Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = pine nuts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2148 KB  
Article
Identification and Expression Analysis of MADS-box Gene Family in Pinus koraiensis and Overexpression of PkMADS9 Promoting Early Flowering in Transgenic Arabidopsis
by Xue Luan, Minghui Zhao, Wenjing Gu, Yan Li, Luping Jiang, Shuanglin Song, Haiyang Yu, Yanming Zhang, Xiaona Pei and Xiyang Zhao
Plants 2026, 15(4), 657; https://doi.org/10.3390/plants15040657 (registering DOI) - 21 Feb 2026
Abstract
Korean pine (Pinus koraiensis) is a vital woody oil tree species native to Northeast Asia, with its pine nuts serving as the primary global source of edible pine nuts globally due to their rich nutritional content. Currently, seed yield from Korean [...] Read more.
Korean pine (Pinus koraiensis) is a vital woody oil tree species native to Northeast Asia, with its pine nuts serving as the primary global source of edible pine nuts globally due to their rich nutritional content. Currently, seed yield from Korean pine is low and unstable, failing to meet the market demand. The limited number of female cones is the primary factor restricting its yield. MADS-box family members are crucial in regulating the initiation, differentiation, and morphogenesis of floral organs. However, systematic identification and characterization of MADS-box proteins in Korean pine have not been reported. This study utilized transcriptome data from reproductive and vegetative buds during the flower bud differentiation stage of Korean pine to comprehensively identify MADS-box family members through bioinformatics analysis and molecular biology approaches. A total of 37 PkMADS-box genes were identified, including 6 type I and 31 type II (MIKC) genes, which were classified into 8 subfamilies. The physicochemical properties, conserved domains, conserved motifs, protein structures, gene expression profiles, and protein–protein interaction networks of these genes were analyzed. Key genes associated with physiological differentiation (flower induction) and sexual organogenesis were identified based on expression patterns during flower bud differentiation and flower organ development. Among these, PkMADS4 and PkMADS26 are likely involved in positively regulating flower induction, while PkMADS9 plays a role in the morphological differentiation of sexual organs in a dose-dependent manner and overexpression of PkMADS9 promoting early flowering in transgenic Arabidopsis. These genes were also identified as key candidates for regulating reproductive phase changes and strobilus development. This study provides a theoretical foundation for further ‌investigation of MADS-box genes in reproduction and offers insights into genetic improvements aimed at enhancing the seed yield of Korean pine. Full article
(This article belongs to the Special Issue Genomics and Transcriptomics for Plant Development and Improvement)
36 pages, 4750 KB  
Article
Bioadsorbents for the Removal of Pollutants in Wastewater: Adsorption Kinetics, Validation Test Using Methylene Blue and Methyl Orange
by María J. San José, Raquel López, Sonia Alvarez and Francisco J. Peñas
Appl. Sci. 2026, 16(3), 1512; https://doi.org/10.3390/app16031512 - 2 Feb 2026
Viewed by 262
Abstract
The presence of emerging contaminants in water has led to a need for the development of new materials and treatments. Four low-cost adsorbents derived from lignocellulosic biomass waste (pine nut shells and olive stones) were prepared via chemical treatment (with H3PO [...] Read more.
The presence of emerging contaminants in water has led to a need for the development of new materials and treatments. Four low-cost adsorbents derived from lignocellulosic biomass waste (pine nut shells and olive stones) were prepared via chemical treatment (with H3PO4 or NaOH) followed by thermal activation (at 550 °C under N2). Characterization of the bioadsorbents was carried out using N2 adsorption–desorption isotherms, FTIR and Raman spectroscopic analyses, and pHpzc determination. The electrostatic interactions between the adsorbent surface and the dyes were determined, and it was found that the interactions in both adsorbents were attractive for the methylene blue and repulsive for methyl orange, at pH basic or neutral. The performance of the obtained activated carbons was evaluated at lab scale with two dyes (methylene blue and methyl orange), and a comparison was made between both adsorbents and with commercial charcoal. The H3PO4-activated adsorbents exhibited higher adsorption capacities (up to 300 mg/g for methylene blue and 285 mg/g for methyl orange), with adsorption efficiencies close to 100%. More than 10 adsorption–desorption cycles were performed, with efficiencies exceeding 85%. The good reusability shown by the H3PO4-activated adsorbents suggests significant potential for industrial application; namely, in the removal emerging contaminants from urban wastewater. It should be noted that the adsorption efficiency decreased after the fifth cycle, indicating a gradual reduction in performance over time (although it remained above 85% in the performed experiments). This study aims to achieve the goal of zero waste and contribute to the circular economy through the sustainable use of residual biomass. Full article
(This article belongs to the Special Issue Advancing Bioremediation Technologies for Emerging Micropollutants)
Show Figures

