Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,388)

Search Parameters:
Keywords = physical energy consumption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2058 KiB  
Article
Integration of Daylight in Building Design as a Way to Improve the Energy Efficiency of Buildings
by Adrian Trząski and Joanna Rucińska
Energies 2025, 18(15), 4113; https://doi.org/10.3390/en18154113 - 2 Aug 2025
Viewed by 216
Abstract
According to the United Nations Environment Programme reports, buildings are responsible for nearly 40% of energy-related emissions; therefore, energy-optimized building design is crucial to reduce the reliance on non-renewable energy sources as well as greenhouse gas emissions. The OECD reports indicate the use [...] Read more.
According to the United Nations Environment Programme reports, buildings are responsible for nearly 40% of energy-related emissions; therefore, energy-optimized building design is crucial to reduce the reliance on non-renewable energy sources as well as greenhouse gas emissions. The OECD reports indicate the use of Building Information Modelling (BIM) as one of the effective strategies for decarbonization of buildings, since a 3D digital representation of both physical and functional characteristics of a building can help to design a more efficient infrastructure. An efficient integration of solar energy in building design can be vital for the enhancement of energy performance in terms of heating, cooling, and lighting demand. This paper presents results of an analysis of how factors related to the use of daylight, such as automatic control of artificial lighting, external shading, or the visual absorptance of internal surfaces, influence the energy efficiency within an example room in two different climatic zones. The simulation was conducted using Design Builder software, with predefined occupancy schedules and internal heat gains, and standard EPW weather files for Warsaw and Genua climate zones. The study indicates that for the examined room, when no automatic sunshades or a lighting control system is utilized, most of the final energy demand is for cooling purposes (45–54%), followed by lighting (42–43%), with only 3–12% for heating purposes. The introduction of sunshades and/or the use of daylight allowed for a reduction of the total demand by up to half. Moreover, it was pointed out that often neglected factors, like the colour of the internal surfaces, can have a significant effect on the final energy consumption. In variants with light interior, the total energy consumption was lower by about 3–4% of the baseline demand, compared to their corresponding ones with dark surfaces. These results are consistent with previous studies on daylighting strategies and highlight the importance of considering both visual and thermal impacts when evaluating energy performance. Similarly, possible side effects of certain actions were highlighted, such as an increase in heat demand resulting from a reduced need for artificial lighting. The results of the analysis highlight the potential of a simulation-based design approach in optimizing daylight use, contributing to the broader goals of building decarbonization. Full article
Show Figures

Figure 1

26 pages, 5263 KiB  
Article
A System Dynamics-Based Hybrid Digital Twin Model for Driving Green Manufacturing
by Sucheng Fan, Huagang Tong and Song Wang
Systems 2025, 13(8), 651; https://doi.org/10.3390/systems13080651 - 1 Aug 2025
Viewed by 299
Abstract
Green manufacturing has emerged as a critical objective in the evolution of advanced production systems. Although digital twin technology is widely recognized for enhancing efficiency and promoting sustainability, the majority of existing research focuses exclusively on physical systems. They neglect the impact of [...] Read more.
Green manufacturing has emerged as a critical objective in the evolution of advanced production systems. Although digital twin technology is widely recognized for enhancing efficiency and promoting sustainability, the majority of existing research focuses exclusively on physical systems. They neglect the impact of soft systems, including human behavior, decision-making, and operational strategies. To address this limitation, the present study introduces an innovative hybrid digital twin model that integrates both physical and soft systems to support green manufacturing initiatives comprehensively. The primary contributions of this work are threefold. First, a novel hybrid architecture is developed by coupling real-time physical data with virtual soft system components that simulate factory operations. Second, lean production principles are systematically incorporated into the soft system, thereby facilitating reduced energy consumption and minimizing environmental impact. Third, a parameter-driven programming model is formulated to correlate critical variables with green performance metrics, and a genetic algorithm is utilized to optimize these variables, ultimately enhancing sustainability outcomes. This integrated approach not only expands the applicability of digital twin technology but also offers a data-driven decision-support tool for the advancement of green manufacturing practices. Full article
(This article belongs to the Section Systems Engineering)
Show Figures

Figure 1

40 pages, 18923 KiB  
Article
Twin-AI: Intelligent Barrier Eddy Current Separator with Digital Twin and AI Integration
by Shohreh Kia, Johannes B. Mayer, Erik Westphal and Benjamin Leiding
Sensors 2025, 25(15), 4731; https://doi.org/10.3390/s25154731 - 31 Jul 2025
Viewed by 119
Abstract
The current paper presents a comprehensive intelligent system designed to optimize the performance of a barrier eddy current separator (BECS), comprising a conveyor belt, a vibration feeder, and a magnetic drum. This system was trained and validated on real-world industrial data gathered directly [...] Read more.
The current paper presents a comprehensive intelligent system designed to optimize the performance of a barrier eddy current separator (BECS), comprising a conveyor belt, a vibration feeder, and a magnetic drum. This system was trained and validated on real-world industrial data gathered directly from the working separator under 81 different operational scenarios. The intelligent models were used to recommend optimal settings for drum speed, belt speed, vibration intensity, and drum angle, thereby maximizing separation quality and minimizing energy consumption. the smart separation module utilizes YOLOv11n-seg and achieves a mean average precision (mAP) of 0.838 across 7163 industrial instances from aluminum, copper, and plastic materials. For shape classification (sharp vs. smooth), the model reached 91.8% accuracy across 1105 annotated samples. Furthermore, the thermal monitoring unit can detect iron contamination by analyzing temperature anomalies. Scenarios with iron showed a maximum temperature increase of over 20 °C compared to clean materials, with a detection response time of under 2.5 s. The architecture integrates a Digital Twin using Azure Digital Twins to virtually mirror the system, enabling real-time tracking, behavior simulation, and remote updates. A full connection with the PLC has been implemented, allowing the AI-driven system to adjust physical parameters autonomously. This combination of AI, IoT, and digital twin technologies delivers a reliable and scalable solution for enhanced separation quality, improved operational safety, and predictive maintenance in industrial recycling environments. Full article
(This article belongs to the Special Issue Sensors and IoT Technologies for the Smart Industry)
Show Figures

