Farmers’ Socioeconomic Characteristics and Perception of Land Use Change Defining Optimal Agroforestry Practices in Khost Province, Afghanistan
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Study Area
3.2. Research Design
3.3. Study Population
3.4. Sampling Technique
3.5. Study Sample
3.6. Research Instrument
3.7. Exploratory Factor Analysis and Reliability of Research Instruments
3.8. Data Analysis Methods
4. Results
4.1. Demographic Characteristics
4.2. Socioeconomic Characteristics of Agroforestry Communities in Khost Province
4.3. Farmers’ Perception of Land Use Changes across Production of Forest Products
4.4. Farmers’ Perception of Land Use Changes across Vegetable Farming
5. Discussion
6. Conclusions
7. Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hamidazada, M.; Cruz, A.M.; Yokomatsu, M. Vulnerability Factors of Afghan Rural Women to Disasters. Int. J. Disaster Risk Sci. 2019, 10, 573–590. [Google Scholar] [CrossRef]
- Kiptot, E.; Franzel, S.; Degrande, A. Gender, Agroforestry and Food Security in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 104–109. [Google Scholar] [CrossRef]
- Mukhlis, I.; Rizaludin, M.S.; Hidayah, I. Understanding Socio-Economic and Environmental Impacts of Agroforestry on Rural Communities. Forests 2022, 13, 556. [Google Scholar] [CrossRef]
- van Noordwijk, M. Agroforestry-Based Ecosystem Services: Reconciling Values of Humans and Nature in Sustainable Development. Land 2021, 10, 699. [Google Scholar] [CrossRef]
- Siles, P.; Cerdán, C.R.; Staver, C. Smallholder Coffee in the Global Economy—A Framework to Explore Transformation Alternatives of Traditional Agroforestry for Greater Economic, Ecological, and Livelihood Viability. Front. Sustain. Food Syst. 2022, 6, 808207. [Google Scholar] [CrossRef]
- Amare, D.; Darr, D. Agroforestry Adoption as a Systems Concept: A Review. Policy Econ. 2020, 120, 102299. [Google Scholar] [CrossRef]
- Quandt, A.; Neufeldt, H.; McCabe, J.T. Building Livelihood Resilience: What Role Does Agroforestry Play? Clim. Dev. 2019, 11, 485–500. [Google Scholar] [CrossRef]
- Nagar, B.; Rawat, S.; Pandey, R.; Kumar, M.; Alatalo, J.M. Fuelwood and Fodder Consumption Patterns among Agroforestry-Practicing Smallholder Farmers of the Lower Himalayas, India. Environ. Dev. Sustain. 2022, 24, 5594–5613. [Google Scholar] [CrossRef]
- Kouassi, J.-L.; Gyau, A.; Diby, L.; Bene, Y.; Kouamé, C. Assessing Land Use and Land Cover Change and Farmers’ Perceptions of Deforestation and Land Degradation in South-West Côte d’Ivoire, West Africa. Land 2021, 10, 429. [Google Scholar] [CrossRef]
- Leakey, R.R.B. The Intensification of Agroforestry by Tree Domestication for Enhanced Social and Economic Impact. In Multifunctional Agriculture; Elsevier: Amsterdam, The Netherlands, 2017; pp. 375–376. [Google Scholar]
- Staton, T.; Breeze, T.D.; Walters, R.J.; Smith, J.; Girling, R.D. Productivity, Biodiversity Trade-Offs, and Farm Income in an Agroforestry versus an Arable System. Ecol. Econ. 2022, 191, 107214. [Google Scholar] [CrossRef]
- Hoekstra, D.A. Economics of Agroforestry. Agrofor. Syst. 1987, 5, 293–300. [Google Scholar] [CrossRef]