Figure 1

16 pages, 2538 KB  
Article
Natural Oleosomes from Nuts and Seeds: Structural Function and Potential for Pharmaceutical Applications
by Marlon C. Mallillin, Maryam Salami, Omar A. Villalobos, Shengnan Zhao, Sara R. El-Mahrouk, Kirtypal Singh, Michael J. Serpe, Arno G. Siraki, Ayman O. S. El-Kadi, Nadia Bou-Chacra, Raimar Loebenberg and Neal M. Davies
Pharmaceutics 2026, 18(2), 144; https://doi.org/10.3390/pharmaceutics18020144 - 23 Jan 2026
Viewed by 403
Abstract
Background/Objectives: Oleosomes, plant-derived lipid nanostructures comprising a triacylglycerol core surrounded by a phospholipid monolayer and interfacial proteins, provide sustainable alternatives to synthetic lipid vesicles. This study compares solvent-free aqueous extractions of oleosomes from five nuts (almond, macadamia, walnut, hazelnut, pine) and five [...] Read more.
Background/Objectives: Oleosomes, plant-derived lipid nanostructures comprising a triacylglycerol core surrounded by a phospholipid monolayer and interfacial proteins, provide sustainable alternatives to synthetic lipid vesicles. This study compares solvent-free aqueous extractions of oleosomes from five nuts (almond, macadamia, walnut, hazelnut, pine) and five seeds (flaxseed, sunflower, hemp, sesame, canola/rapeseed) to understand how botanical origin influences composition and physicochemical behavior. Methods: Oleosomes were isolated using solvent-free aqueous extraction. Extraction yield, lipid content, protein content, particle size, polydispersity, and zeta potential were determined using standard analytical assays and dynamic light scattering techniques. SDS–PAGE was performed to evaluate interfacial protein profiles and oleosin abundance. Results: Extraction yields ranged from 8.4% (flaxseed) to 59.5% (walnut). Oleosome diameters spanned 424 nm to 3.9 µm, and all oleosome dispersions exhibited negative zeta potentials (–26 to –57 mV). SDS–PAGE revealed abundant 15–25 kDa oleosins in seed oleosomes but relatively sparse proteins in nut oleosomes. Seed oleosomes were smaller and exhibited stronger electrostatic stabilization, while nut oleosomes formed larger droplets stabilized primarily through steric interactions due to lower oleosin content. Conclusions: Variation in oleosin abundance and interfacial composition leads to distinct stabilization mechanisms in nut and seed oleosomes. These findings establish a predictive basis for tailoring oleosome size, stability, and functionality, and highlight their potential as natural nanocarriers for food, cosmetic, and pharmaceutical formulations. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

15 pages, 1731 KB  
Article
Structural Identification and Antioxidant Activity of Pine Nut Peptide–Zinc Chelate Complex
by Kexin Yang, Xiaotong Zhang, Jiayu Zhang and Zhi Zhang
Foods 2026, 15(2), 359; https://doi.org/10.3390/foods15020359 - 19 Jan 2026
Viewed by 319
Abstract
To achieve the high-value utilization of pine nut resources, a novel zinc supplement was developed in this study. Pine nut protein was enzymatically hydrolyzed to prepare pine nut peptides (PP), which were subsequently chelated with zinc ions to form pine nut peptide–zinc chelate [...] Read more.
To achieve the high-value utilization of pine nut resources, a novel zinc supplement was developed in this study. Pine nut protein was enzymatically hydrolyzed to prepare pine nut peptides (PP), which were subsequently chelated with zinc ions to form pine nut peptide–zinc chelate (PZn). Under optimized conditions, the zinc chelation rate of PZn reached 60.18 ± 1.77%. Peptidomic analysis revealed that PZn is composed of a select group of peptides predominantly characterized by low molecular weight (80.65 ± 1.47% < 1 kDa) and enrichment in aspartic acid, glutamic acid, and cysteine, indicating a self-selective chelation process. Comprehensive characterization via multiple techniques confirmed that zinc ions coordinate with carboxyl, hydroxyl, and thiol groups on these peptides, leading to charge neutralization, disruption of hydrogen-bonding networks, and peptide aggregation. Furthermore, bioactivity prediction of the PZn-constituting peptides revealed high intrinsic antioxidant potential, which corroborated the experimental results, showing that PZn exhibited significantly enhanced radical scavenging capacity compared to PP. These findings demonstrate that PZn possesses excellent zinc-binding capability and antioxidant activity, suggesting its potential as a novel zinc supplement, with its efficacy rooted in its specific molecular composition. Full article
Show Figures

