Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (705)

Search Parameters:
Keywords = pilot buildings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 1256 KiB  
Article
Bridging Interoperability Gaps Between LCA and BIM: Analysis of Limitations for the Integration of EPD Data in IFC
by Aitor Aragón, Paulius Spudys, Darius Pupeikis, Óscar Nieto and Marcos Garcia Alberti
Buildings 2025, 15(15), 2760; https://doi.org/10.3390/buildings15152760 - 5 Aug 2025
Abstract
The construction industry is a major consumer of raw materials and a significant contributor to environmental emissions. Life cycle assessment (LCA) using digital models is a valuable tool for conducting a science-based analysis to reduce these impacts. However, transferring data from environmental product [...] Read more.
The construction industry is a major consumer of raw materials and a significant contributor to environmental emissions. Life cycle assessment (LCA) using digital models is a valuable tool for conducting a science-based analysis to reduce these impacts. However, transferring data from environmental product declarations (EPDs) to BIM for the purpose of sustainability assessment requires significant resources for its interpretation and integration. This study is founded on a comprehensive review of the scientific literature and standards, an analysis of published digital EPDs, and a thorough evaluation of IFC (industry foundation classes), identifying twenty gaps for the automated incorporation of LCA data from construction products into BIM. The identified limitations were assessed using the digital model of a building pilot, applying simplifications to incorporate actual EPD data. This paper presents the identified barriers to the automated incorporation of digital EPDs into BIM, and proposes eleven concrete actions to improve IFC 4.3. While prior studies have analyzed the environmental data in IFC, this research is significant in two key areas. Firstly, it focuses on the direct machine interpretation of environmental information without human intervention. Secondly, it is intended to be directly applicable to a revision of the IFC standards. Full article
(This article belongs to the Special Issue Research on BIM—Integrated Construction Operation Simulation)
Show Figures

Figure 1

15 pages, 5152 KiB  
Article
Assessment of Emergy, Environmental and Economic Sustainability of the Mango Orchard Production System in Hainan, China
by Yali Lei, Xiaohui Zhou and Hanting Cheng
Sustainability 2025, 17(15), 7030; https://doi.org/10.3390/su17157030 - 2 Aug 2025
Viewed by 229
Abstract
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the [...] Read more.
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the economic benefits and environmental impact during its planting and management process remain unclear. This paper combines emergy, life cycle assessment (LCA), and economic analysis to compare the system sustainability, environmental impact, and economic benefits of the traditional mango cultivation system (TM) in Dongfang City, Hainan Province, and the early-maturing mango cultivation system (EM) in Sanya City. The emergy evaluation results show that the total emergy input of EM (1.37 × 1016 sej ha−1) was higher than that of TM (1.32 × 1016 sej ha−1). From the perspective of the emergy index, compared with TM, EM exerted less pressure on the local environment and has better stability and sustainability. This was due to the higher input of renewable resources in EM. The LCA results showed that based on mass as the functional unit, the potential environmental impact of the EM is relatively high, and its total environmental impact index was 18.67–33.19% higher than that of the TM. Fertilizer input and On-Farm emissions were the main factors causing environmental consequences. Choosing alternative fertilizers that have a smaller impact on the environment may effectively reduce the environmental impact of the system. The economic analysis results showed that due to the higher selling price of early-maturing mango, the total profit and cost–benefit ratio of the EM have increased by 55.84% and 36.87%, respectively, compared with the TM. These results indicated that EM in Sanya City can enhance environmental sustainability and boost producers’ annual income, but attention should be paid to the negative environmental impact of excessive fertilizer input. These findings offer insights into optimizing agricultural inputs for Hainan mango production to mitigate multiple environmental impacts while enhancing economic benefits, aiming to provide theoretical support for promoting the sustainable development of the Hainan mango industry. Full article
Show Figures