- Raj, A.; Jhariya, M.K.; Yadav, D.K.; Banerjee, A.; Meena, R.S. Agroforestry: A Holistic Approach for Agricultural Sustainability. In Sustainable Agriculture, Forest and Environmental Management; Springer: Singapore, 2019; pp. 101–131. [Google Scholar]
- Kassie, G.W. Agroforestry and Farm Income Diversification: Synergy or Trade-off? The Case of Ethiopia. Environ. Syst. Res. 2018, 6, 8. [Google Scholar] [CrossRef]
- Santiago-Freijanes, J.J.; Mosquera-Losada, M.R.; Rois-Díaz, M.; Ferreiro-Domínguez, N.; Pantera, A.; Aldrey, J.A.; Rigueiro-Rodríguez, A. Global and European Policies to Foster Agricultural Sustainability: Agroforestry. Agrofor. Syst. 2021, 95, 775–790. [Google Scholar] [CrossRef]
- Rasool Mir, M.; Latif Khan, I.; Baqual, M.F.; Banday, M.; Raja, R.; Khursheed, S. Mulberry-Based Agroforestry System: An Effective Way of Maintaining Livelihood Security and Climate Change Mitigation. In Agroforestry and Climate Change; Includes bibliographical references and index; Apple Academic Press: Waretown, NJ, USA, 2019; pp. 299–318. [Google Scholar]
- Ahmadzai, M.R.; Zaki, P.H.; Ismail, M.H.; Bawon, P.; Karam, D.S. The Societal and Economic Impact of Reforestation Strategies and Policies in Southeast Asia—A Review. Forests 2022, 14, 1. [Google Scholar] [CrossRef]
- Gonçalves, C.d.B.Q.; Schlindwein, M.M.; Martinelli, G.d.C. Agroforestry Systems: A Systematic Review Focusing on Traditional Indigenous Practices, Food and Nutrition Security, Economic Viability, and the Role of Women. Sustainability 2021, 13, 11397. [Google Scholar] [CrossRef]
- Notaro, M.; Collado, C.; Depas, J.K.; Dumovil, D.; Denis, A.J.; Deheuvels, O.; Tixier, P.; Gary, C. The Spatial Distribution and Height of Associated Crops Influence Cocoa Tree Productivity in Complex Agroforestry Systems. Agron. Sustain. Dev. 2021, 41, 60. [Google Scholar] [CrossRef]
- Do, H.; Luedeling, E.; Whitney, C. Decision Analysis of Agroforestry Options Reveals Adoption Risks for Resource-Poor Farmers. Agron. Sustain. Dev. 2020, 40, 20. [Google Scholar] [CrossRef]
- Martinelli, G.d.C.; Schlindwein, M.M.; Padovan, M.P.; Gimenes, R.M.T. Decreasing Uncertainties and Reversing Paradigms on the Economic Performance of Agroforestry Systems in Brazil. Land Use Policy 2019, 80, 274–286. [Google Scholar] [CrossRef]
- Lehmann, L.M.; Smith, J.; Westaway, S.; Pisanelli, A.; Russo, G.; Borek, R.; Sandor, M.; Gliga, A.; Smith, L.; Ghaley, B.B. Productivity and Economic Evaluation of Agroforestry Systems for Sustainable Production of Food and Non-Food Products. Sustainability 2020, 12, 5429. [Google Scholar] [CrossRef]
- Kay, S.; Graves, A.; Palma, J.H.N.; Moreno, G.; Roces-Díaz, J.V.; Aviron, S.; Chouvardas, D.; Crous-Duran, J.; Ferreiro-Domínguez, N.; García de Jalón, S.; et al. Agroforestry Is Paying off–Economic Evaluation of Ecosystem Services in European Landscapes with and without Agroforestry Systems. Ecosyst. Serv. 2019, 36, 100896. [Google Scholar] [CrossRef]
- Gori Maia, A.; Eusebio, G.d.S.; Fasiaben, M.d.C.R.; Moraes, A.S.; Assad, E.D.; Pugliero, V.S. The Economic Impacts of the Diffusion of Agroforestry in Brazil. Land Use Policy 2021, 108, 105489. [Google Scholar] [CrossRef]
- Amusa, T.O.; Jimoh, S.O.; Azeez, I.O. Socio-Economic Factors Influencing Marketing of Non-Timber Forest Products in Tropical Lowland Rainforests of South-Western Nigeria. South. For. A J. For. Sci. 2017, 79, 161–168. [Google Scholar] [CrossRef]