Figure 1

17 pages, 1134 KB  
Article
Water Supply on Grafted Stone Pine: Effects on Growth and Mating
by Neus Aletà, Anna Teixidó, Joan Abel, Miquel Segarra and Ruth Sánchez-Bragado
Sustainability 2025, 17(21), 9854; https://doi.org/10.3390/su17219854 - 5 Nov 2025
Viewed by 552
Abstract
The pine nut, the seed of the stone pine, is highly valued in local cuisine and dietetics for its nutritional qualities. These nuts still come from forest stands, which results in their limited and irregular presence on the market. Domesticating the species through [...] Read more.
The pine nut, the seed of the stone pine, is highly valued in local cuisine and dietetics for its nutritional qualities. These nuts still come from forest stands, which results in their limited and irregular presence on the market. Domesticating the species through orchard management practices could increase its production. In this context, two irrigation schedules were tested in a grafted stone pine orchard that was planted in 2009 and has been under drip irrigation since 2011. Water needs were calculated weekly using the water balance method (ETc-P). The treatments considered were as follows: T1, irrigation from April to the end of summer; T2, irrigation from April to the end of June; and T0, rainfed as the control. Monitoring of the pines, considering vegetative and reproductive responses, was carried out from 2015 (7th leaf) to 2023. T1 and T2 increased primary and secondary growth and resulted in higher strobili production compared to T0. The tree’s ability to sustain the reproductive load was enhanced under irrigation versus rainfed treatment. The longest irrigation schedule increased productivity. However, when the environmental cost of supplying twice as much water in the Mediterranean region—an annual average of 900 m3 ha−1 (T2) versus 1900 m3 ha−1 (T1)—is considered, the overall assessment changes. The irregularity of stone pine mating was not prevented by a regular water supply, but it was mitigated, promoting sustainable production. Full article
(This article belongs to the Special Issue Sustainable Forest Technology and Resource Management)
Show Figures

Figure 1

32 pages, 921 KB  
Review
An Overview of the Microbiological, Nutritional, Sensory and Potential Health Aspects of Tree Nut-Based Beverages
by Tiziana Di Renzo, Antonela G. Garzón, Stefania Nazzaro, Pasquale Marena, Angela Daniela Carboni, Maria Cecilia Puppo, Silvina Rosa Drago and Anna Reale
Beverages 2025, 11(5), 144; https://doi.org/10.3390/beverages11050144 - 1 Oct 2025
Cited by 2 | Viewed by 3133
Abstract
In recent years, the rise in food allergies and intolerances, combined with the increasing consumer preference for healthier, plant-based alternatives to traditional dairy products, has driven the development of a diverse range of plant-based beverages. Among these, tree nut-based beverages, “ready-to-drink” products made [...] Read more.
In recent years, the rise in food allergies and intolerances, combined with the increasing consumer preference for healthier, plant-based alternatives to traditional dairy products, has driven the development of a diverse range of plant-based beverages. Among these, tree nut-based beverages, “ready-to-drink” products made from nuts such as almonds, hazelnuts, pistachios, walnuts, brazil nut, macadamia, cashew nut, coconut, pine nut, have gained significant popularity. This review offers a comprehensive analysis of the microbiological, nutritional, and sensory properties of tree nut-based beverages, highlighting their ability to deliver essential nutrients such as healthy fats, proteins, fiber, vitamins, and minerals. Additionally, these beverages provide a rich source of bioactive compounds (e.g., antioxidants, polyphenols) that can contribute to health benefits such as reducing oxidative stress, supporting cardiovascular health, and promoting overall well-being. The review also highlights the ability of different species of lactic acid bacteria to enhance flavour profiles and increase the bioavailability of certain bioactive compounds. Nevertheless, further research is essential to optimize the production methods, improve sensory characteristics, and address challenges related to cost, scalability, and consumer acceptance. Continued innovation in this area may position tree nut beverages as a key component of plant-based food models, contributing to the promotion of healthier eating patterns. Full article
(This article belongs to the Special Issue Recent Research in Plant-Based Drinks)
Show Figures