Graphical abstract

30 pages, 3319 KiB  
Article
A Pilot Study on Thermal Comfort in Young Adults: Context-Aware Classification Using Machine Learning and Multimodal Sensors
by Bibars Amangeldy, Timur Imankulov, Nurdaulet Tasmurzayev, Serik Aibagarov, Nurtugan Azatbekuly, Gulmira Dikhanbayeva and Aksultan Mukhanbet
Buildings 2025, 15(15), 2694; https://doi.org/10.3390/buildings15152694 - 30 Jul 2025
Viewed by 328
Abstract
While personal thermal comfort is critical for well-being and productivity, it is often overlooked by traditional building management systems that rely on uniform settings. Modern data-driven approaches often fail to capture the complex interactions between various data streams. This pilot study introduces a [...] Read more.
While personal thermal comfort is critical for well-being and productivity, it is often overlooked by traditional building management systems that rely on uniform settings. Modern data-driven approaches often fail to capture the complex interactions between various data streams. This pilot study introduces a high-accuracy, interpretable framework for thermal comfort classification, designed to identify the most significant predictors from a comprehensive suite of environmental, physiological, and anthropometric data in a controlled group of young adults. Initially, an XGBoost model using the full 24-feature dataset achieved the best performance at 91% accuracy. However, after using SHAP analysis to identify and select the most influential features, the performance of our ensemble models improved significantly; notably, a Random Forest model’s accuracy rose from 90% to 94%. Our analysis confirmed that for this homogeneous cohort, environmental parameters—specifically temperature, humidity, and CO2—were the dominant predictors of thermal comfort. The primary strength of this methodology lies in its ability to create a transparent pipeline that objectively identifies the most critical comfort drivers for a given population, forming a crucial evidence base for model design. The analysis also revealed that the predictive value of heart rate variability (HRV) diminished when richer physiological data, such as diastolic blood pressure, were included. For final validation, the optimized Random Forest model, using only the top 10 features, was tested on a hold-out set of 100 samples, achieving a final accuracy of 95% and an F1-score of 0.939, with all misclassifications occurring only between adjacent comfort levels. These findings establish a validated methodology for creating effective, context-aware comfort models that can be embedded into intelligent building management systems. Such adaptive systems enable a shift from static climate control to dynamic, user-centric environments, laying the critical groundwork for future personalized systems while enhancing occupant well-being and offering significant energy savings. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

27 pages, 956 KiB  
Article
Boosting Sustainable Urban Development: How Smart Cities Improve Emergency Management—Evidence from 275 Chinese Cities
by Ming Guo and Yang Zhou
Sustainability 2025, 17(15), 6851; https://doi.org/10.3390/su17156851 - 28 Jul 2025
Viewed by 435
Abstract
Rapid urbanization and escalating disaster risks necessitate resilient urban governance systems. Smart city initiatives that leverage digital technologies—such as the internet of things (IoT), big data analytics, and artificial intelligence (AI)—demonstrate transformative potential in enhancing emergency management capabilities. However, empirical evidence regarding their [...] Read more.
Rapid urbanization and escalating disaster risks necessitate resilient urban governance systems. Smart city initiatives that leverage digital technologies—such as the internet of things (IoT), big data analytics, and artificial intelligence (AI)—demonstrate transformative potential in enhancing emergency management capabilities. However, empirical evidence regarding their causal impact and underlying mechanisms remains limited, particularly in developing economies. Drawing on panel data from 275 Chinese prefecture-level cities over the period 2006–2021 and using China’s smart city pilot policy as a quasi-natural experiment, this study applies a multi-period difference-in-differences (DID) approach to rigorously assess the effects of smart city construction on emergency management capabilities. Results reveal that smart city construction produced a statistically significant improvement in emergency management capabilities, which remained robust after conducting multiple sensitivity checks and controlling for potential confounding policies. The benefits exhibit notable heterogeneity: emergency management capability improvements are most pronounced in central China and in cities at the extremes of population size—megacities (>10 million residents) and small cities (<1 million residents)—while effects remain marginal in medium-sized and eastern cities. Crucially, mechanism analysis reveals that digital technology application fully mediates 86.7% of the total effect, whereas factor allocation efficiency exerts only a direct, non-mediating influence. These findings suggest that smart cities primarily enhance emergency management capabilities through digital enablers, with effectiveness contingent upon regional infrastructure development and urban scale. Policy priorities should therefore emphasize investments in digital infrastructure, interagency data integration, and targeted capacity-building strategies tailored to central and western regions as well as smaller cities. Full article
(This article belongs to the Special Issue Advanced Studies in Sustainable Urban Planning and Urban Development)
Show Figures

