Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = phytopathogenic microorganism inhibition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2276 KiB  
Article
Effect of Nanoparticles on the Development of Bacterial Speck in Tomato (Solanum lycopersicum L.) and Chili Variegation (Capsicum annuum L.)
by Edgar Alejandro Ruiz-Ramirez, Daniel Leobardo Ochoa-Martínez, Gilberto Velázquez-Juárez, Reyna Isabel Rojas-Martinez and Victor Manuel Zuñiga-Mayo
Horticulturae 2025, 11(8), 907; https://doi.org/10.3390/horticulturae11080907 (registering DOI) - 4 Aug 2025
Viewed by 59
Abstract
Among the new strategies for managing diseases in agricultural crops is the application of metallic nanoparticles due to their ability to inhibit the development of phytopathogenic microorganisms and to induce plant defense responses. Therefore, this research evaluated the effects of silver (AgNPs), zinc [...] Read more.
Among the new strategies for managing diseases in agricultural crops is the application of metallic nanoparticles due to their ability to inhibit the development of phytopathogenic microorganisms and to induce plant defense responses. Therefore, this research evaluated the effects of silver (AgNPs), zinc oxide (ZnONPs), and silicon dioxide (SiO2NPs) nanoparticles on symptom progression and physiological parameters in two pathosystems: Pseudomonas syringae pv. tomato (Psto) in tomato (pathosystem one, culturable pathogen) and Candidatus Liberibacter solanacearum (CaLso) in pepper plants (pathosystem two, non-culturable pathogen). For in vitro pathosystem one assays, SiO2NPs did not inhibit Psto growth. The minimum inhibitory concentration (MIC) was 31.67 ppm for AgNPs and 194.3 ppm for ZnONPs. Furthermore, the minimum lethal concentration (MLC) for AgNPs was 100 ppm, while for ZnONPs, it was 1000 ppm. For in planta assays, ZnONPs, AgNPs, and SiO2NPs reduced the number of lesions per leaf, but only ZnONPs significantly decreased the severity. Regarding pathosystem two, AgNPs, ZnONPs, and SiO2NPs application delayed symptom progression. However, only AgNPs significantly reduced severity percentage. Moreover, treatments with AgNPs and SiO2NPs increased the plant height and dry weight compared to the results for the control. Full article
Show Figures

Figure 1

21 pages, 1434 KiB  
Article
Integrated Analysis of Olive Mill Wastewaters: Physicochemical Profiling, Antifungal Activity, and Biocontrol Potential Against Botryosphaeriaceae
by Elena Petrović, Karolina Vrandečić, Alen Albreht, Igor Gruntar, Nikola Major, Jasenka Ćosić, Zoran Užila, Smiljana Goreta Ban and Sara Godena
Horticulturae 2025, 11(7), 819; https://doi.org/10.3390/horticulturae11070819 - 10 Jul 2025
Viewed by 345
Abstract
The disposal of olive mill wastewater (OMWW) poses significant environmental challenges due to its high content of phytotoxic and pollutant compounds. This study aims to explore the chemical composition of OMWW derived from various olive varieties (Buža, Buža puntoža, Istarska bjelica, Leccino, and [...] Read more.
The disposal of olive mill wastewater (OMWW) poses significant environmental challenges due to its high content of phytotoxic and pollutant compounds. This study aims to explore the chemical composition of OMWW derived from various olive varieties (Buža, Buža puntoža, Istarska bjelica, Leccino, and Rosinjola) and assess its antifungal potential against phytopathogenic fungi from the Botryosphaeriaceae family. OMWW samples were analyzed for their physicochemical properties, phenolic composition via LC-MS/MS, and antifungal activity against Botryosphaeria dothidea (Moug. ex Fr.) Ces. & De Not., Diplodia mutila (Fr.) Fr., D. seriata De Not., Dothiorella iberica A.J.L. Phillips, J. Luque & A. Alves, Do. sarmentorum (Fr.) A.J.L. Phillips, Alves & Luque, and Neofusicoccum parvum (Pennycook & Samuels) Crous, Slippers & A.J.L. Phillips. Antifungal efficacy was tested at varying concentrations, alongside the phenolic compounds hydroxytyrosol and vanillic acid. Antifungal activity varied across fungal species and OMWW concentrations. Lower OMWW concentrations inhibited mycelial growth in some pathogens, while higher concentrations often had a stimulatory effect. Among the OMWW treatments, Leccino and Buža showed the most significant antifungal activity against species from the Botryosphaeriaceae family. The results demonstrated significant variability in OMWW composition, with Istarska bjelica exhibiting the highest concentrations of phenolic compounds, sugars, dry matter, and carbon and nitrogen content. The results also highlight the impact of acidification on the phenolic profile of OMWW. Treatment with HCl significantly altered the concentration of individual phenolic compounds, either enhancing their release or contributing to their degradation. Among the two compounds, vanillic acid showed greater efficacy than hydroxytyrosol. In addition, microorganisms isolated from OMWW, including Bacillus velezensis Ruiz-Garcia et al., Rhodotorula mucilaginosa (A. Jörg.) F.C. Harrison, Nakazawaea molendiniolei (N. Cadez, B. Turchetti & G. Peter) C. P. Kurtzman & C. J. Robnett, and Penicillium crustosum Thom, demonstrated antagonistic potential against fungal pathogens, with B. velezensis showing the strongest inhibitory effect. The greatest antagonistic effect against fungi was observed with the species Do. Iberica. The findings highlight the potential of OMWW as a sustainable alternative to chemical fungicides, simultaneously contributing to the management of waste and protection of plants through circular economy principles. Full article
(This article belongs to the Special Issue Driving Sustainable Agriculture Through Scientific Innovation)
Show Figures