Figure 1

22 pages, 2139 KB  
Article
Nutritional and Technological Benefits of Pine Nut Oil Emulsion Gel in Processed Meat Products
by Berik Idyryshev, Almagul Nurgazezova, Zhanna Assirzhanova, Assiya Utegenova, Shyngys Amirkhanov, Madina Jumazhanova, Assemgul Baikadamova, Assel Dautova, Assem Spanova and Assel Serikova
Foods 2025, 14(15), 2553; https://doi.org/10.3390/foods14152553 - 22 Jul 2025
Cited by 3 | Viewed by 1518
Abstract
A high intake of saturated fats and cholesterol from processed meats is associated with increased cardiovascular disease risk. This study aimed to develop a nutritionally enhanced Bologna-type sausage by partially replacing the beef content with a structured emulsion gel (EG) formulated from pine [...] Read more.
A high intake of saturated fats and cholesterol from processed meats is associated with increased cardiovascular disease risk. This study aimed to develop a nutritionally enhanced Bologna-type sausage by partially replacing the beef content with a structured emulsion gel (EG) formulated from pine nut oil, inulin, carrageenan, and whey protein concentrate. The objective was to improve its lipid quality and functional performance while maintaining product integrity and consumer acceptability. Three sausage formulations were prepared: a control and two variants with 7% and 10% EG, which substituted for the beef content. The emulsion gel was characterized regarding its physical and thermal stability. Sausages were evaluated for their proximate composition, fatty acid profile, cholesterol content, pH, cooking yield, water-holding capacity, emulsion stability, instrumental texture, microstructure (via SEM), oxidative stability (TBARSs), and sensory attributes. Data were analyzed using a one-way and two-way ANOVA with Duncan’s test (p < 0.05). The EG’s inclusion significantly reduced the total and saturated fat and cholesterol, while increasing protein and unsaturated fatty acids. The 10% EG sample achieved a PUFA/SFA ratio of 1.00 and an over 80% reduction in atherogenic and thrombogenic indices. Functional improvements were observed in emulsion stability, cooking yield, and water retention. Textural and visual characteristics remained within acceptable sensory thresholds. SEM images showed more homogenous matrix structures in the EG samples. TBARS values increased slightly over 18 days of refrigeration but remained below rancidity thresholds. This period was considered a pilot-scale evaluation of oxidative trends. Sensory testing confirmed that product acceptability was not negatively affected. The partial substitution of beef content with pine nut oil-based emulsion gel offers a clean-label strategy to enhance the nutritional quality of Bologna-type sausages while preserving functional and sensory performance. This approach may support the development of health-conscious processed meat products aligned with consumer and regulatory demands. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

