Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = pine ethanol lignin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3698 KiB  
Article
Simultaneous Production of Biogas and Electricity from Anaerobic Digestion of Pine Needles: Sustainable Energy and Waste Management
by Deepak Sharma, Rishi Mahajan, Vikas Baghel, Saurabh Bansal, Vishal Ahuja and Gunjan Goel
BioTech 2024, 13(3), 35; https://doi.org/10.3390/biotech13030035 - 5 Sep 2024
Cited by 3 | Viewed by 2241
Abstract
Power scarcity and pollution can be overcome with the use of green energy forms like ethanol, biogas, electricity, hydrogen, etc., especially energy produced from renewable and industrial feedstocks. In hilly areas, pine needles are the most abundant biomass that has a low possibility [...] Read more.
Power scarcity and pollution can be overcome with the use of green energy forms like ethanol, biogas, electricity, hydrogen, etc., especially energy produced from renewable and industrial feedstocks. In hilly areas, pine needles are the most abundant biomass that has a low possibility of valorization due to high lignin content. On the other hand, anaerobic digestion (AD) of lignin and animal waste has low biogas yield due to poor conductivity. This study focuses on the simultaneous production of biogas and electricity through the co-digestion of cow dung and pine needles. The digester was initially established and stabilized in the lab to ensure a continuous supply of inoculum throughout the experiment. The optimization process involved the determination of an ideal cow dung-to-water ratio and selecting the appropriate conductive material that can enhance the energy generation from the feedstock. Afterward, both batch and continuous anaerobic digestion experiments were conducted. The results revealed that the addition of powdered graphite (5 mM), activated charcoal (15 mM), and biochar (25 mM) exhibited maximum voltage of 0.71 ± 0.013 V, 0.56 ± 0.013 V, and 0.49 ± 0.011 V on the 30th, 25th and 20th day of AD, respectively. The batch experiment showed that 5 mM graphite powder enhanced electron transfer in the AD process and generated a voltage of 0.77 ± 0.014 V on the 30th day, indicating an increase of ~1.5-fold as compared to the control (0.56 ± 0.019 V). The results from the continuous AD process showed that the digester with cow dung, pine needle, and a conductive material in combination exhibited the maximum voltage of 0.76 ± 0.012 V on the 21st day of AD, while the digester with cow dung only exhibited a maximum voltage of 0.62 ± 0.015 V on the 22nd day of AD, representing a 1.3-fold increase over the control. Furthermore, the current work used discarded plastic items and electrodes from spent batteries to emphasize waste management and aid in attaining sustainable energy and development goals. Full article
(This article belongs to the Section Environmental Biotechnology)
Show Figures

Figure 1

13 pages, 3464 KiB  
Article
A New Microwave-Assisted Protocol for Cellulose Extraction from Eucalyptus and Pine Tree Wood Waste
by Silvia Vinhas, Mafalda Sarraguça, Tânia Moniz, Salette Reis and Maria Rangel
Polymers 2024, 16(1), 20; https://doi.org/10.3390/polym16010020 - 20 Dec 2023
Cited by 11 | Viewed by 3600
Abstract
An enormous interest in the development of efficient protocols for cellulose extraction has been demonstrated in the last few years, although usually based on non-sustainable chemical and thermal approaches. In this work, we propose a new and more sustainable method for cellulose extraction [...] Read more.
An enormous interest in the development of efficient protocols for cellulose extraction has been demonstrated in the last few years, although usually based on non-sustainable chemical and thermal approaches. In this work, we propose a new and more sustainable method for cellulose extraction from eucalyptus and pine tree wood waste products exclusively performed using microwave-assisted radiation. The methodology includes three main steps: (i) alkaline treatment; (ii) bleaching I, using H2O2; and (iii) bleaching II, an acidic treatment. Samples obtained in each step were characterized by Fourier-transform Infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results were compared with the structural and thermal profile of the starting materials, a commercially available microcrystalline cellulose and with an industrial paper pulp sample. Results confirmed that for both types of wood wastes, cellulose was retained during the extraction procedures and that the removal of hemicellulose and lignin was mainly achieved in the last step, as seen by the FTIR spectra and TGA curves. The developed protocol is innovative, as it constitutes an easy and quick approach for extracting cellulose from eucalyptus and pine tree wood waste. Mild chemical and thermal conditions are used during the three extraction steps (microwave irradiation, aqueous solutions, maximum of 120 °C in a total of 3 h). Moreover, environmentally friendly purification steps are applied based on the use of water and ethanol. This approach offers the possibility of a future scale-up study to potentially apply the developed protocol to the extraction of cellulose on an industrial scale. Full article
(This article belongs to the Special Issue Polymers and Biopolymers for Sustainable Life and Applications)
Show Figures