Figure 1

15 pages, 3743 KiB  
Article
Expression and Antagonistic Activity Against Plant Pathogens of the Phage Tail-like Protein from Burkholderia multivorans WS-FJ9
by Tong-Yue Wen, Xing-Li Xie, Wei-Liang Kong and Xiao-Qin Wu
Microorganisms 2025, 13(4), 853; https://doi.org/10.3390/microorganisms13040853 - 9 Apr 2025
Viewed by 539
Abstract
Microorganisms exert antagonistic effects on pathogens through different mechanisms, thereby achieving biological control of plant diseases. Many Burkholderia strains can produce complex secondary metabolites and substances that have toxic effects on host cells. The phage tail-like bacteriocins (tailocins) is a compound with antibacterial [...] Read more.
Microorganisms exert antagonistic effects on pathogens through different mechanisms, thereby achieving biological control of plant diseases. Many Burkholderia strains can produce complex secondary metabolites and substances that have toxic effects on host cells. The phage tail-like bacteriocins (tailocins) is a compound with antibacterial activity. However, its function in B. multivorans has not yet been reported. This article explores the ability of B. multivorans WS-FJ9 to antagonise plant pathogenic fungi and oomycetes, screening the potential tailocins in the strain WS-FJ9 and verifying their function, to reveal its novel antimicrobial mechanisms. We found that WS-FJ9 had strong antagonistic effects on the plant pathogenic fungi Phomopsis macrospore and Sphaeropsis sapinea, and the pathogenic oomycete Phytophthora cinnamomi. The phage tail-like protein Bm_67459 was predicted from the WS-FJ9 strain genome. The Bm_67459 cDNA encoded 111 amino acid sequence, and the relative molecular weight was approximately 11.69 kDa, the theoretical isoelectric point (pI) was 5.49, and it was a hydrophilic protein. Bm_67459 had no transmembrane helix region or signal peptide, and it belonged to the Phage_TAC_7 super family. qRT-PCR results showed that Bm_67459 gene expression was significantly upregulated during contact between WS-FJ9 and P. cinnamomi. The purified Bm_67459 protein significantly inhibited P. cinnamomi mycelial growth at 10 μg·mL−1. In summary, the WS-FJ9 strain had broad-spectrum anti-phytopathogenic activity, and the tailocin Bm_67459 was an important effector against the plant pathogen P. cinnamomi, which helps to reveal the antagonistic mechanism of this strain at the molecular level and provides excellent strain resources for the biological control of plant diseases. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