20 pages, 2346 KB  
Article
A Novel Approach to Pine Nut Classification: Combining Near-Infrared Spectroscopy and Image Shape Features with Soft Voting-Based Ensemble Learning
by Yueyun Yu, Xin Huang, Danjv Lv, Benjamin K. Ng and Chan-Tong Lam
Mathematics 2025, 13(12), 2009; https://doi.org/10.3390/math13122009 - 18 Jun 2025
Viewed by 756
Abstract
Pine nuts hold significant economic value due to their rich plant protein and healthy fats, yet precise variety classification has long been hindered by limitations of traditional techniques such as chemical analysis and machine vision. This study proposes a novel near-infrared (NIR) spectral [...] Read more.
Pine nuts hold significant economic value due to their rich plant protein and healthy fats, yet precise variety classification has long been hindered by limitations of traditional techniques such as chemical analysis and machine vision. This study proposes a novel near-infrared (NIR) spectral feature selection algorithm, termed the improved binary equilibrium optimizer with selection probability (IBiEO-SP), which incorporates a dynamic probability adjustment mechanism to achieve efficient feature dimensionality reduction. Experimental validation on a dataset comprising seven pine nut varieties demonstrated that, compared to particle swarm optimization (PSO) and the genetic algorithm (GA), the IBiEO-SP algorithm improved average classification accuracy by 5.7% (p < 0.01, Student’s t-test) under four spectral preprocessing methods (MSC, SNV, SG1, and SG2). Remarkably, only 2–3 features were required to achieve optimal performance (MSC + random forest: 99.05% accuracy, 100% F1/precision; SNV + KNN: 97.14% accuracy, 100% F1/precision). Furthermore, a multimodal data synergy strategy integrating NIR spectroscopy with morphological features was proposed, and a classification model was constructed using a soft voting ensemble. The final classification accuracy reached 99.95%, representing a 2.9% improvement over single-spectral-mode analysis. The results indicate that the IBiEO-SP algorithm effectively balances feature discriminative power and model generalization needs, overcoming the contradiction between high-dimensional data redundancy and low-dimensional information loss. This work provides a high-precision, low-complexity solution for rapid quality detection of pine nuts, with broad implications for agricultural product inspection and food safety. Full article
(This article belongs to the Special Issue Mathematical Modelling in Agriculture)
Show Figures

Figure 1

25 pages, 2165 KB  
Review
A Review on Improving the Oxidative Stability of Pine Nut Oil in Extraction, Storage, and Encapsulation
by Jingwen Zhu, Zhenzhou Li, Yisen Wang, Zhexuan Mu, Xiaohong Lv, Zhenyu Wang, Aijun Dong, Ziluan Fan and Hua Zhang
Antioxidants 2025, 14(6), 716; https://doi.org/10.3390/antiox14060716 - 12 Jun 2025
Cited by 3 | Viewed by 2718
Abstract
Pine nut oil (PNO) is highly valued by consumers for its rich content of unsaturated fatty acids, which confer unique nutritional benefits. However, PNO is highly susceptible to lipid oxidation during storage and extraction. This chemical degradation compromises product quality and poses potential [...] Read more.
Pine nut oil (PNO) is highly valued by consumers for its rich content of unsaturated fatty acids, which confer unique nutritional benefits. However, PNO is highly susceptible to lipid oxidation during storage and extraction. This chemical degradation compromises product quality and poses potential risks to food safety. To address this challenge, the food industry is developing antioxidant strategies, including optimizing pretreatment conditions to improve flavor and storage stability. Green extraction technologies such as microwave-assisted extraction (MAE) and ultrasonic-assisted extraction (UAE) have been introduced to enhance extraction efficiency and promote environmental sustainability. Light-proof packaging, reduced oxygen environments, and temperature control have also been employed to significantly extend the shelf life of PNO. Furthermore, to maintain the nutritional integrity and safety of PNO while expanding its functional applications in the food industry, several innovative approaches have been employed. These include the incorporation of natural antioxidants, the development of Pickering emulsions, the use of microencapsulation, and the formulation of oleogels. Full article
Show Figures

