plant physiology research, underscoring its unique capacity to monitor the flux dynamics of ions/molecules (e.g., Ca2+, H+, K+, and IAA) in real time, reveal early stress response signatures through micrometer-scale spatial resolution measurements, and elucidate stress adaptation mechanisms by quantifying bidirectional nutrient transport across root–soil interfaces. NMT enhances our understanding of the spatiotemporal patterns governing plant–environment interactions, providing deeper insights into the molecular mechanism of abiotic stress resilience. Full article
(This article belongs to the Special Issue Advances in Plant Auxin Biology)
Show Figures

Figure 1

68 pages, 2430 KiB  
Review
Unlocking the Future: Carbon Nanotubes as Pioneers in Sensing Technologies
by Nargish Parvin, Sang Woo Joo, Jae Hak Jung and Tapas K. Mandal
Chemosensors 2025, 13(7), 225; https://doi.org/10.3390/chemosensors13070225 - 21 Jun 2025
Cited by 1 | Viewed by 1033
Abstract
Carbon nanotubes (CNTs) have emerged as pivotal nanomaterials in sensing technologies owing to their unique structural, electrical, and mechanical properties. Their high aspect ratio, exceptional surface area, excellent electrical conductivity, and chemical tunability enable superior sensitivity and rapid response in various sensor platforms. [...] Read more.
Carbon nanotubes (CNTs) have emerged as pivotal nanomaterials in sensing technologies owing to their unique structural, electrical, and mechanical properties. Their high aspect ratio, exceptional surface area, excellent electrical conductivity, and chemical tunability enable superior sensitivity and rapid response in various sensor platforms. This review presents a comprehensive overview of recent advancements in CNT-based sensors, encompassing both single-walled (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). We discuss their functional roles in diverse sensing applications, including gas sensing, chemical detection, biosensing, and pressure/strain monitoring. Particular emphasis is placed on the mechanisms of sensing, such as changes in electrical conductivity, surface adsorption phenomena, molecular recognition, and piezoresistive effects. Furthermore, we explore strategies for enhancing sensitivity and selectivity through surface functionalization, hybrid material integration, and nanostructuring. The manuscript also covers the challenges of reproducibility, selectivity, and scalability that hinder commercial deployment. In addition, emerging directions such as flexible and wearable CNT-based sensors, and their role in real-time environmental, biomedical, and structural health monitoring systems, are critically analyzed. By outlining both current progress and existing limitations, this review underscores the transformative potential of CNTs in the design of next-generation sensing technologies across interdisciplinary domains. Full article
(This article belongs to the Special Issue Application of Carbon Nanotubes in Sensing)
Show Figures

Figure 1

24 pages, 310 KiB  
Article
Technological Adoption Sequences and Sustainable Innovation Performance: A Longitudinal Analysis of Optimal Pathways
by Francisco Gustavo Bautista Carrillo and Daniel Arias-Aranda
Sustainability 2025, 17(13), 5719; https://doi.org/10.3390/su17135719 - 21 Jun 2025
Viewed by 657
Abstract
This study explores how the sequence and timing of Industry 4.0 technology adoption affect sustainable innovation in manufacturing firms. Using longitudinal data from the State Society of Industrial Participations, we track the adoption patterns of eight technologies, including industrial IoT, cloud computing, RFID, [...] Read more.
This study explores how the sequence and timing of Industry 4.0 technology adoption affect sustainable innovation in manufacturing firms. Using longitudinal data from the State Society of Industrial Participations, we track the adoption patterns of eight technologies, including industrial IoT, cloud computing, RFID, machine learning, robotics, additive manufacturing, autonomous robots, and generative AI. Sequence analysis reveals five distinct adoption profiles: data-centric foundations, automation pioneers, holistic integrators, cautious adopters, and product-centric innovators. Our results show that these adoption pathways differentially impact sustainability outcomes such as circular material innovation, energy transition, operational eco-efficiency, and emissions reduction. Mediation analysis indicates that data orchestration capabilities significantly enhance resource productivity in holistic integrators, generative design competencies accelerate biomaterial innovation in product-centric innovators, and cyber-physical integration reduces lifecycle emissions in automation pioneers. By highlighting how temporal complementarities among technologies shape sustainability performance, this research advances dynamic capabilities theory and emphasizes the path-dependent nature of sustainable innovation. The findings provide practical guidance for firms to align digital transformation with sustainability objectives and offer policymakers insights into designing timely support mechanisms for industrial transitions. This work bridges innovation timing with ecological modernization, contributing a new understanding of capability development for sustainable value creation. Full article
20 pages, 8100 KiB  
Article
Characterization of Red Sandstone and Black Crust to Analyze Air Pollution Impacts on a Cultural Heritage Building: Red Fort, Delhi, India
by Gaurav Kumar, Lucia Rusin, Pavan Kumar Nagar, Sanjay Kumar Manjul, Michele Back, Alvise Benedetti, Bhola Ram Gurjar, Chandra Shekhar Prasad Ojha, Mukesh Sharma and Eleonora Balliana
Heritage 2025, 8(6), 236; https://doi.org/10.3390/heritage8060236 - 19 Jun 2025
Viewed by 1380
Abstract
Urban air pollution poses significant risks to cultural heritage buildings, particularly in polluted megacities like Delhi, India. The Red Fort, a UNESCO World Heritage Site and a symbol of India’s rich history, is highly susceptible to degradation caused by air pollutants. Despite its [...] Read more.
Urban air pollution poses significant risks to cultural heritage buildings, particularly in polluted megacities like Delhi, India. The Red Fort, a UNESCO World Heritage Site and a symbol of India’s rich history, is highly susceptible to degradation caused by air pollutants. Despite its great importance as an Indian and world heritage site, no studies have focused on characterizing its constituent materials or the degradation phenomena taking place. This study was developed in the framework of the MAECI (Italian Ministry of Foreign Affairs) and the Department of Science and Technology under the Ministry of Science and Technology, India, project: Indo—Italian Centre of Excellence for Restoration and Assessment of Environmental Impacts on Cultural Heritage Monuments. To understand their composition and degradation, Vindhyan sandstone and black crust samples were studied. Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) indicated that the red sandstone predominantly consisted of quartz and microcline, while the black crusts mainly comprised gypsum, bassanite, weddellite, quartz, and microcline. The analysis attributed the formation of gypsum to exogenous sources, such as construction activities and cement factory emissions. This pioneering study provides a basis for further research into the impacts of air pollution on Indian patrimony and promotes conservation strategies. Full article
(This article belongs to the Special Issue Deterioration and Conservation of Materials in Built Heritage)
Show Figures