18 pages, 2717 KiB  
Article
Trichoderma Species from Semiarid Regions and Their Antagonism Against the Microorganisms That Cause Pepper Wilt
by Erika Sireni Rodríguez-Martínez, Claudio Rios-Velasco, David Roberto Sepúlveda-Ahumada, José Juan Buenrostro-Figueroa, Kamila C. Correia, César Guigón-López and Mónica Alvarado-González
J. Fungi 2025, 11(3), 174; https://doi.org/10.3390/jof11030174 - 21 Feb 2025
Cited by 1 | Viewed by 931
Abstract
Chili wilt is a significant challenge in producing jalapeño peppers, which has led to the implementation of strategies to help counteract or combat the microorganisms responsible for it. One of these strategies is the use of biological control microorganisms, such as Trichoderma, [...] Read more.
Chili wilt is a significant challenge in producing jalapeño peppers, which has led to the implementation of strategies to help counteract or combat the microorganisms responsible for it. One of these strategies is the use of biological control microorganisms, such as Trichoderma, a fungus recognized as a natural enemy of the microorganisms that cause chili wilt. Therefore, this study aimed to isolate and identify Trichoderma species from the soils and roots of different plants, and evaluate their antagonism against Rhizoctonia solani, Phytophthora capsici, and Fusarium sp. Due to the complexity in identifying Trichoderma at the species level, performing a multilocus phylogenetic analysis was necessary, using the ITS, RPB2, and TEF1 regions. The species isolated were T. afroharzianum, T. lentiforme, T. rifaii, T. brevicompactum, T. arundinaceum, and T. longibrachiatum. Subsequently, they were used in three antagonism tests (dual culture, non-volatile organic compounds, and volatile organic compounds) against the phytopathogenic microorganisms. The tests demonstrated that the Trichoderma isolates could inhibit the mycelial growth of all three tested pathogens, obtaining the best results with the strains T. brevicompactum (19RCS), T. lentiforme (63DPS), T. longibrachiatum (71JES), T. rifaii (77JCR), and T. afroharzianum (24RQS, 87CCS, 88CCS and 17RCS). The strain with the best results in all three tests was 17RCS. Full article
Show Figures

Figure 1

18 pages, 6461 KiB  
Article
Selenium Nanoparticles (SeNPs) Inhibit the Growth and Proliferation of Reproductive Structures in Phytophthora capsici by Altering Cell Membrane Stability
by Andrés de Jesús López-Gervacio, Joaquín Alejandro Qui-Zapata, Iliana Barrera-Martínez, Mayra Itzcalotzin Montero-Cortés and Soledad García-Morales
Agronomy 2025, 15(2), 490; https://doi.org/10.3390/agronomy15020490 - 18 Feb 2025
Viewed by 827
Abstract
Selenium nanoparticles (SeNPs) are currently receiving attention for controlling plant pathogenic microorganisms, are expected to be especially effective against the genus Phytophthora, and show high anti-oomycete activity. SeNPs synthesized with plant extracts have shown low toxicity, high bioavailability, and mechanisms of action that [...] Read more.
Selenium nanoparticles (SeNPs) are currently receiving attention for controlling plant pathogenic microorganisms, are expected to be especially effective against the genus Phytophthora, and show high anti-oomycete activity. SeNPs synthesized with plant extracts have shown low toxicity, high bioavailability, and mechanisms of action that alter cellular integrity and damage key components of phytopathogen metabolism, causing denaturation and cell death. The aim of this study was to evaluate the inhibitory activity of SeNPs on mycelial growth and the development of reproductive structures in Phytophthora capsici in vitro. Different concentrations of SeNPs (0 to 400 µg/mL) in culture media were used to analyze mycelial growth, sporangium formation, zoospores, and germination of the germ tube. To explain the changes in morphology and development of P. capsici, increased relative conductance and activation of glycerol synthesis were related to osmotic stress and damage to membrane permeability. In addition, SeNPs inhibited the production of exopolysaccharides (EPSs), which are compounds associated with pathogen virulence. A lower accumulation of its biomass evidences alterations in the oomycete growth. The percentage of inhibition of mycelial growth increased with higher SeNP concentrations and incubation time, reaching 100% growth inhibition at 300 and 400 µg/mL. A concentration-dependent reduction in the number of spores, sporangia, and zoospore germination was observed. Concentrations of 50 and 100 µg/mL of SeNPs reduced biomass production by 30%. The increase in glycerol levels indicated an osmoregulatory response to SeNP-induced stress. Also, the increase in electrical conductivity suggested plasma membrane damage, which supports the potential of SeNPs as antifungal agents by inducing cell disruption and structural damage in P. capsici. These results provide new knowledge on the in vitro mechanism of action of SeNPs against P. capsici and offer a new biological alternative for the control of diseases caused by oomycetes. Full article
Show Figures