Figure 1

16 pages, 3647 KiB  
Article
Depolymerization of Pine Wood Organosolv Lignin in Ethanol Medium over NiCu/SiO2 and NiCuMo/SiO2 Catalysts: Impact of Temperature and Catalyst Composition
by Angelina V. Miroshnikova, Sergey V. Baryshnikov, Yuriy N. Malyar, Xiaomin Li, Maria V. Alekseeva, Boris N. Kuznetsov and Oxana P. Taran
Polymers 2023, 15(24), 4722; https://doi.org/10.3390/polym15244722 - 15 Dec 2023
Cited by 3 | Viewed by 1887
Abstract
The process of thermocatalytic conversion of pine ethanol lignin in supercritical ethanol was studied over NiCu/SiO2 and NiCuMo/SiO2 catalysts bearing 8.8 and 11.7 wt.% of Mo. The structure and composition of ethanol lignin and the products of its thermocatalytic conversion were [...] Read more.
The process of thermocatalytic conversion of pine ethanol lignin in supercritical ethanol was studied over NiCu/SiO2 and NiCuMo/SiO2 catalysts bearing 8.8 and 11.7 wt.% of Mo. The structure and composition of ethanol lignin and the products of its thermocatalytic conversion were characterized via 2D-HSQC NMR spectroscopy, GC-MC. The main aromatic monomers among the liquid products of ethanol lignin conversion were alkyl derivatives of guaiacol (propyl guaiacol, ethyl guaiacol and methyl guaiacol). The total of the monomers yield in this case was 12.1 wt.%. The temperature elevation up to 350 °C led to a slight decrease in the yield (to 11.8 wt.%) and a change in the composition of monomeric compounds. Alkyl derivatives of pyrocatechol, phenol and benzene were observed to form due to deoxygenation processes. The ratio of the yields of these compounds depended on the catalyst, namely, on the content of Mo in the catalyst composition. Thus, the distribution of monomeric compounds used in various industries can be controlled by varying the catalyst composition and the process conditions. Full article
(This article belongs to the Special Issue Natural Polymer Materials: Cellulose, Lignin and Chitosan)
Show Figures

Figure 1

19 pages, 2273 KiB  
Article
The Chemical Characterisation of the Maritime Pine Bark Cultivated in Northern Portugal
by Diana Barros, Élia Fernandes, Meirielly Jesus, Lillian Barros, José Ignacio Alonso-Esteban, Preciosa Pires and Manuela Vaz Velho
Plants 2023, 12(23), 3940; https://doi.org/10.3390/plants12233940 - 22 Nov 2023
Cited by 10 | Viewed by 3479
Abstract
Maritime pine, scientifically known as Pinus pinaster, holds a vital role in Iberian Peninsula forests, primarily as a source of wood for panels, paper, and cellulose production. Recently, there has been a growing interest in utilising agroforestry by-products to yield valuable chemicals [...] Read more.
Maritime pine, scientifically known as Pinus pinaster, holds a vital role in Iberian Peninsula forests, primarily as a source of wood for panels, paper, and cellulose production. Recently, there has been a growing interest in utilising agroforestry by-products to yield valuable chemicals for applications in various sectors, including the food, pharmaceutical, and bioenergy industries. This study aimed to assess the value of the primary by-product of Pinus pinaster from the Minho region of northwestern Portugal, i.e., the bark. The research extensively examined the bark’s chemical and thermal characteristics, including ash content, extractives, lignin, cellulose, hemicellulose, fatty acids, and mineral composition. Additionally, various analytical techniques like FTIR, SEM, DSC, DTG, and XRD were used to observe chemical structure differences. The results reveal that the Pinus pinaster bark primarily consists of lignin (51.15%) and holocellulose (46.09%), with extractives mainly soluble in toluene–ethanol, followed by water, and a small amount of them are soluble in ethanol. The bark contained around 0.44% ash, and heavy metals such as Cd and Pb were not found. During degradation, Pinus pinaster experienced a 10% mass loss at 140 °C. In terms of crystallinity, holocellulose and cellulose showed similar percentages at approximately 25.5%, while α-cellulose displayed the highest crystallinity index at 41%. Full article
Show Figures