Figure 1

28 pages, 2732 KiB  
Article
Carbon Dioxide Reduction Effect Based on Carbon Quota Analysis of Public Buildings: Comparative Analysis of Chinese Emission Trading Pilots
by Weina Zhu, Linghan Wang, Zhi Sun, Li Zhang and Xiaodong Li
Buildings 2025, 15(15), 2650; https://doi.org/10.3390/buildings15152650 - 27 Jul 2025
Viewed by 239
Abstract
Chinese public building carbon emissions trading system (CETS) pilots have employed different carbon quota methods over more than ten years. However, there are few quantitative comparisons on CETS emission reduction effects in different pilots based on the carbon quota analysis. This paper first [...] Read more.
Chinese public building carbon emissions trading system (CETS) pilots have employed different carbon quota methods over more than ten years. However, there are few quantitative comparisons on CETS emission reduction effects in different pilots based on the carbon quota analysis. This paper first calculates the annual carbon quotas of public buildings based on carbon quota allocation methodologies from municipal policy documents. Then, the factors affecting the carbon quotas of public buildings are analyzed. Finally, the emission reduction effects are analyzed and compared between the pilots. The findings are concluded as follows: (1) Public building stock area and energy efficiency demonstrate significant effects on the carbon quota. (2) The average annual carbon quota deficits of public buildings were 929,800 tons in Beijing and 596,000 tons in Shanghai, while the carbon quota was an annual surplus of 296,400 tons in Shenzhen, indicating that carbon quota allocations in Beijing and Shanghai pilots are more conducive to promoting the active participation of high-emission enterprises. (3) The emission reduction effect in Beijing is most pronounced, followed by Shanghai and finally Shenzhen. Accordingly, the reasons for the difference in emission reduction effects are analyzed. This study contributes to the carbon quota allocation and emission reduction of public buildings. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 16988 KiB  
Article
Deploying Virtual Quality Gates in a Pilot-Scale Lithium-Ion Battery Assembly Line
by Xukuan Xu, Simon Stier, Andreas Gronbach and Michael Moeckel
Batteries 2025, 11(8), 285; https://doi.org/10.3390/batteries11080285 - 25 Jul 2025
Viewed by 262
Abstract
Pilot production is a critical transitional phase in the process of new product development or manufacturing, aiming at ensuring that products are thoroughly validated and optimized before entering full-scale production. During this stage, a key challenge is how to leverage limited resources to [...] Read more.
Pilot production is a critical transitional phase in the process of new product development or manufacturing, aiming at ensuring that products are thoroughly validated and optimized before entering full-scale production. During this stage, a key challenge is how to leverage limited resources to build data infrastructure and conduct data analysis to establish and verify quality control. This paper presents the implementation of a cyber–physical system (CPS) for a lithium battery pilot assembly line. A machine learning-based predictive model was employed to establish quality control mechanisms. Process knowledge-guided data analysis was utilized to build a quality prediction model based on the collected battery data. The model-centric concept of ‘virtual quality’ enables early quality judgment during production, which allows for flexible quality control and the determination of optimal process parameters, thereby reducing production costs and minimizing energy consumption during manufacturing. Full article
(This article belongs to the Section Battery Processing, Manufacturing and Recycling)
Show Figures

Figure 1

21 pages, 2542 KiB  
Article
Wellbeing, Sense of Belonging, Resilience, and Academic Buoyancy Impacts of Education Outside the Classroom: An Australian Case Study
by Helen Cooper, Tonia Gray, Jacqueline Ullman and Christina Curry
Behav. Sci. 2025, 15(8), 1010; https://doi.org/10.3390/bs15081010 - 25 Jul 2025
Viewed by 281
Abstract
This paper examines the importance of ‘education outside the classroom’ (EOtC) in an Australian secondary school. The primary aim was to develop a sense of belonging, build resilience, and enhance wellbeing in female students. This study investigated two cohorts of Year 9 students [...] Read more.
This paper examines the importance of ‘education outside the classroom’ (EOtC) in an Australian secondary school. The primary aim was to develop a sense of belonging, build resilience, and enhance wellbeing in female students. This study investigated two cohorts of Year 9 students (aged 14–15 yrs) who participated in a four-week residential EOtC pilot program. The first cohort (Wave 1; N = 58) undertook the program alongside (N = 39) boys. The second cohort was single-sex girls (Wave 2; N = 28). A mixed-methods research design was implemented to inform experiences of students, parents, and staff and to triangulate inferences drawn from the data. Quantitative data was gained from pre- and post-program surveys with students and parents, whilst qualitative data was gathered from student focus groups, staff, and parents through semi-structured interviews to assess more nuanced impacts. School belonging was measured using the PISA six-item scale. Academic buoyancy was quantified using the four-item Academic Buoyancy Scale. Self-efficacy, peer relations, and resilience were evaluated by employing the 34-item Adolescent Girls’ Resilience Scale. The findings revealed significant improvements in students’ sense of belonging, including higher levels of school belonging than reported Australia-wide averages for 15-year-olds. Despite students’ mean academic buoyancy scores being more than a point lower than reported baseline scores for Australian high school students, it was promising to see a modest increase following the EOtC program. In conclusion, EOtC is a potent vehicle for developing a sense of belonging, enhancing resilience, and equipping students to deal with academic challenges. Full article
Show Figures