- Phompila, C.; Lewis, M.; Ostendorf, B.; Clarke, K. Forest Cover Changes in Lao Tropical Forests: Physical and Socio-Economic Factors Are the Most Important Drivers. Land 2017, 6, 23. [Google Scholar] [CrossRef]
- Cedamon, E.; Nuberg, I.; Shrestha, K.K. How Understanding of Rural Households’ Diversity Can Inform Agroforestry and Community Forestry Programs in Nepal. Aust. For. 2017, 80, 153–160. [Google Scholar] [CrossRef]
- Garekae, H.; Thakadu, O.T.; Lepetu, J. Socio-Economic Factors Influencing Household Forest Dependency in Chobe Enclave, Botswana. Ecol. Process. 2017, 6, 40. [Google Scholar] [CrossRef]
- Fan, C.; Johnston, M.; Darling, L.; Scott, L.; Liao, F.H. Land Use and Socio-Economic Determinants of Urban Forest Structure and Diversity. Landsc. Urban Plan. 2019, 181, 10–21. [Google Scholar] [CrossRef]
- Ofoegbu, C.; Chirwa, P.W.; Francis, J.; Babalola, F.D. Socio-Economic Factors Influencing Household Dependence on Forests and Its Implication for Forest-Based Climate Change Interventions. South. For. A J. For. Sci. 2017, 79, 109–116. [Google Scholar] [CrossRef]
- Joshi, N.P.; Piya, L. Determinants of Small-Scale Commercial Vegetable Farming Among Vegetable Growers in Nepal. Sage Open 2021, 11, 215824402110101. [Google Scholar] [CrossRef]
- Sroka, W.; Dudek, M.; Wojewodzic, T.; Król, K. Generational Changes in Agriculture: The Influence of Farm Characteristics and Socio-Economic Factors. Agriculture 2019, 9, 264. [Google Scholar] [CrossRef]
- Djoumessi, Y.; Afari-Sefa, V.; Kamdem, C.B.; Bidogeza, J.-C. Socio-Economic and Institutional Factors Underlying Efficiency of Smallholder Vegetable Farms in Southwest Region of Cameroon. Int. J. Soc. Econ. 2018, 45, 93–106. [Google Scholar] [CrossRef]
- Rai, M.K.; Paudel, B.; Zhang, Y.; Khanal, N.R.; Nepal, P.; Koirala, H.L. Vegetable Farming and Farmers’ Livelihood: Insights from Kathmandu Valley, Nepal. Sustainability 2019, 11, 889. [Google Scholar] [CrossRef]
- Ahmad, S.; Xu, H.; Ekanayake, E.M.B.P. Socioeconomic Determinants and Perceptions of Smallholder Farmers towards Agroforestry Adoption in Northern Irrigated Plain, Pakistan. Land 2023, 12, 813. [Google Scholar] [CrossRef]
- Wijayanto, H.W.; Lo, K.-A.; Toiba, H.; Rahman, M.S. Does Agroforestry Adoption Affect Subjective Well-Being? Empirical Evidence from Smallholder Farmers in East Java, Indonesia. Sustainability 2022, 14, 10382. [Google Scholar] [CrossRef]
- Romanova, O.; Gold, M.A.; Hall, D.M.; Hendrickson, M.K. Perspectives of Agroforestry Practitioners on Agroforestry Adoption: Case Study of Selected SARE Participants. Rural Sociol. 2022, 87, 1401–1431. [Google Scholar] [CrossRef]
- Khan, M.; Mahmood, H.Z.; Abbas, G.; Damalas, C.A. Agroforestry Systems as Alternative Land-Use Options in the Arid Zone of Thal, Pakistan. Small-Scale For. 2017, 16, 553–569. [Google Scholar] [CrossRef]
- Ahmad, S.; Caihong, Z.; Ekanayake, E.M.B.P. Livelihood Improvement through Agroforestry Compared to Conventional Farming System: Evidence from Northern Irrigated Plain, Pakistan. Land 2021, 10, 645. [Google Scholar] [CrossRef]