Figure 1

10 pages, 278 KiB  
Article
Potential of Pine Needle Biomass for Bioethanol Production
by Aleksandra Wawro, Jakub Jakubowski, Weronika Gieparda, Zenon Pilarek and Agnieszka Łacka
Energies 2023, 16(9), 3949; https://doi.org/10.3390/en16093949 - 8 May 2023
Cited by 8 | Viewed by 4050
Abstract
Currently, fossil fuels are used to produce fuels and electricity, which are finite sources and have a negative impact on the natural environment. An excellent alternative to these fuels is biofuels, such as bioethanol from waste forest biomass. Pine needles are one of [...] Read more.
Currently, fossil fuels are used to produce fuels and electricity, which are finite sources and have a negative impact on the natural environment. An excellent alternative to these fuels is biofuels, such as bioethanol from waste forest biomass. Pine needles are one of the most important available forest biomass materials with s significant impact on local understory vegetation. Forest waste biomass, which is a rich source of lignocellulose, can be used in various ways, such as for the eco-economical production of bioethanol. The aim of this study was to analyze the possibilities of bioethanol production from pine needle biomass obtained from forest land following different soil preparations and logging residue management. The pine needle dry matter yield, chemical components of pine needle biomass (cellulose, hemicellulose, lignin), and the amount of ethanol yield per hectare were evaluated. The highest average yield pine needle equal to 6.17 Mg∙ha−1 was observed. Bioethanol yield per hectare from this biomass was the highest for plowing with the LPZ-75 plow and was 1.08 m3∙ha−1. The discussed results were confirmed by detailed statistical analysis. To sum up, the researched pine needle biomass turned out to be an interesting raw material with the potential for bioethanol production. Full article
(This article belongs to the Special Issue Key Technologies and Challenges of Biomass and Bioenergy System)
15 pages, 2384 KiB  
Article
Effect of Loblolly Pine (Pinus taeda L.) Hemicellulose Structure on the Properties of Hemicellulose-Polyvinyl Alcohol Composite Film
by Huaizhi Pan, Biao Zheng, Hui Yang, Yingying Guan, Liuyang Zhang, Xiaoli Xu, Aimin Wu and Huiling Li
Molecules 2023, 28(1), 46; https://doi.org/10.3390/molecules28010046 - 21 Dec 2022
Cited by 3 | Viewed by 2512
Abstract
Hemicellulose is the second most abundant natural polysaccharide and a promising feedstock for biomaterial synthesis. In the present study, the hemicellulose of loblolly pine was obtained by the alkali extraction-graded ethanol precipitation technique, and the hemicellulose-polyvinyl alcohol (hemicellulose-PVA) composite film was prepared by [...] Read more.
Hemicellulose is the second most abundant natural polysaccharide and a promising feedstock for biomaterial synthesis. In the present study, the hemicellulose of loblolly pine was obtained by the alkali extraction-graded ethanol precipitation technique, and the hemicellulose-polyvinyl alcohol (hemicellulose-PVA) composite film was prepared by film casting from water. Results showed that hemicellulose with a low degree of substitution is prone to self-aggregation during film formation, while hemicellulose with high branching has better compatibility with PVA and is easier to form a homogeneous composite film. In addition, the higher molecular weight of hemicellulose facilitates the preparation of hemicellulose-PVA composite film with better mechanical properties. More residual lignin in hemicellulose results in the better UV shielding ability of the composite film. This study provides essential support for the efficient and rational utilization of hemicellulose. Full article
(This article belongs to the Special Issue Polymeric Systems Loaded with Natural Bioactive Compounds)
Show Figures