Figure 1

42 pages, 2167 KiB  
Systematic Review
Towards Sustainable Construction: Systematic Review of Lean and Circular Economy Integration
by Abderrazzak El Hafiane, Abdelali En-nadi and Mohamed Ramadany
Sustainability 2025, 17(15), 6735; https://doi.org/10.3390/su17156735 - 24 Jul 2025
Viewed by 474
Abstract
The construction sector significantly contributes to global environmental degradation through intensive resource extraction, high energy consumption, and substantial waste generation. Addressing this unsustainable trajectory requires integrated approaches that simultaneously improve operational efficiency and material circularity. Lean Construction (LC) and Circular Economy (CE) offer [...] Read more.
The construction sector significantly contributes to global environmental degradation through intensive resource extraction, high energy consumption, and substantial waste generation. Addressing this unsustainable trajectory requires integrated approaches that simultaneously improve operational efficiency and material circularity. Lean Construction (LC) and Circular Economy (CE) offer complementary frameworks for enhancing process performance and reducing environmental impacts. However, their combined implementation remains underdeveloped and fragmented. This study conducts a systematic literature review (SLR) of 18 peer-reviewed articles published between 2010 and 2025, selected using PRISMA 2020 guidelines and sourced from Scopus and Web of Science databases. A mixed-method approach combines bibliometric mapping and qualitative content analysis to investigate how LC and CE are jointly operationalized in construction contexts. The findings reveal that LC improves cost, time, and workflow reliability, while CE enables reuse, modularity, and lifecycle extension. Integration is further supported by digital tools—such as Building Information Modelling (BIM), Design for Manufacture and Assembly (DfMA), and digital twins—which enhance traceability and flow optimization. Nonetheless, persistent barriers—including supply chain fragmentation, lack of standards, and regulatory gaps—continue to constrain widespread adoption. This review identifies six strategic enablers for LC-CE integration: crossdisciplinary competencies, collaborative governance, interoperable digital systems, standardized indicators, incentive-based regulation, and pilot demonstrator projects. By consolidating fragmented evidence, the study provides a structured research agenda and practical insights to guide the transition toward more circular, efficient, and sustainable construction practices. Full article
Show Figures