Figure 1

10 pages, 1679 KiB  
Brief Report
Evaluating the Role of Viable Cells, Heat-Killed Cells or Cell-Free Supernatants in Bacterial Biocontrol of Fungi: A Comparison Between Lactic Acid Bacteria and Pseudomonas
by Francesca Di Rico, Francesco Vuolo and Edoardo Puglisi
Microorganisms 2025, 13(1), 105; https://doi.org/10.3390/microorganisms13010105 - 7 Jan 2025
Cited by 1 | Viewed by 1196
Abstract
This study investigated whether viable cells, dead cells or cell-free supernatants (CFS) were responsible for the biocontrol effect of strains from two important bacterial genera, Pseudomonas and Lactobacillus, known for their antifungal properties against plant pathogens and food spoilage microorganisms. Specifically, the [...] Read more.
This study investigated whether viable cells, dead cells or cell-free supernatants (CFS) were responsible for the biocontrol effect of strains from two important bacterial genera, Pseudomonas and Lactobacillus, known for their antifungal properties against plant pathogens and food spoilage microorganisms. Specifically, the capability of these strains to produce extracellular hydrolytic enzymes on specified media was assessed, along with their effectiveness in inhibiting the mycelial growth of several phytopathogenic fungi (Fusarium oxysporum, Botrytis cinerea, Pythium ultimum and Rhizoctonia solani) using dual culture plate assays. Results from these inhibition assays revealed that P. fluorescens PF05 and L. plantarum LMG 23520 strains were the most effective in suppressing fungal growth, especially F. oxysporum. Therefore, further experiments were carried out to investigate the antifungal potential of the viable cells, heat-killed cells (HKC) and CFS from these strains against the germination of F. oxysporum spores. The viable cell trial proved successful, whereas HKC from the two bacterial isolates were ineffective against fungal spore germination. Conversely, the CFS of L. plantarum LMG 23520 was able to prevent fungal spore development for up to six days. The CFS of P. fluorescens PF05, instead, did not yield positive results. Additional studies are required to evaluate the potential inhibitory effects of the CFS from P. fluorescens PF05 and the HKC from both strains. Full article
Show Figures

Figure 1

17 pages, 5841 KiB  
Article
Antifungal Activity of Nanochitosan in Colletotrichum musae and Colletotrichum chrysophillum
by Nixe Adriana Hernández-López, Maribel Plascencia-Jatomea, Carmen Lizette Del-Toro-Sánchez, Carmen María López-Saiz, Simón Morales-Rodríguez, Miguel Ángel Martínez-Téllez and Eber Addí Quintana-Obregón
Polysaccharides 2025, 6(1), 4; https://doi.org/10.3390/polysaccharides6010004 - 7 Jan 2025
Cited by 1 | Viewed by 3491
Abstract
The search for developing materials of natural origin has become imperative due to the resistance shown by phytopathogenic microorganisms to traditional antimicrobial agents. Natural polymers such as chitosan offer a new alternative to fungal infections because, in most cases, these polymers are biocompatible, [...] Read more.
The search for developing materials of natural origin has become imperative due to the resistance shown by phytopathogenic microorganisms to traditional antimicrobial agents. Natural polymers such as chitosan offer a new alternative to fungal infections because, in most cases, these polymers are biocompatible, nontoxic, and natural. This study aimed to synthesize nanochitosan using ultrasonication and evaluate its antifungal activity on Colletotrichum chrysophillum and Colletotrichum musae. Nanochitosan of 302.4 ± 92.3 nm and a zeta potential of +35.9 ± 2.3 Mv, amorphous in shape, and a rough surface, was obtained. Nanochitosan reduced the radial growth 21%, for C. chrysophillum while C. musae showed a maximum inhibition of 26% at a concentration of 1.5 mg mL−1 of nanochitosan. C. musae was the species most affected, with a 38% increase in hyphal diameter to 12 h. Also, nanochitosan affected the integrity of the fungi cell walls, plasma membrane, and generated low oxidative stress level. Our findings indicate that nanochitosan induces notable changes in the intracellular structures of the tested phytopathogens. Nevertheless, additional investigations are required to clarify the mechanisms underlying adaptability or resistance in fungal strains that exhibit reduced sensitivity to this biopolymer. Full article
(This article belongs to the Special Issue Latest Research on Polysaccharides: Structure and Applications)
Show Figures