- De Giusti, G.; Kristjanson, P.; Rufino, M.C. Agroforestry as a Climate Change Mitigation Practice in Smallholder Farming: Evidence from Kenya. Clim. Chang. 2019, 153, 379–394. [Google Scholar] [CrossRef]
- Reang, D.; Hazarika, A.; Sileshi, G.W.; Pandey, R.; Das, A.K.; Nath, A.J. Assessing Tree Diversity and Carbon Storage during Land Use Transitioning from Shifting Cultivation to Indigenous Agroforestry Systems: Implications for REDD+ Initiatives. J. Environ. Manag. 2021, 298, 113470. [Google Scholar] [CrossRef]
- Dumrongrojwatthana, P.; Wanich, K.; Trébuil, G. Driving Factors and Impact of Land-Use Change in a Fragile Rainfed Lowland Rice-Sugar Palm Cultural Agroforestry System in Southern Thailand. Sustain. Sci. 2020, 15, 1317–1335. [Google Scholar] [CrossRef]
- Chiemela, S.N.; Noulekoun, F.; Zenebe, A.; Abadi, N.; Birhane, E. Transformation of Degraded Farmlands to Agroforestry in Zongi Village, Ethiopia. Agrofor. Syst. 2018, 92, 1317–1328. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Y.; Glendinning, A.; Xu, Y. Land-Use Changes and Land Policies Evolution in China’s Urbanization Processes. Land Use Policy 2018, 75, 375–387. [Google Scholar] [CrossRef]
- Tey, Y.S.; Li, E.; Bruwer, J.; Abdullah, A.M.; Brindal, M.; Radam, A.; Ismail, M.M.; Darham, S. The Relative Importance of Factors Influencing the Adoption of Sustainable Agricultural Practices: A Factor Approach for Malaysian Vegetable Farmers. Sustain. Sci. 2014, 9, 17–29. [Google Scholar] [CrossRef]
- Munsell, J.F.; Addlestone, B.J.; Bukowski, C.J.; Nkembi, L.; Kingsly, N.; Moore, E.A. Relationships between Agroforestry and Community Development According to Practitioners. Agrofor. Syst. 2018, 92, 1387–1396. [Google Scholar] [CrossRef]
- Paudel, D.; Tiwari, K.R.; Raut, N.; Sitaula, B.K.; Bhattarai, S.; Timilsina, Y.P.; Thapa, S. Which Agroforestry Practice Is Beneficial? A Comparative Assessment of the Traditional and the Improved Agroforestry Techniques in the Midhills of Nepal. Adv. Agric. 2021, 2021, 1–8. [Google Scholar] [CrossRef]
- Kassie, G.W. Agroforestry and Land Productivity: Evidence from Rural Ethiopia. Cogent Food Agric. 2016, 2, 1259140. [Google Scholar] [CrossRef]
- Krejcie, R.V.; Morgan, D.W. Determining Sample Size for Research Activities. Educ. Psychol. Meas. 1970, 30, 607–610. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Pearson Education Limited: Harlow, UK, 2014. [Google Scholar]
- Field, A. Discovering Statistics Using IBM SPSS Statistics, 6th ed.; SAGE Publications Ltd.: London, UK, 2024. [Google Scholar]
- Hong, J.; Gruda, N.S. The Potential of Introduction of Asian Vegetables in Europe. Horticulturae 2020, 6, 38. [Google Scholar] [CrossRef]
- Maseko, I.; Mabhaudhi, T.; Tesfay, S.; Araya, H.; Fezzehazion, M.; Plooy, C. African Leafy Vegetables: A Review of Status, Production and Utilization in South Africa. Sustainability 2017, 10, 16. [Google Scholar] [CrossRef]
- van Zonneveld, M.; Kindt, R.; Solberg, S.Ø.; N’Danikou, S.; Dawson, I.K. Diversity and Conservation of Traditional African Vegetables: Priorities for Action. Divers. Distrib. 2021, 27, 216–232. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Song, J. Vegetable Genetic Resources in China. Hortic. Plant J. 2018, 4, 83–88. [Google Scholar] [CrossRef]