Figure 1

25 pages, 11642 KiB  
Article
Non-Invasive Estimation of Crop Water Stress Index and Irrigation Management with Upscaling from Field to Regional Level Using Remote Sensing and Agrometeorological Data
by Emmanouil Psomiadis, Panos I. Philippopoulos and George Kakaletris
Remote Sens. 2025, 17(14), 2522; https://doi.org/10.3390/rs17142522 - 20 Jul 2025
Viewed by 448
Abstract
Precision irrigation plays a crucial role in managing crop production in a sustainable and environmentally friendly manner. This study builds on the results of the GreenWaterDrone project, aiming to estimate, in real time, the actual water requirements of crop fields using the crop [...] Read more.
Precision irrigation plays a crucial role in managing crop production in a sustainable and environmentally friendly manner. This study builds on the results of the GreenWaterDrone project, aiming to estimate, in real time, the actual water requirements of crop fields using the crop water stress index, integrating infrared canopy temperature, air temperature, relative humidity, and thermal and near-infrared imagery. To achieve this, a state-of-the-art aerial micrometeorological station (AMMS), equipped with an infrared thermal sensor, temperature–humidity sensor, and advanced multispectral and thermal cameras is mounted on an unmanned aerial system (UAS), thus minimizing crop field intervention and permanently installed equipment maintenance. Additionally, data from satellite systems and ground micrometeorological stations (GMMS) are integrated to enhance and upscale system results from the local field to the regional level. The research was conducted over two years of pilot testing in the municipality of Trifilia (Peloponnese, Greece) on pilot potato and watermelon crops, which are primary cultivations in the region. Results revealed that empirical irrigation applied to the rhizosphere significantly exceeded crop water needs, with over-irrigation exceeding by 390% the maximum requirement in the case of potato. Furthermore, correlations between high-resolution remote and proximal sensors were strong, while associations with coarser Landsat 8 satellite data, to upscale the local pilot field experimental results, were moderate. By applying a comprehensive model for upscaling pilot field results, to the overall Trifilia region, project findings proved adequate for supporting sustainable irrigation planning through simulation scenarios. The results of this study, in the context of the overall services introduced by the project, provide valuable insights for farmers, agricultural scientists, and local/regional authorities and stakeholders, facilitating improved regional water management and sustainable agricultural policies. Full article
Show Figures

Figure 1

33 pages, 304 KiB  
Article
LEADER Territorial Cooperation in Rural Development: Added Value, Learning Dynamics, and Policy Impacts
by Giuseppe Gargano and Annalisa Del Prete
Land 2025, 14(7), 1494; https://doi.org/10.3390/land14071494 - 18 Jul 2025
Viewed by 503
Abstract
This study examines the added value of territorial cooperation within the LEADER approach, a key pillar of the EU’s rural development policy. Both interterritorial and transnational cooperation projects empower Local Action Groups (LAGs) to tackle common challenges through innovative and community-driven strategies. Drawing [...] Read more.
This study examines the added value of territorial cooperation within the LEADER approach, a key pillar of the EU’s rural development policy. Both interterritorial and transnational cooperation projects empower Local Action Groups (LAGs) to tackle common challenges through innovative and community-driven strategies. Drawing on over 3000 projects since 1994, LEADER cooperation has proven its ability to deliver tangible results—such as joint publications, pilot projects, and shared digital platforms—alongside intangible benefits like knowledge exchange, improved governance, and stronger social capital. By facilitating experiential learning and inter-organizational collaboration, cooperation enables stakeholders to work across territorial boundaries and build networks that respond to both national and transnational development issues. The interaction among diverse actors often fosters innovative responses to local and regional problems. Using a mixed-methods approach, including case studies of Italian LAGs, this research analyses the dynamics, challenges, and impacts of cooperation, with a focus on learning processes, capacity building, and long-term sustainability. Therefore, this study focuses not only on project outcomes but also on the processes and learning dynamics that generate added value through cooperation. The findings highlight how territorial cooperation promotes inclusivity, fosters cross-border dialogue, and supports the development of context-specific solutions, ultimately enhancing rural resilience and innovation. In conclusion, LEADER cooperation contributes to a more effective, participatory, and sustainable model of rural development, offering valuable insights for the broader EU cohesion policy. Full article
29 pages, 2431 KiB  
Article
Expectations Versus Reality: Economic Performance of a Building-Integrated Photovoltaic System in the Andean Ecuadorian Context
by Esteban Zalamea-León, Danny Ochoa-Correa, Hernan Sánchez-Castillo, Mateo Astudillo-Flores, Edgar A. Barragán-Escandón and Alfredo Ordoñez-Castro
Buildings 2025, 15(14), 2493; https://doi.org/10.3390/buildings15142493 - 16 Jul 2025
Viewed by 373
Abstract
This article presents an empirical evaluation of the technical and economic performance of a building-integrated photovoltaic (PV) system implemented at the Faculty of Architecture and Urbanism of the University of Cuenca, Ecuador. This study explores both stages of deployment, beginning with a 7.7 [...] Read more.
This article presents an empirical evaluation of the technical and economic performance of a building-integrated photovoltaic (PV) system implemented at the Faculty of Architecture and Urbanism of the University of Cuenca, Ecuador. This study explores both stages of deployment, beginning with a 7.7 kWp pilot system and later scaling to a full 75.6 kWp configuration. This hourly monitoring of power exchanges with utility was conducted over several months using high-resolution instrumentation and cloud-based analytics platforms. A detailed comparison between projected energy output, recorded production, and real energy consumption was carried out, revealing how seasonal variability, cloud cover, and academic schedules influence system behavior. The findings also include a comparison between billed and actual electricity prices, as well as an analysis of the system’s payback period under different cost scenarios, including state-subsidized and real-cost frameworks. The results confirm that energy exports are frequent during weekends and that daily generation often exceeds on-site demand on non-working days. Although the university benefits from low electricity tariffs, the system demonstrates financial feasibility when broader public cost structures are considered. This study highlights operational outcomes under real-use conditions and provides insights for scaling distributed generation in institutional settings, with particular relevance for Andean urban contexts with similar solar profiles and tariff structures. Full article
Show Figures