Figure 1

14 pages, 3084 KB  
Article
Catalytic Hydrodeoxygenation of Pyrolysis Volatiles from Pine Nut Shell over Ni-V Bimetallic Catalysts Supported on Zeolites
by Yujian Wu, Xiwei Xu, Xudong Fan, Yan Sun, Ren Tu, Enchen Jiang, Qing Xu and Chunbao Charles Xu
Catalysts 2025, 15(5), 498; https://doi.org/10.3390/catal15050498 - 20 May 2025
Cited by 1 | Viewed by 1085
Abstract
Bio-oil is a potential source for the production of alternative fuels and chemicals. In this work, Ni-V bimetallic zeolite catalysts were synthesized and evaluated in in situ catalytic hydrodeoxygenation (HDO) of pyrolysis volatiles of pine nut shell for upgraded bio-oil products. The pH [...] Read more.
Bio-oil is a potential source for the production of alternative fuels and chemicals. In this work, Ni-V bimetallic zeolite catalysts were synthesized and evaluated in in situ catalytic hydrodeoxygenation (HDO) of pyrolysis volatiles of pine nut shell for upgraded bio-oil products. The pH and lower heating value (LHV) of the upgraded bio-oil products were improved by in situ catalytic HDO, while the moisture content and density of the oil decreased. The O/C ratio of the upgraded bio-oil products decreased significantly, and the oxygenated compounds in the pyrolysis volatiles were converted efficiently via deoxygenation over Ni-V zeolite catalysts. The highest HDO activity was obtained with NiV/MesoY, where the obtained bio-oil had the lowest O/C atomic ratio (0.27), a higher LHV (27.03 MJ/kg) and the highest selectivity (19.6%) towards target arenes. Owing to the more appropriate pore size distribution and better dispersion of metal active sites, NiV/MesoY enhanced the transformation of reacting intermediates, obtaining the dominant products of phenols and arenes. A higher HDO temperature improved the catalytic activity of pyrolysis volatiles to form more deoxygenated arenes. Higher Ni loading could generate more metal active sites, thus promoting the catalyst’s HDO activity for pyrolysis volatiles. This study contributes to the development of cost-efficient and eco-friendly HDO catalysts, which are required for producing high-quality biofuel products. Full article
(This article belongs to the Topic Advanced Bioenergy and Biofuel Technologies)
Show Figures

Figure 1

48 pages, 6422 KB  
Review
Modern Trends and Recent Applications of Hyperspectral Imaging: A Review
by Ming-Fang Cheng, Arvind Mukundan, Riya Karmakar, Muhamed Adil Edavana Valappil, Jumana Jouhar and Hsiang-Chen Wang
Technologies 2025, 13(5), 170; https://doi.org/10.3390/technologies13050170 - 23 Apr 2025
Cited by 30 | Viewed by 14919
Abstract
Hyperspectral imaging (HSI) is an advanced imaging technique that captures detailed spectral information across multiple fields. This review explores its applications in counterfeit detection, remote sensing, agriculture, medical imaging, cancer detection, environmental monitoring, mining, mineralogy, and food processing, specifically highlighting significant achievements from [...] Read more.
Hyperspectral imaging (HSI) is an advanced imaging technique that captures detailed spectral information across multiple fields. This review explores its applications in counterfeit detection, remote sensing, agriculture, medical imaging, cancer detection, environmental monitoring, mining, mineralogy, and food processing, specifically highlighting significant achievements from the past five years, providing a timely update across several fields. It also presents a cross-disciplinary classification framework to systematically categorize applications in medical, agriculture, environment, and industry. In counterfeit detection, HSI identified fake currency with high accuracy in the 400–500 nm range and achieved a 99.03% F1-score for counterfeit alcohol detection. Remote sensing applications include hyperspectral satellites, which improve forest classification accuracy by 50%, and soil organic matter, with the prediction reaching R2 = 0.6. In agriculture, the HSI-TransUNet model achieved 86.05% accuracy for crop classification, and disease detection reached 98.09% accuracy. Medical imaging benefits from HSI’s non-invasive diagnostics, distinguishing skin cancer with 87% sensitivity and 88% specificity. In cancer detection, colorectal cancer identification reached 86% sensitivity and 95% specificity. Environmental applications include PM2.5 pollution detection with 85.93% accuracy and marine plastic waste detection with 70–80% accuracy. In food processing, egg freshness prediction achieved R2 = 91%, and pine nut classification reached 100% accuracy. Despite its advantages, HSI faces challenges like high costs and complex data processing. Advances in artificial intelligence and miniaturization are expected to improve accessibility and real-time applications. Future advancements are anticipated to concentrate on the integration of deep learning models for automated feature extraction and decision-making in hyperspectral imaging analysis. The development of lightweight, portable HSI devices will enable more on-site applications in agriculture, healthcare, and environmental monitoring. Moreover, real-time processing methods will enhance efficiency for field deployment. These improvements seek to enhance the accessibility, practicality, and efficacy of HSI in both industrial and clinical environments. Full article
Show Figures