- van Noordwijk, M.; Ekadinata, A.; Leimona, B.; Catacutan, D.; Martini, E.; Tata, H.L.; Öborn, I.; Hairiah, K.; Wangpakapattanawong, P.; Mulia, R.; et al. Agroforestry Options for Degraded Landscapes in Southeast Asia. In Agroforestry for Degraded Landscapes; Springer: Singapore, 2020; pp. 307–347. [Google Scholar]
- Tort, Ö.Ö.; Vayvay, Ö.; Çobanoğlu, E. A Systematic Review of Sustainable Fresh Fruit and Vegetable Supply Chains. Sustainability 2022, 14, 1573. [Google Scholar] [CrossRef]
- Paul, C.; Weber, M.; Knoke, T. Agroforestry versus Farm Mosaic Systems–Comparing Land-Use Efficiency, Economic Returns and Risks under Climate Change Effects. Sci. Total Environ. 2017, 587–588, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Sharma, U.C.; Datta, M.; Sharma, V. Land Use and Management. In Soils in the Hindu Kush Himalayas. Geography of the Physical Environment; Springer: Cham, Switzerland, 2023; pp. 295–462. [Google Scholar]
Construct | Factor Extracted | Explained Variances % | α Value |
---|---|---|---|
Satisfaction with Facilities and Infrastructure | Satisfaction with Basic Facilities and Infrastructure | 52.08% | 0.754 |
Satisfaction with Advanced Facilities and Infrastructure | 13.97% | 0.864 | |
Knowledge of Land Use Changes | Knowledge of Land Use Changes | 61.13% | 0.868 |
Satisfaction with Land Resources | Satisfaction with Natural Resources of Land | 53.52% | 1.000 |
Satisfaction with Artificial Resources of Land | 20.28% | 0.833 | |
Perception of Land Use Trade-offs | Perception about Barriers to Land Use | 54.05% | 0.907 |
Perception about Economic Benefits of Land Use | 14.54% | 0.917 |
Variables | Categories | Frequency | Percentage |
---|---|---|---|
Age | 15–24 years | 243 | 35.4% |
25–34 years | 244 | 35.5% | |
35–44 years | 119 | 17.3% | |
45–54 years | 67 | 9.8% | |
55–64 years | 12 | 1.7% | |
65 years and above | 2 | 0.3% | |
Gender | Male | 629 | 91.6% |
Female | 58 | 8.4% | |
Marital Status | Single | 206 | 30.0% |
Married | 471 | 68.6% | |
Divorced | 10 | 1.4% | |
Race | Pashtun | 672 | 97.8% |
Tajik | 4 | 0.6% | |
Hazara | 4 | 0.6% | |
Others | 7 | 1.0% | |
No. of Household Members | 1–4 | 82 | 11.9% |
5–9 | 151 | 22.0% | |
10–14 | 183 | 26.6% | |
15–19 | 71 | 10.4% | |
20 and above | 200 | 29.1% | |
Member of any Association | Yes | 179 | 26.1% |
No | 508 | 73.9% |
Variables | Categories | Frequency | Percentage |
---|---|---|---|
Education Level | No Formal Education | 158 | 23.0% |
Primary School | 90 | 13.1% | |
Secondary School | 228 | 33.2% | |
College/University | 165 | 24.0% | |
Master | 44 | 6.4% | |
Ph.D. | 2 | 0.3% | |
Job/Employment | Self-Employed | 346 | 50.4% |
Working at NGOs | 90 | 13.1% | |
Working at a farm | 78 | 11.3% | |
Government Worker | 106 | 15.4% | |
Others | 67 | 9.8% | |
Working Experience | 1–5 years | 337 | 49.0% |
6–10 years | 186 | 27.1% | |
11–15 years | 125 | 18.2% | |
16 years and above | 39 | 5.7% | |
Monthly Work Income | AFG 5000 and below | 289 | 42.1% |
AFG 6000–AFG 8000 | 165 | 24.0% | |
AFG 9000–AFG 10,000 | 118 | 17.2% | |
AFG 11,000–AFG 15,000 | 73 | 10.6% | |
AFG 16,000 and above | 42 | 6.1% | |
Monthly Household Income | AFG 15,000 and below | 306 | 44.5% |
AFG 16,000–AFG 20,000 | 133 | 19.4% | |