Figure 1

10 pages, 1829 KiB  
Article
Extraction and Depolymerization of Lignin from Pine Sawdust and Pistachio Shells
by Balawanthrao Jadhav, Ranen Roy, Md Sajjadur Rahman and Douglas E. Raynie
Biomass 2022, 2(4), 348-357; https://doi.org/10.3390/biomass2040023 - 28 Nov 2022
Cited by 7 | Viewed by 3913
Abstract
Lignocellulosic biomass is a renewable resource that contains three major constituents: cellulose, hemicellulose, and lignin. Lignin is a potential source of aromatic phenols. The extraction and subsequent depolymerization of lignin was studied using pine sawdust and pistachio shells. Lignin extraction used 70:30 methyl [...] Read more.
Lignocellulosic biomass is a renewable resource that contains three major constituents: cellulose, hemicellulose, and lignin. Lignin is a potential source of aromatic phenols. The extraction and subsequent depolymerization of lignin was studied using pine sawdust and pistachio shells. Lignin extraction used 70:30 methyl isobutyl ketone:ethanol followed by 0.1M H2SO4. The extraction yield of lignin was 15.78 ± 3.38% from pistachio shells and 18.86 ± 1.52% from pine sawdust. The extracted lignin was characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and 1H-NMR spectroscopy. The extracted lignin was depolymerized using subcritical water and a Ni-Graphene catalyst at 240 °C for 10 min. The depolymerization products were identified as phenolic monomers, such as phenol, guaiacol, vanillin, syringol, guaiacylpropane, syringaldehyde, coniferaldehyde, synapyl alcohol, and synapyl aldehyde, using GC-MS. Full article
Show Figures

Figure 1

15 pages, 7081 KiB  
Article
Catalytic Wood Fractionation into Chemicals in Supercritical Ethanol and n-Heptane: Potential and Limitations
by Marion Eternot and Nadine Essayem
Catalysts 2022, 12(11), 1333; https://doi.org/10.3390/catal12111333 - 1 Nov 2022
Viewed by 1797
Abstract
Direct selective wood fractionation into chemicals is an approach that has attracted recent attention. The application of sub- and supercritical (SC) alcohols to fractionate wood into solid cellulose and liquefy phenolic monomers is a process now widely known as “lignin first”. It is [...] Read more.
Direct selective wood fractionation into chemicals is an approach that has attracted recent attention. The application of sub- and supercritical (SC) alcohols to fractionate wood into solid cellulose and liquefy phenolic monomers is a process now widely known as “lignin first”. It is justified to study the potential of other SC organic solvents of variable polarities. Herein, we compare the abilities of SC ethanol and SC n-heptane to fractionate pine wood near their critical point. While near-critical ethanol has more affinity for lignin fraction, we show that near-critical n-heptane has preference for carbohydrate deconstruction. If SC ethanol favors biooil formation which contains important ethyl/ethoxy groups, the alkane greatly favors solid carbon products. The impact of addition of heterogeneous catalysts (acid, basic and Cu-based catalysts) on wood fractionation and light chemicals formation was investigated deeply in SC ethanol. In SC ethanol, catalysts favor light liquid products such as esters at the expense of biooil with a total oxygenates yield of 33 wt% relative to carbohydrates over β zeolite. However, we show that depending on the catalysts’ nature, wood components fractionation was completely changed, and this is particularly true with solid acid catalysts which promote cellulose deconstruction and the formation of solid carbon products. It is proposed that liquid products’ accumulation in the autoclave, in particular water, is at the origin of the wood fractionation changes which preclude its control by the choice of the SC organic solvent and conditions. Moreover, all the catalysts underwent severe leaching, which also contributed to the wood component fractionation changes. Full article
Show Figures