Figure 1

33 pages, 178656 KiB  
Article
Molecular Determinants of the Human Retinal Pigment Epithelium Cell Fate and Potential Pharmacogenomic Targets for Precision Medicine
by Cristina Zibetti
Int. J. Mol. Sci. 2025, 26(12), 5817; https://doi.org/10.3390/ijms26125817 - 17 Jun 2025
Viewed by 897
Abstract
Age-related macular degeneration (AMD) is a common cause of blindness worldwide, and it is projected to affect several million individuals by 2040. The human retinal pigment epithelium (hRPE) degenerates in dry AMD, prompting the need to develop stem cell therapies to replace the [...] Read more.
Age-related macular degeneration (AMD) is a common cause of blindness worldwide, and it is projected to affect several million individuals by 2040. The human retinal pigment epithelium (hRPE) degenerates in dry AMD, prompting the need to develop stem cell therapies to replace the lost tissue by autologous transplantation and restore the visual function. Nevertheless, the molecular factors behind the hRPE cell fate determination have not been elucidated. Here we identify all molecular determinants of the hRPE cell fate identity by comprehensive and unbiased screening of predicted pioneer factors in the human genome: such TFs mediate coordinated transitions in chromatin accessibility and transcriptional outcome along three major stages of the hRPE genesis. Furthermore, we compile a complete census of all transcription factor-specific binding sites by footprinting analysis of the human epigenome along the RPE developmental trajectory. Gene regulatory networks were found to be involved in cellular responses to glucose and hypoxia, RPE nitrosative stress, type II epithelial-to-mesenchymal transition (EMT), and type III tumorigenic EMT, providing routes for therapeutic intervention on pleiotropic targets dysregulated in AMD, diabetic retinopathy, and cancer progression. Genome editing technologies may leverage this repository to devise functional screenings of regulatory elements and pharmacogenomic therapies in complex diseases, paving the way for strategies in precision medicine. Full article
Show Figures

Figure 1

40 pages, 7398 KiB  
Review
Emerging Role of Nb2CTx MXene in Sensors: The Roadmap from Synthesis to Health and Environmental Monitoring
by Gyu Jin Choi, Jeong Won Ryu, Hwa Jun Jeon, Rajneesh Kumar Mishra, Yoonseuk Choi and Jin Seog Gwag
Sensors 2025, 25(12), 3691; https://doi.org/10.3390/s25123691 - 12 Jun 2025
Viewed by 590
Abstract
The rise of two-dimensional (2D) materials has transformed gas sensing, with Nb2CTx MXene drawing significant interest due to its distinct physicochemical behaviors. As part of the MXene family, Nb2CTx MXene demonstrates a remarkable combination of high electrical [...] Read more.
The rise of two-dimensional (2D) materials has transformed gas sensing, with Nb2CTx MXene drawing significant interest due to its distinct physicochemical behaviors. As part of the MXene family, Nb2CTx MXene demonstrates a remarkable combination of high electrical conductivity, adjustable surface chemistry, and exceptional mechanical flexibility, positioning it as a promising candidate for next-generation gas sensors. This review explores the synthesis techniques for Nb2CTx MXene, highlighting etching methods and post-synthesis adjustments to achieve the tailored surface terminations and structural qualities essential for gas detection. A comprehensive examination of the crystal structure, morphology, and electronic characteristics of Nb2CTx MXene is presented to clarify its outstanding sensing capabilities. The application of Nb2CTx MXene for detecting gases, including NH3, humidity, NO2, and volatile organic compounds (VOCs), is assessed, showcasing its sensitivity, selectivity, and low detection limits across various environmental settings. Furthermore, the integration of Nb2CTx MXene with other nanostructures in sensor platforms is reviewed. Lastly, challenges related to scalability, stability, and long-term performance are addressed, along with future prospects for Nb2CTx MXene-based gas sensors. This review offers significant insights into the potential of Nb2CTx MXene as a pioneering material for enhancing gas sensing technologies. Full article
Show Figures

Graphical abstract

Back to TopTop