Figure 1

32 pages, 5995 KiB  
Article
Polyphasic Characterization of the Biocontrol Potential of a Novel Strain of Trichoderma atroviride Isolated from Central Mexico
by Karla Ivonne González-Martínez, Ma. Soledad Vázquez-Garcidueñas, Alfredo Herrera-Estrella, Sylvia P. Fernández-Pavía, Rafael Salgado-Garciglia, John Larsen, Salvador Ochoa-Ascencio, Gerardo Rodríguez-Alvarado and Gerardo Vázquez-Marrufo
J. Fungi 2024, 10(11), 758; https://doi.org/10.3390/jof10110758 - 1 Nov 2024
Viewed by 2233
Abstract
This work describes the characterization of Trichoderma atroviride strain CMU-08, isolated from Michoacán, Mexico. CMU-08 demonstrated robust growth and conidiation across a temperature range from 16 to 32 °C and a pH range from 4 to 9 on potato dextrose agar (PDA) and [...] Read more.
This work describes the characterization of Trichoderma atroviride strain CMU-08, isolated from Michoacán, Mexico. CMU-08 demonstrated robust growth and conidiation across a temperature range from 16 to 32 °C and a pH range from 4 to 9 on potato dextrose agar (PDA) and malt extract agar (MEA) media. The strain is an efficient antagonist of six species of phytopathogenic fungi and oomycetes in PDA, MEA, and Vogel minimal medium (VMM). Antagonist mechanisms of CMU-08 included direct mycoparasitism observed in dual-culture assays, as well as antibiosis attributed to growth inhibition via both volatile and non-volatile metabolites, with the effectiveness varying depending on the test phytopathogen and culture medium. Extracellular filtrates (ECFs) recovered from liquid cultures of CMU-08 under basal and induced conditions using Botrytis cinerea cell walls significantly inhibited their growth at a concentration of 750 µg/mL. Moreover, in detached tomato leaf assays, these ECFs reduced foliar damage caused by B. cinerea by 24–34%. The volatile organic compounds (VOCs) produced by CMU-08 also exhibited substantial efficacy, reducing foliar damage by up to 50% in similar tests. Despite showing no basal extracellular chitinase enzymatic activity, CMU-08 demonstrated significant induction of this activity in cultures supplemented with B. cinerea and Fusarium sp. cell walls. Four genes encoding extracellular chitinases (chit33, chit36, ech42, and locus 217415) showed different dynamics of transcriptional regulation during the dual-culture confrontation of strain CMU-08 with B. cinerea and Fusarium sp., varying according to the phytopathogen and the interaction stage. The CMU-08 strain shows physiological versatility and employs a variety of antagonist mechanisms toward different species of phytopathogenic microorganisms, making it a good candidate for developing a biocontrol product for field application. Full article
(This article belongs to the Special Issue Utilizing Fungal Diversity for Sustainable Biotechnology)
Show Figures

Figure 1

18 pages, 4804 KiB  
Article
Volatile Organic Compounds Produced by Co-Culture of Burkholderia vietnamiensis B418 with Trichoderma harzianum T11-W Exhibits Improved Antagonistic Activities against Fungal Phytopathogens
by Wenzhe Li, Xinyue Wang, Yanqing Jiang, Shuning Cui, Jindong Hu, Yanli Wei, Jishun Li and Yuanzheng Wu
Int. J. Mol. Sci. 2024, 25(20), 11097; https://doi.org/10.3390/ijms252011097 - 16 Oct 2024
Cited by 2 | Viewed by 1852
Abstract
Recently, there has been a growing interest in the biocontrol activity of volatile organic compounds (VOCs) produced by microorganisms. This study specifically focuses on the effects of VOCs produced by the co-culture of Burkholderia vietnamiensis B418 and Trichoderma harzianum T11-W for the control [...] Read more.
Recently, there has been a growing interest in the biocontrol activity of volatile organic compounds (VOCs) produced by microorganisms. This study specifically focuses on the effects of VOCs produced by the co-culture of Burkholderia vietnamiensis B418 and Trichoderma harzianum T11-W for the control of two phytopathogenic fungi, Botrytis cinerea and Fusarium oxysporum f. sp. cucumerium Owen. The antagonistic activity of VOCs released in mono- and co-culture modes was evaluated by inhibition assays on a Petri dish and in detached fruit experiments, with the co-culture demonstrating significantly higher inhibitory effects on the phytopathogens on both the plates and fruits compared with the mono-cultures. Metabolomic profiles of VOCs were conducted using the solid–liquid microextraction technique, revealing 341 compounds with significant changes in their production during the co-culture. Among these compounds, linalool, dimethyl trisulfide, dimethyl disulfide, geranylacetone, 2-phenylethanol, and acetophenone were identified as having strong antagonistic activity through a standard inhibition assay. These key compounds were found to be related to the improved inhibitory effect of the B418 and T11-W co-culture. Overall, the results suggest that VOCs produced by the co-culture of B. vietnamiensis B418 and T. harzianum T11-W possess great potential in biological control. Full article
(This article belongs to the Special Issue Plant–Microbe Interactions)
Show Figures