Figure 1

14 pages, 2829 KiB  
Article
Study on Soda–Ethanol Delignification of Pine Sawdust for a Biorefinery
by Camila María Imlauer Vedoya, María Cristina Area, Natalia Raffaeli and Fernando Esteban Felissia
Sustainability 2022, 14(11), 6660; https://doi.org/10.3390/su14116660 - 29 May 2022
Cited by 7 | Viewed by 2602
Abstract
The soda–ethanol process was conceived as a sulfur-free pulping process, which may also be an alternative to conventional alkaline pulping, such as kraft or soda–AQ in the biorefinery context. An in-depth study using two experimental designs was conducted to establish the viability of [...] Read more.
The soda–ethanol process was conceived as a sulfur-free pulping process, which may also be an alternative to conventional alkaline pulping, such as kraft or soda–AQ in the biorefinery context. An in-depth study using two experimental designs was conducted to establish the viability of soda–ethanol delignification of pine sawdust. At first, a simple factorial design involving the ethanol–water ratio (ethanol:water) and the alkaline load (AL, % over dry wood, odw) was applied to define the levels of these variables and their eventual interaction. Then, a 32 experimental design was performed to evaluate the ability of the process concerning the pulping of pine sawdust. The tested conditions were carefully selected to screen a broad range of cooking times (60, 100, and 140 min) and alkaline loads (19.0, 23.3, and 27.6 %odw) to obtain pulps with different extents of delignification (residual lignin contents). Finally, the kraft, soda–AQ, and soda–ethanol treatments were compared. Soda–ethanol pulping was shown to be a suitable delignification stage for a biorefinery scheme of Pinus elliottii and Pinus taeda sawdust. It has many advantages over traditional processes regarding its environmental impact, harmless chemicals, and selectivity. The tested conditions were similar to those frequently used in conventional pulping at an industrial scale, suggesting the technical feasibility of the soda–ethanol process for pine sawdust processing. Full article
(This article belongs to the Special Issue Biomass Treatment Techniques and Sustainable Utilization of Residues)
Show Figures

Figure 1

11 pages, 1079 KiB  
Article
Modelling of the Simultaneous Saccharification and Fermentation for a Pine Sawdust Biorefinery
by Carolina Mónica Mendieta, Julia Kruyeniski, Fernando Esteban Felissia and María Cristina Area
Fermentation 2022, 8(3), 130; https://doi.org/10.3390/fermentation8030130 - 16 Mar 2022
Cited by 5 | Viewed by 3557
Abstract
The decline in world oil reserves evidences the need to diversify the sources of equivalent raw materials. The use of biomass is one of the most explored alternatives. This work evaluates the second-generation bioethanol (2G) production from a pine sawdust soda- ethanol pulp [...] Read more.
The decline in world oil reserves evidences the need to diversify the sources of equivalent raw materials. The use of biomass is one of the most explored alternatives. This work evaluates the second-generation bioethanol (2G) production from a pine sawdust soda- ethanol pulp by simultaneous hydrolysis and fermentation (SSF) to obtain the best conditions for scaling up the process. Experimental designs have been used to find mathematical models that define the complex situation jointly varying time with other variables (enzyme load and temperature). Time periods in the full model varied from 0 h to 72 h. Given the results (curve shape differences), it was decided to split the design in two, covering periods from 0 h to 24 h (Model I) and from 24 to 72 h (Model II). The pulp chemical composition was 80.2% glucans, 7.2% xylans, 0.3% galactans, 8.4% mannans, 3.7% lignin. Cellic® Ctec2 cellulolytic enzymes were used for saccharification and Saccharomyces cerevisiae IMR 1181 (SC 1181) yeast for fermentation. The best conditions found in the two designs were 30 FPU g−1 glucans, 39 °C, 24 h for Model I, and 30 FPU g−1 glucans, 35 °C, 72 h for Model II. Fermentation optimal values were 63.23 and 81.93 for Models I and II, respectively. Full article
Show Figures