AFG 21,000–AFG 25,000 | 55 | 8.0% | |
AFG 26,000–AFG 30,000 | 73 | 10.6% | |
AFG 31,000–AFG 35,000 | 48 | 7.0% | |
AFG 36,000–AFG 40,000 | 43 | 6.3% | |
AFG 41,000 and above | 29 | 4.2% |
Production of Forest Products (% of Total Sample Size Engaged in a Certain Product) | Satisfaction with Level of Facilities and Infrastructure | Knowledge of Land Use Changes | Satisfaction with Land Resources | Perception of Land Use Trade-Offs | |||
---|---|---|---|---|---|---|---|
Basic Facilities | Advanced Facilities | Natural Resources | Artificial Resources | Barriers | Economic Benefits | ||
MANOVA F (p-Value) | Univariate ANOVA F (p-Value) | MANOVA F (p-Value) | MANOVA F (p-Value) | ||||
Corrected Model | 0.93 (0.521) | 1.86 (0.039) * | 1.576 (0.099) | 3.42 (<0.001) *** | 2.36 (0.007) ** | 2.18 (0.013) * | 3.42 (<0.001) *** |
Intercept | 4414.51 (<0.001) *** | 6318.23 (<0.001) *** | 6849.31 (<0.001) *** | 1103.03 (<0.001) *** | 6033.23 (<0.001) *** | 4920.67 (<0.001) *** | 8593.04 (<0.001) *** |
Herbs (40.5%) | 0.64 (0.425) | 0.89 (0.347) | 0.00 (0.979) | 0.00 (0.947) | 3.86 (0.050) * | 0.50 (0.482) | 2.04 (0.155) |
Mushrooms (40.1%) | 2.09 (0.150) | 0.01 (0.907) | 0.01 (0.912) | 2.01 (0.157) | 6.94 (0.009) ** | 1.01 (0.316) | 0.67 (0.413) |
Fruits (48.5%) | 0.01 (0.906) | 4.45 (0.036) * | 0.58 (0.449) | 0.00 (0.999) | 1.23 (0.269) | 1.06 (0.305) | 0.12 (0.728) |
Pine Nuts (47.4%) | 0.40 (0.530) | 1.07 (0.303) | 0.18 (0.673) | 1.25 (0.265) | 1.32 (0.252) | 3.99 (0.047) * | 1.62 (0.204) |
Berries (38.0%) | 0.21 (0.647) | 5.76 (0.017) * | 7.34 (0.007) ** | 24.92 (<0.001) *** | 4.61 (0.033) * | 5.26 (0.023) * | 28.44 (<0.001) *** |
Wild Animals (44.2%) | 0.01 (0.941) | 0.60 (0.438) | 6.77 (0.010) * | 8.34 (0.004) *** | 0.21 (0.650) | 7.23 (0.008) ** | 4.39 (0.037) * |
Food Crops (43.4%) | 0.05 (0.817) | 0.89 (0.345) | 0.00 (0.967) | 0.17 (0.684) | 0.01 (0.908) | 0.02 (0.880) | 0.25 (0.619) |
Decorative Material for Craft (44.5%) | 0.38 (0.536) | 0.11 (0.746) | 2.41 (0.121) | 0.96 (0.329) | 0.30 (0.586) | 3.42 (0.066) | 1.82 (0.178) |
Timber (44.5%) | 0.40 (0.527) | 0.16 (0.685) | 3.72 (0.055) | 4.32 (0.039) * | 1.57 (0.211) | 5.83 (0.016) * | 7.37 (0.007) ** |
Oils (38.0%) | 0.03 (0.872) | 0.20 (0.656) | 0.00 (0.961) | 2.00 (0.159) | 3.11 (0.079) | 2.27 (0.133) | 0.92 (0.338) |
Wood (44.2%) | 4.85 (0.028) * | 2.30 (0.130) | 1.86 (0.173) | 0.03 (0.853) | 0.04 (0.834) | 1.45 (0.229) | 0.54 (0.464) |
Honey (36.5%) | 0.15 (0.702) | 0.56 (0.454) | 1.12 (0.292) | 0.98 (0.322) | 1.91 (0.169) | 1.51 (0.221) | 0.73 (0.393) |
Production of Vegetables (% of Total Sample Size Engaged in a Certain Products) | Satisfaction with Level of Facilities and Infrastructure | Knowledge of Land Use Changes | Satisfaction with Land Resources | Perception of Land Use Trade-offs | |||
---|---|---|---|---|---|---|---|
Basic Facilities | Advanced Facilities | Natural Resources | Artificial Resources | Barriers | Economic Benefits | ||
MANOVA F (p-Value) | Univariate ANOVA F (p-Value) | MANOVA F (p-Value) | MANOVA F (p-Value) | ||||
Corrected Model | 2.86 (<0.001) *** | 2.84 (<0.001) *** | 1.89 (0.022) * | 1.35 (0.165) | 3.21 (<0.001) *** | 1.94 (0.017) * | 2.05 (0.011) * |