Figure 1

19 pages, 3607 KB  
Article
Development and Characterization of Emulsion Gels with Pine Nut Oil, Inulin, and Whey Proteins for Reduced-Fat Meat Products
by Berik Idyryshev, Alibek Muratbayev, Marzhan Tashybayeva, Assem Spanova, Shyngys Amirkhanov, Assel Serikova, Zhaksylyk Serikov, Laila Bakirova, Madina Jumazhanova and Aigerim Bepeyeva
Foods 2025, 14(6), 962; https://doi.org/10.3390/foods14060962 - 12 Mar 2025
Cited by 4 | Viewed by 2053
Abstract
An emulsion gel was developed to replace animal fats in meat products while preserving desirable sensory and structural attributes. The gel was prepared by emulsifying pine nut oil and sunflower oil with whey protein concentrate (WPC) and polysaccharides (inulin and carrageenan). Process parameters, [...] Read more.
An emulsion gel was developed to replace animal fats in meat products while preserving desirable sensory and structural attributes. The gel was prepared by emulsifying pine nut oil and sunflower oil with whey protein concentrate (WPC) and polysaccharides (inulin and carrageenan). Process parameters, including the inulin-to-water ratio, homogenization speed, and temperature, were optimized to achieve stable gels exhibiting high water- and fat-binding capacities. Scanning electron micrographs revealed a cohesive network containing uniformly dispersed lipid droplets, with carrageenan promoting a denser matrix. Chemical assessments demonstrated a notably lower saturated fatty acid content (10.85%) and only 0.179% trans-isomers, alongside an elevated proportion (71.17%) of polyunsaturated fatty acids. This fatty acid profile suggests potential cardiovascular health benefits compared with conventional animal fats. Texture analyses showed that carrageenan increased gel strength and hardness; Experiment 4 recorded values of 15.87 N and 279.62 N, respectively. Incorporation of WPC at moderate levels (3–4%) further enhanced the yield stress, reflecting a robust protein–polysaccharide network. These findings indicate that the developed emulsion gel offers a viable alternative to animal fats in meat products, combining superior nutritional attributes with acceptable textural properties. The substantial polyunsaturated fatty acid content and minimal trans-isomers, coupled with the gel’s mechanical stability, support the feasibility of creating reduced-fat, functional formulations that align with consumer demands for healthier alternatives. Full article
(This article belongs to the Special Issue Plant-Based Alternatives: A Perspective for Future Food)
Show Figures

Figure 1

9 pages, 832 KB  
Brief Report
Effect of Fertilization on the Performance of Adult Pinus pinea Trees
by Verónica Loewe-Muñoz, Claudia Bonomelli, Claudia Delard, Rodrigo Del Río and Monica Balzarini
Biology 2025, 14(2), 216; https://doi.org/10.3390/biology14020216 - 19 Feb 2025
Viewed by 1204
Abstract
Background: Pinus pinea L. (stone pine) produces pine nuts of high value. Its cultivation is carried out in forests and plantations, with intensive management techniques being studied to stimulate diameter growth, which is positively related to cone production. Aims: To evaluate the effect [...] Read more.
Background: Pinus pinea L. (stone pine) produces pine nuts of high value. Its cultivation is carried out in forests and plantations, with intensive management techniques being studied to stimulate diameter growth, which is positively related to cone production. Aims: To evaluate the effect of fertilization in a 30-year-old plantation and to understand if adult trees respond to nutritional management. Methods: A trial with completely randomized block design was established with two treatments (fertilization/control) and three repetitions. The plantation, with a density of 204 trees/ha, is located in central Chile, on a sandy-loam soil with neutral pH, medium organic matter content, and a fertility condition that limits tree development. Fertilization considered the repeated application of macro (N, P, K, S, Mg) and micronutrients (B, Fe, and Zn). Periodic measurements of height, stem and crown diameter, and cone production were made up to age 36. Cone production was evaluated using mixed generalized linear models and growth variables using ANOVA (analysis of variance). Results: Significant effects of fertilization on DBH annual growth (35% higher than the control, p < 0.001) and in cone production (3 times higher, p < 0.0001) were found. Conclusions: Fertilization is a useful practice to improve the growth and cone productivity of the species. Full article
(This article belongs to the Special Issue Dendrochronology in Arid and Semiarid Regions)
Show Figures