Figure 1

25 pages, 2225 KiB  
Article
Virtual Reality Applied to Design Reviews in Shipbuilding
by Seppo Helle, Taneli Nyyssönen, Olli Heimo, Leo Sakari and Teijo Lehtonen
Multimodal Technol. Interact. 2025, 9(7), 72; https://doi.org/10.3390/mti9070072 - 15 Jul 2025
Viewed by 280
Abstract
This article describes a pilot project studying the potential benefits of using virtual reality (VR) in design reviews of cruise ship interiors. The research was conducted as part of a 2020–2022 research project targeting at sustainable shipbuilding methods. It was directly connected to [...] Read more.
This article describes a pilot project studying the potential benefits of using virtual reality (VR) in design reviews of cruise ship interiors. The research was conducted as part of a 2020–2022 research project targeting at sustainable shipbuilding methods. It was directly connected to an ongoing cruise ship building project, executed in cooperation with four companies constructing interiors. The goal was to use VR reviews instead of, or in addition to, constructing physical mock-up sections of the ship interiors, with expected improvements in sustainability and stakeholder communication. A number of virtual 3D models were created, imported into a virtual reality environment, and presented to customers. Experiences were collected through interviews and surveys from both the construction companies and customers. The results indicate that VR can be an efficient tool for design reviews. The designs can often be evaluated better in VR than using traditional methods. Material savings are possible by using virtual mock-ups instead of physical ones. However, it was also discovered that the visual rendering capabilities of the used software environment do not provide the realism that would be desired in some reviews. To overcome this limitation, more resources would be needed in preparing the models for VR reviews. Full article
Show Figures

Figure 1

18 pages, 3419 KiB  
Article
Differentiated Embedded Pilot Assisted Automatic Modulation Classification for OTFS System: A Multi-Domain Fusion Approach
by Zhenkai Liu, Bibo Zhang, Hao Luo and Hao He
Sensors 2025, 25(14), 4393; https://doi.org/10.3390/s25144393 - 14 Jul 2025
Viewed by 331
Abstract
Orthogonal time–frequency space (OTFS) modulation has emerged as a promising technology to alleviate the effects of the Doppler shifts in high-mobility environments. As a prerequisite to demodulation and signal processing, automatic modulation classification (AMC) is essential for OTFS systems. However, a very limited [...] Read more.
Orthogonal time–frequency space (OTFS) modulation has emerged as a promising technology to alleviate the effects of the Doppler shifts in high-mobility environments. As a prerequisite to demodulation and signal processing, automatic modulation classification (AMC) is essential for OTFS systems. However, a very limited number of works have focused on this issue. In this paper, we propose a novel AMC approach for OTFS systems. We build a dual-stream convolutional neural network (CNN) model to simultaneously capture multi-domain signal features, which substantially enhances recognition accuracy. Moreover, we propose a differentiated embedded pilot structure that incorporates information about distinct modulation schemes to further improve the separability of modulation types. The results of the extensive experiments carried out show that the proposed approach can achieve high classification accuracy even under low signal-to-noise ratio (SNR) conditions and outperform the state-of-the-art baselines. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