Intercept | 5986.82 (<0.001) *** | 7712.75 (<0.001) *** | 9144.35 (<0.001) *** | 1705.35 (<0.001) *** | 7948.99 (<0.001) *** | 7223.58 (<0.001) *** | 9117.96 (<0.001) *** |
Zucchini (26.5%) | 0.17 (0.681) | 0.04 (0.851) | 2.39 (0.122) | 0.10 (0.755) | 0.02 (0.896) | 0.78 (0.376) | 1.66 (0.198) |
Yellow Pumpkin (24.5%) | 2.15 (0.143) | 0.46 (0.499) | 0.10 (0.750) | 4.61 (0.032) * | 0.18 (0.671) | 0.00 (0.979) | 1.06 (0.302) |
Lettuce (25.9%) | 0.24 (0.626) | 1.18 (0.277) | 0.52 (0.472) | 0.11 (0.743) | 0.03 (0.862) | 0.00 (0.953) | 1.51 (0.220) |
Pepper (24.3%) | 0.13 (0.722) | 0.00 (0.949) | 0.03 (0.862) | 0.00 (0.980) | 4.81 (0.029) * | 4.71 (0.030) * | 0.11 (0.743) |
Potato (30.1%) | 0.27 (0.602) | 3.73 (0.054) | 1.13 (0.288) | 0.04 (0.850) | 5.08 (0.025) * | 2.66 (0.103) | 1.06 (0.304) |
Onion (34.8%) | 0.10 (0.750) | 0.51 (0.473) | 0.11 (0.742) | 3.18 (0.075) | 1.30 (0.255) | 0.42 (0.518) | 5.16 (0.023) * |
Pumpkin (25.5%) | 3.76 (0.053) | 1.14 (0.286) | 0.25 (0.617) | 0.01 (0.908) | 1.67 (0.196) | 0.08 (0.783) | 1.49 (0.222) |
Turnip (24.0%) | 0.03 (0.853) | 0.35 (0.556) | 2.42 (0.120) | 0.48 (0.490) | 0.07 (0.791) | 0.58 (0.449) | 0.00 (0.983) |
Okra (32.0%) | 4.51 (0.034) * | 1.46 (0.227) | 4.02 (0.045) * | 0.71 (0.401) | 0.89 (0.346) | 5.29 (0.022) * | 4.01 (0.046) * |
Garlic (29.1%) | 1.05 (0.305) | 0.46 (0.499) | 0.03 (0.855) | 0.72 (0.395) | 1.31 (0.253) | 0.15 (0.701) | 0.02 (0.878) |
Eggplant (34.2%) | 1.31 (0.252) | 0.54 (0.463) | 9.30 (0.002) ** | 0.13 (0.723) | 12.18 (0.001) *** | 1.77 (0.184) | 0.09 (0.752) |
Carrot (30.1%) | 2.28 (0.131) | 3.63 (0.057) | 5.73 (0.017) * | 0.57 (0.450) | 8.02 (0.005) ** | 1.46 (0.227) | 0.01 (0.914) |
Watermelon (23.7%) | 3.25 (0.072) | 0.33 (0.566) | 0.67 (0.415) | 0.00 (0.983) | 1.26 (0.261) | 0.49 (0.486) | 0.00 (0.980) |
Melon (24.7%) | 0.62 (0.431) | 0.04 (0.842) | 0.52 (0.472) | 0.44 (0.506) | 1.67 (0.196) | 0.00 (0.961) | 0.40 (0.527) |
Cucumber (27.7%) | 7.42 (0.007) ** | 5.66 (0.018) * | 0.12 (0.728) | 0.04 (0.851) | 9.07 (0.003) ** | 3.24 (0.072) | 0.88 (0.347) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadzai, M.R.; Ismail, M.H.; Zaki, P.H.; Magiman, M.M.; Bawon, P. Farmers’ Socioeconomic Characteristics and Perception of Land Use Change Defining Optimal Agroforestry Practices in Khost Province, Afghanistan. Forests 2024, 15, 1877. https://doi.org/10.3390/f15111877
Ahmadzai MR, Ismail MH, Zaki PH, Magiman MM, Bawon P. Farmers’ Socioeconomic Characteristics and Perception of Land Use Change Defining Optimal Agroforestry Practices in Khost Province, Afghanistan. Forests. 2024; 15(11):1877. https://doi.org/10.3390/f15111877
Chicago/Turabian StyleAhmadzai, Mujib Rahman, Mohd Hasmadi Ismail, Pakhriazad Hassan Zaki, Mohd. Maulana Magiman, and Paiman Bawon. 2024. "Farmers’ Socioeconomic Characteristics and Perception of Land Use Change Defining Optimal Agroforestry Practices in Khost Province, Afghanistan" Forests 15, no. 11: 1877. https://doi.org/10.3390/f15111877
APA StyleAhmadzai, M. R., Ismail, M. H., Zaki, P. H., Magiman, M. M., & Bawon, P. (2024). Farmers’ Socioeconomic Characteristics and Perception of Land Use Change Defining Optimal Agroforestry Practices in Khost Province, Afghanistan. Forests, 15(11), 1877. https://doi.org/10.3390/f15111877