Figure 1

10 pages, 988 KiB  
Communication
Comparison of Three Biological Control Models of Pycnoporus sanguineus on Phytopathogenic Fungi
by Ricardo Irving Pérez-López, Omar Romero-Arenas, Conrado Parraguirre Lezama, Anabel Romero López, Antonio Rivera and Lilia Cedillo Ramírez
Appl. Sci. 2024, 14(18), 8263; https://doi.org/10.3390/app14188263 - 13 Sep 2024
Viewed by 1458
Abstract
The genus Pycnoporus includes fungi with great potential for the production of antibiotic substances. It is necessary to develop new models to assess their effectiveness against microorganisms with an economic impact, such as phytopathogenic fungi. The objective of this study is to evaluate [...] Read more.
The genus Pycnoporus includes fungi with great potential for the production of antibiotic substances. It is necessary to develop new models to assess their effectiveness against microorganisms with an economic impact, such as phytopathogenic fungi. The objective of this study is to evaluate three models of Pycnoporus sanguineus for the growth inhibition of the phytopathogens Botrytis cinerea and Fusarium oxysporum. Model 1 involves dual tests of the antagonistic activity of P. sanguineus vs. phytopathogens, Model 2 involves antifungal effectiveness tests of cinnabarin, and Model 3 involves antifungal effectiveness tests of P. sanguineus extract. Models 2 and 3 are contrasted with products containing benomyl and captan. The results show that Model 3 is the most effective in controlling B. cinerea, with an inhibition percentage of 74.34% (p < 0.05) and a decrease in the growth rate (3.85 mm/day; p < 0.05); the same is true for F. oxysporum, with an inhibition percentage of 47.14% (p < 0.05). In general, F. oxysporum exhibits greater resistance (p < 0.05). The results of this study indicate that P. sanguineus extracts may be used as control agents for fungal species in the same way as other Pycnoporus species. Although commercial products are very efficient at inhibiting phytopathogens, one must consider the disadvantages of their use. In the short term, new models involving Pycnoporus for biological control in food production will be developed. Full article
(This article belongs to the Special Issue Advances in Food Safety and Microbial Control)
Show Figures

Figure 1

18 pages, 1701 KiB  
Review
Microbial Volatile Organic Compounds: Insights into Plant Defense
by Vicente Montejano-Ramírez, José Luis Ávila-Oviedo, Francisco Javier Campos-Mendoza and Eduardo Valencia-Cantero
Plants 2024, 13(15), 2013; https://doi.org/10.3390/plants13152013 - 23 Jul 2024
Cited by 16 | Viewed by 3867
Abstract
Volatile organic compounds (VOCs) are low molecular weight molecules that tend to evaporate easily at room temperature because of their low boiling points. VOCs are emitted by all organisms; therefore, inter- and intra-kingdom interactions have been established, which are fundamental to the structuring [...] Read more.
Volatile organic compounds (VOCs) are low molecular weight molecules that tend to evaporate easily at room temperature because of their low boiling points. VOCs are emitted by all organisms; therefore, inter- and intra-kingdom interactions have been established, which are fundamental to the structuring of life on our planet. One of the most studied interactions through VOCs is between microorganism VOCs (mVOCs) and plants, including those of agricultural interest. The mVOC interactions generate various advantages for plants, ranging from promoting growth to the activation of defense pathways triggered by salicylic acid (systemic acquired resistance) and jasmonic acid (induced systemic resistance) to protect them against phytopathogens. Additionally, mVOCs directly inhibit the growth of phytopathogens, thereby providing indirect protection to plants. Among the current agricultural problems is the extensive use of chemicals, such as fertilizers, intended to combat production loss, and pesticides to combat phytopathogen infection. This causes problems in food safety and environmental pollution. Therefore, to overcome this problem, it is important to identify alternatives that do not generate environmental impacts, such as the application of mVOCs. This review addresses the protective effects of mVOCs emitted by microorganisms from different kingdoms and their implications in plant defense pathways. Full article
(This article belongs to the Special Issue Role of Microbial Volatile Compounds in Plant Growth and Health)
Show Figures