Figure 1

15 pages, 1541 KiB  
Article
Effect of Litter Quality on Needle Decomposition for Four Pine Species in Korea
by Hee Myung Chae, Sung Hwan Choi, Sang Hoon Lee, Sangsub Cha, Keum Chul Yang and Jae Kuk Shim
Forests 2019, 10(5), 371; https://doi.org/10.3390/f10050371 - 28 Apr 2019
Cited by 30 | Viewed by 5841
Abstract
Litter decomposition involves multiple complex processes, including interactions between the physicochemical characteristics of litter species and various environmental factors. We selected four representative pine species in South Korea (Pinus densiflora Siebold & Zucc., Pinus thunbergii Parl., Pinus koraiensis Siebold & [...] Read more.
Litter decomposition involves multiple complex processes, including interactions between the physicochemical characteristics of litter species and various environmental factors. We selected four representative pine species in South Korea (Pinus densiflora Siebold & Zucc., Pinus thunbergii Parl., Pinus koraiensis Siebold & Zucc., and Pinus rigida Miller) to investigate the decay rate and effects of the physicochemical properties on decomposition. Needle litters were incubated in microcosms at 23 °C for 280 days and retrieved four times in about 70-day intervals. The mass loss showed significant differences among the species and was higher in the order of P. densiflora (30.5%), P. koraiensis (27.8%), P. rigida (26.5%), and P. thunbergii (23.6%). The needle litter decomposition showed a negative relationship with the initial surface area, volume, density, cellulose content, and lignin/nitrogen of the litter, and a positive relationship with the initial specific leaf area (SLA), surface-area-to-volume ratio (SA/V), and water- and ethanol-soluble substances. The decomposition rate was highly affected by the physical properties of litter when compared with the initial chemical litter quality, and it was strongly influenced by SLA and SA/V. Accordingly, the physical properties of pine needle litter, especially SLA and SA/V, may be the key factors, and they could be used as predictive indices for the decomposition rate of pine tree litters. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

15 pages, 1942 KiB  
Article
Organosolv Lignin-Based Wood Adhesive. Influence of the Lignin Extraction Conditions on the Adhesive Performance
by Issam Dababi, Olinda Gimello, Elimame Elaloui, Françoise Quignard and Nicolas Brosse
Polymers 2016, 8(9), 340; https://doi.org/10.3390/polym8090340 - 14 Sep 2016
Cited by 34 | Viewed by 10236
Abstract
Ethanol organosolv alfa grass lignins were extracted in the presence of sulfuric acid or Lewis acids (Sc(OTf)3, FeCl3) as catalysts and subjected to a comprehensive structural characterization by solid state 13C NMR, GPC, MALDI-TOF, and ASAP-MS/MS. The impact [...] Read more.
Ethanol organosolv alfa grass lignins were extracted in the presence of sulfuric acid or Lewis acids (Sc(OTf)3, FeCl3) as catalysts and subjected to a comprehensive structural characterization by solid state 13C NMR, GPC, MALDI-TOF, and ASAP-MS/MS. The impact of the severity of the treatment and of the nature of the acid catalyst on the recovered lignin structure was investigated. The lignins isolated at high severity were highly recondensed and partly composed of regular structures composed of furan-like rings. The alfa (Stipa tenacissima L.) organosolv lignins were used for the preparation of formaldehyde-free adhesives which were characterized by TMA and used for the preparation of particleboard without any addition of synthetic resin. It has been demonstrated for the first time that: (1) the addition of 10% to 30% of organosolv alfa lignin in a tannin-based adhesive improved the adhesive performance; and (2) the conditions of the lignin extraction strongly impact the lignin-based adhesive performances. The highly recondensed lignin extracted with sulfuric acid as a catalyst allowed the production of resins with improved performances. Formulations composed of 50% glyoxalated alfa lignin and 50% of Aleppo Pine tannins yielded good internal bond strength results for the panels (IB = 0.45 MPa) and satisfied relevant international standard specifications for interior-grade panels. Full article
(This article belongs to the Special Issue Renewable Polymeric Adhesives)
Show Figures

Graphical abstract

Back to TopTop