Figure 1

19 pages, 2910 KB  
Review
Techniques and Methods for Fatty Acid Analysis in Lipidomics: Exploring Pinus cembroides Kernels as a Sustainable Food Resource
by Luis Ricardo León-Herrera, Luis Miguel Contreras-Medina, Ana Angélica Feregrino-Pérez, Christopher Cedillo, Genaro Martín Soto-Zarazúa, Miguel Angel Ramos-López, Samuel Tejeda, Eduardo Amador-Enríquez and Enrique Montoya-Morado
Separations 2025, 12(2), 41; https://doi.org/10.3390/separations12020041 - 6 Feb 2025
Cited by 1 | Viewed by 4510
Abstract
The large-scale conversion of forests to agriculture has caused biodiversity loss, climate change, and disrupted dietary fatty acid balances, with adverse public health effects. Wild edibles like pine nuts, especially Pinus cembroides, provide sustainable solutions by supporting ecosystems and offering economic value. [...] Read more.
The large-scale conversion of forests to agriculture has caused biodiversity loss, climate change, and disrupted dietary fatty acid balances, with adverse public health effects. Wild edibles like pine nuts, especially Pinus cembroides, provide sustainable solutions by supporting ecosystems and offering economic value. However, variability in seed quality limits market potential, and lipidomic studies on P. cembroides remain sparse. This paper underscores the ecological, social, and nutritional value of P. cembroides while advocating for advanced research to enhance its use as a non-timber forest resource in Mexico’s communal areas. It explores various analytical techniques, such as nuclear magnetic resonances (NMR), chromatography coupled with mass spectrometry (HPLC-MS, GC-MS) and GC coupled with flame ionization detector (GC-FID), highlighting extraction methods like derivatization, purification, and thin-layer chromatography. Likewise, some considerations are addressed for the treatment of data obtained in the detection of fatty acids from bioformatics and the evaluation of the data through statistical methods and artificial intelligence and deep learning. These approaches aim to improve fatty acid profiling and seed quality assessments, fostering the species economic viability and supporting sustainable livelihoods in rural communities, encouraging researchers across the country to explore the fatty acid composition of different P. cembroides populations can drive valuable insights into its nutritional and ecological significance. Such efforts can enhance understanding of regional variations, promote sustainable use, and elevate the specie’s economic and scientific value. Full article
Show Figures

Figure 1

16 pages, 3723 KB  
Article
Real-Time 0.89 THz Terahertz Imaging with High-Electron-Mobility Transistor Detector and Hydrogen Cyanide Laser for Non-Destructive Nut Detection
by Nu Zhang, Haiqing Liu, Huihui Yan, Hongbei Wang, Jiaxing Xie, Yinxian Jie and Damao Yao
Micromachines 2025, 16(2), 185; https://doi.org/10.3390/mi16020185 - 4 Feb 2025
Viewed by 2046
Abstract
We present a method for real-time terahertz imaging that employs a hydrogen cyanide (HCN) laser as a terahertz source at 0.89 THz and an AlGaN/GaN high-electron-mobility transistor (HEMT) terahertz detector as a camera. We developed an HCN laser and constructed a transmission imaging [...] Read more.
We present a method for real-time terahertz imaging that employs a hydrogen cyanide (HCN) laser as a terahertz source at 0.89 THz and an AlGaN/GaN high-electron-mobility transistor (HEMT) terahertz detector as a camera. We developed an HCN laser and constructed a transmission imaging system based on it. This combination utilizes a high-power HCN laser with a highly sensitive terahertz detector, enabling practical applications of real-time terahertz imaging. A resolution test plane was produced to determine that the system could achieve a lateral resolution of 2 mm, and real-time terahertz imaging was carried out on Siemens star, pistachios, and sunflower seeds. The results demonstrate that the hidden structures inside nuts can be observed by terahertz imaging. Through our analysis of terahertz images of both sunflower seeds and pine nuts, we successfully assessed their fullness and demonstrated the capability to distinguish between full and unfilled nuts. These findings validate the potential of this technique for future applications in nut detection. We discuss the limitations of the current setup, potential improvements, and possible applications, and we outline the introduction of aspherical lenses and terahertz transmission tomography. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

Back to TopTop