Figure 1

30 pages, 3426 KiB  
Review
Molecular Basis of Yeasts Antimicrobial Activity—Developing Innovative Strategies for Biomedicine and Biocontrol
by Ana-Maria Georgescu, Viorica Maria Corbu and Ortansa Csutak
Curr. Issues Mol. Biol. 2024, 46(5), 4721-4750; https://doi.org/10.3390/cimb46050285 - 14 May 2024
Cited by 4 | Viewed by 3114
Abstract
In the context of the growing concern regarding the appearance and spread of emerging pathogens with high resistance to chemically synthetized biocides, the development of new agents for crops and human protection has become an emergency. In this context, the yeasts present a [...] Read more.
In the context of the growing concern regarding the appearance and spread of emerging pathogens with high resistance to chemically synthetized biocides, the development of new agents for crops and human protection has become an emergency. In this context, the yeasts present a huge potential as eco-friendly agents due to their widespread nature in various habitats and to their wide range of antagonistic mechanisms. The present review focuses on some of the major yeast antimicrobial mechanisms, their molecular basis and practical applications in biocontrol and biomedicine. The synthesis of killer toxins, encoded by dsRNA virus-like particles, dsDNA plasmids or chromosomal genes, is encountered in a wide range of yeast species from nature and industry and can affect the development of phytopathogenic fungi and other yeast strains, as well as human pathogenic bacteria. The group of the “red yeasts” is gaining more interest over the last years, not only as natural producers of carotenoids and rhodotorulic acid with active role in cell protection against the oxidative stress, but also due to their ability to inhibit the growth of pathogenic yeasts, fungi and bacteria using these compounds and the mechanism of competition for nutritive substrate. Finally, the biosurfactants produced by yeasts characterized by high stability, specificity and biodegrability have proven abilities to inhibit phytopathogenic fungi growth and mycelia formation and to act as efficient antibacterial and antibiofilm formation agents for biomedicine. In conclusion, the antimicrobial activity of yeasts represents a direction of research with numerous possibilities of bioeconomic valorization as innovative strategies to combat pathogenic microorganisms. Full article
Show Figures

Figure 1

20 pages, 2855 KiB  
Article
Novel Pseudomonas Species Prevent the Growth of the Phytopathogenic Fungus Aspergillus flavus
by Franciene Rabiço, Tiago Cabral Borelli, Robson Carlos Alnoch, Maria de Lourdes Teixeira de Moraes Polizeli, Ricardo R. da Silva, Rafael Silva-Rocha and María-Eugenia Guazzaroni
BioTech 2024, 13(2), 8; https://doi.org/10.3390/biotech13020008 - 30 Mar 2024
Cited by 3 | Viewed by 2882
Abstract
In response to the escalating demand for sustainable agricultural methodologies, the utilization of microbial volatile organic compounds (VOCs) as antagonists against phytopathogens has emerged as a viable eco-friendly alternative. Microbial volatiles exhibit rapid diffusion rates, facilitating prompt chemical interactions. Moreover, microorganisms possess the [...] Read more.
In response to the escalating demand for sustainable agricultural methodologies, the utilization of microbial volatile organic compounds (VOCs) as antagonists against phytopathogens has emerged as a viable eco-friendly alternative. Microbial volatiles exhibit rapid diffusion rates, facilitating prompt chemical interactions. Moreover, microorganisms possess the capacity to emit volatiles constitutively, as well as in response to biological interactions and environmental stimuli. In addition to volatile compounds, these bacteria demonstrate the ability to produce soluble metabolites with antifungal properties, such as APE Vf, pyoverdin, and fragin. In this study, we identified two Pseudomonas strains (BJa3 and MCal1) capable of inhibiting the in vitro mycelial growth of the phytopathogenic fungus Aspergillus flavus, which serves as the causal agent of diseases in sugarcane and maize. Utilizing GC/MS analysis, we detected 47 distinct VOCs which were produced by these bacterial strains. Notably, certain volatile compounds, including 1-heptoxydecane and tridecan-2-one, emerged as primary candidates for inhibiting fungal growth. These compounds belong to essential chemical classes previously documented for their antifungal activity, while others represent novel molecules. Furthermore, examination via confocal microscopy unveiled significant morphological alterations, particularly in the cell wall, of mycelia exposed to VOCs emitted by both Pseudomonas species. These findings underscore the potential of the identified BJa3 and MCal1 Pseudomonas strains as promising agents for fungal biocontrol in agricultural crops. Full article
(This article belongs to the Topic Sustainable Food Processing)
Show Figures