21 pages, 448 KiB  
Article
Enhancing Urban Resilience: Integrating Actions for Resilience (A4R) and Multi-Criteria Decision Analysis (MCDA) for Sustainable Urban Development and Proactive Hazard Mitigation
by Goran Janaćković, Žarko Vranjanac and Dejan Vasović
Sustainability 2025, 17(14), 6408; https://doi.org/10.3390/su17146408 - 13 Jul 2025
Viewed by 429
Abstract
Hazards stemming from extreme natural events have exhibited heightened prominence in recent years. The natural hazard management process adopts a comprehensive approach that encompasses all stakeholders involved in the disaster management cycle. “Actions for Resilience” (A4R) represents a standardised concept derived from ISO/TR [...] Read more.
Hazards stemming from extreme natural events have exhibited heightened prominence in recent years. The natural hazard management process adopts a comprehensive approach that encompasses all stakeholders involved in the disaster management cycle. “Actions for Resilience” (A4R) represents a standardised concept derived from ISO/TR 22370:2020 that integrates principles from various scientific disciplines to enhance resilience in systems, whether they are socio-ecological systems, communities, or organisations. A4R emphasises proactive measures and interventions aimed at fostering resilience rather than merely reacting to crises or disruptions. It recognises that resilience is a multifaceted concept influenced by various factors, including social, economic, environmental, and institutional dimensions. Central to A4R is the understanding of complex system dynamics. Also, A4R involves rigorous risk assessment to identify potential threats and vulnerabilities within a system, as well as to build adaptive capacity within systems. A4R advocates for the development of resilience metrics and monitoring systems to assess the effectiveness of interventions and track changes in resilience over time. These metrics may include indicators related to social cohesion, ecosystem health, economic stability, and public infrastructure resilience. In this context, the study aims to apply the proposed hierarchy of factors and group decision-making using fuzzy numbers to identify strategic priorities for improving the urban resilience of the pilot area. The identified priority factors are then analysed across different scenarios, and corresponding actions are described in detail. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

21 pages, 1404 KiB  
Project Report
Implementation Potential of the SILVANUS Project Outcomes for Wildfire Resilience and Sustainable Forest Management in the Slovak Republic
by Andrea Majlingova, Maros Sedliak and Yvonne Brodrechtova
Forests 2025, 16(7), 1153; https://doi.org/10.3390/f16071153 - 12 Jul 2025
Viewed by 229
Abstract
Wildfires are becoming an increasingly severe threat to European forests, driven by climate change, land use changes, and socio-economic factors. Integrated solutions for wildfire prevention, early detection, emergency management, and ecological restoration are urgently needed to enhance forest resilience. The Horizon 2020 SILVANUS [...] Read more.
Wildfires are becoming an increasingly severe threat to European forests, driven by climate change, land use changes, and socio-economic factors. Integrated solutions for wildfire prevention, early detection, emergency management, and ecological restoration are urgently needed to enhance forest resilience. The Horizon 2020 SILVANUS project developed a comprehensive multi-sectoral platform combining technological innovation, stakeholder engagement, and sustainable forest management strategies. This report analyses the Slovak Republic’s participation in SILVANUS, applying a seven-criterion fit–gap framework (governance, legal, interoperability, staff capacity, ecological suitability, financial feasibility, and stakeholder acceptance) to evaluate the platform’s alignment with national conditions. Notable contributions include stakeholder-supported functional requirements for wildfire prevention, climate-sensitive forest models for long-term adaptation planning, IoT- and UAV-based early fire detection technologies, and decision support systems (DSS) for emergency response and forest-restoration activities. The Slovak pilot sites, particularly in the Podpoľanie region, served as important testbeds for the validation of these tools under real-world conditions. All SILVANUS modules scored ≥12/14 in the fit–gap assessment; early deployment reduced high-risk fuel polygons by 23%, increased stand-level structural diversity by 12%, and raised the national Sustainable Forest Management index by four points. Integrating SILVANUS outcomes into national forestry practices would enable better wildfire risk assessment, improved resilience planning, and more effective public engagement in wildfire management. Opportunities for adoption include capacity-building initiatives, technological deployments in fire-prone areas, and the incorporation of DSS outputs into strategic forest planning. Potential challenges, such as technological investment costs, inter-agency coordination, and public acceptance, are also discussed. Overall, the Slovak Republic’s engagement with SILVANUS demonstrates the value of participatory, technology-driven approaches to sustainable wildfire management and offers a replicable model for other European regions facing similar challenges. Full article
(This article belongs to the Special Issue Wildfire Behavior and the Effects of Climate Change in Forests)
Show Figures

Graphical abstract

Back to TopTop