Figure 1

17 pages, 4055 KiB  
Article
Biopolymers as Seed-Coating Agent to Enhance Microbially Induced Tolerance of Barley to Phytopathogens
by Aizhamal Usmanova, Yelena Brazhnikova, Anel Omirbekova, Aida Kistaubayeva, Irina Savitskaya and Lyudmila Ignatova
Polymers 2024, 16(3), 376; https://doi.org/10.3390/polym16030376 - 30 Jan 2024
Cited by 9 | Viewed by 4851
Abstract
Infections of agricultural crops caused by pathogen ic fungi are among the most widespread and harmful, as they not only reduce the quantity of the harvest but also significantly deteriorate its quality. This study aims to develop unique seed-coating formulations incorporating biopolymers (polyhydroxyalkanoate [...] Read more.
Infections of agricultural crops caused by pathogen ic fungi are among the most widespread and harmful, as they not only reduce the quantity of the harvest but also significantly deteriorate its quality. This study aims to develop unique seed-coating formulations incorporating biopolymers (polyhydroxyalkanoate and pullulan) and beneficial microorganisms for plant protection against phytopathogens. A microbial association of biocompatible endophytic bacteria has been created, including Pseudomonas flavescens D5, Bacillus aerophilus A2, Serratia proteamaculans B5, and Pseudomonas putida D7. These strains exhibited agronomically valuable properties: synthesis of the phytohormone IAA (from 45.2 to 69.2 µg mL−1), antagonistic activity against Fusarium oxysporum and Fusarium solani (growth inhibition zones from 1.8 to 3.0 cm), halotolerance (5–15% NaCl), and PHA production (2.77–4.54 g L−1). A pullulan synthesized by Aureobasidium pullulans C7 showed a low viscosity rate (from 395 Pa·s to 598 Pa·s) depending on the concentration of polysaccharide solutions. Therefore, at 8.0%, w/v concentration, viscosity virtually remained unchanged with increasing shear rate, indicating that it exhibits Newtonian flow behavior. The effectiveness of various antifungal seed coating formulations has been demonstrated to enhance the tolerance of barley plants to phytopathogens. Full article
(This article belongs to the Special Issue Development and Application of Bio-Based Polymers)
Show Figures

Graphical abstract

21 pages, 4559 KiB  
Article
Introducing Autochthonous Bacterium and Fungus Composition to Enhance the Phytopathogen-Suppressive Capacity of Composts against Clonostachys rosea, Penicillium solitum and Alternaria alternata In Vitro
by Vladimir Mironov, Anna Shchelushkina, Olga Selitskaya, Yury Nikolaev, Alexander Merkel and Shenghua Zhang
Agronomy 2023, 13(11), 2841; https://doi.org/10.3390/agronomy13112841 - 18 Nov 2023
Cited by 2 | Viewed by 2222
Abstract
Given their numerous positive characteristics, composts are widely used agriculturally in sustainable development and resource-saving technologies. The management of phytopathogen-suppressive potential and the fertilizing capacity of composts are of great interest. This study examines the impact of introducing the autochthonous compost species Bacillus [...] Read more.
Given their numerous positive characteristics, composts are widely used agriculturally in sustainable development and resource-saving technologies. The management of phytopathogen-suppressive potential and the fertilizing capacity of composts are of great interest. This study examines the impact of introducing the autochthonous compost species Bacillus subtilis, B. amyloliquefaciens, Pseudomonas aeruginosa, and Aspergillus corrugatus, both individually and in combination, to composts containing dry matter comprising 36% solid compost and 7% compost suspensions to study their phytopathogen-suppressive and phytostimulation activity. The test phytopathogens were Clonostachys rosea, Penicillium solitum, and Alternaria alternata. This is the first report on compost’s potential to biologically control C. rosea and P. solitum. Classical microbiological and molecular biological methods were used to evaluate the survival rate of microorganisms in compost and validate these results. Test plant (Raphanus sativus) germination indexes were determined to evaluate the phytotoxic/phytostimulation effects of the substrates. To assess the effectiveness of biocontrol, mycelial growth inhibition was measured using in vitro tests. The introduction of composition increased the composts’ fertilizing properties by up to 35% and improved antagonistic activity by up to 91.7%. Autochthonous bacterial–fungal composition can promote resistance to fungal root and foliar phytopathogens and raise the fertilizing quality of compost. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

Back to TopTop