Figure 1

54 pages, 5068 KiB  
Review
Application of Machine Learning Models in Optimizing Wastewater Treatment Processes: A Review
by Florin-Stefan Zamfir, Madalina Carbureanu and Sanda Florentina Mihalache
Appl. Sci. 2025, 15(15), 8360; https://doi.org/10.3390/app15158360 - 27 Jul 2025
Viewed by 658
Abstract
The treatment processes from a wastewater treatment plant (WWTP) are known for their complexity and highly nonlinear behavior, which makes them challenging to analyze, model, and especially, to control. This research studies how machine learning (ML) with a focus on deep learning (DL) [...] Read more.
The treatment processes from a wastewater treatment plant (WWTP) are known for their complexity and highly nonlinear behavior, which makes them challenging to analyze, model, and especially, to control. This research studies how machine learning (ML) with a focus on deep learning (DL) techniques can be applied to optimize the treatment processes of WWTPs, highlighting those case studies that propose ML and DL methods that directly address this issue. This research aims to study the ML and DL systematic applications in optimizing the wastewater treatment processes from an industrial plant, such as the modeling of complex physical–chemical processes, real-time monitoring and prediction of critical wastewater quality indicators, chemical reactants consumption reduction, minimization of plant energy consumption, plant effluent quality prediction, development of data-driven type models as support in the decision-making process, etc. To perform a detailed analysis, 87 articles were included from an initial set of 324, using criteria such as wastewater combined with ML, DL, and artificial intelligence (AI), for articles from 2010 or newer. From the initial set of 324 scientific articles, 300 were identified using Litmaps, obtained from five important scientific databases, all focusing on addressing the specific problem proposed for investigation. Thus, this paper identifies gaps in the current research, discusses ML and DL algorithms in the context of optimizing wastewater treatment processes, and identifies future directions for optimizing these processes through data-driven methods. As opposed to traditional models, IA models (ML, DL, hybrid and ensemble models, digital twin, IoT, etc.) demonstrated significant advantages in wastewater quality indicator prediction and forecasting, in energy consumption forecasting, in temporal pattern recognition, and in optimal interpretability for normative compliance. Integrating advanced ML and DL technologies into the various processes involved in wastewater treatment improves the plant systems’ predictive capabilities and ensures a higher level of compliance with environmental standards. Full article
Show Figures

Figure 1

29 pages, 3661 KiB  
Article
Segmented Analysis for the Performance Optimization of a Tilt-Rotor RPAS: ProVANT-EMERGENTIa Project
by Álvaro Martínez-Blanco, Antonio Franco and Sergio Esteban
Aerospace 2025, 12(8), 666; https://doi.org/10.3390/aerospace12080666 - 26 Jul 2025
Viewed by 271
Abstract
This paper aims to analyze the performance of a tilt-rotor fixed-wing RPAS (Remotely Piloted Aircraft System) using a segmented approach, focusing on a nominal mission for SAR (Search and Rescue) applications. The study employs optimization techniques tailored to each segment to meet power [...] Read more.
This paper aims to analyze the performance of a tilt-rotor fixed-wing RPAS (Remotely Piloted Aircraft System) using a segmented approach, focusing on a nominal mission for SAR (Search and Rescue) applications. The study employs optimization techniques tailored to each segment to meet power consumption requirements, and the results highlight the accuracy of the physical characterization, which incorporates nonlinear propulsive and aerodynamic models derived from wind tunnel test campaigns. Critical segments for this nominal mission, such as the vertical take off or the transition from vertical to horizontal flight regimes, are addressed to fully understand the performance response of the aircraft. The proposed framework integrates experimental models into trajectory optimization procedures for each segment, enabling a realistic and modular analysis of energy use and aerodynamic performance. This approach provides valuable insights for both flight control design and future sizing iterations of convertible UAVs (Uncrewed Aerial Vehicles). Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 16988 KiB  
Article
Deploying Virtual Quality Gates in a Pilot-Scale Lithium-Ion Battery Assembly Line
by Xukuan Xu, Simon Stier, Andreas Gronbach and Michael Moeckel
Batteries 2025, 11(8), 285; https://doi.org/10.3390/batteries11080285 - 25 Jul 2025
Viewed by 262
Abstract
Pilot production is a critical transitional phase in the process of new product development or manufacturing, aiming at ensuring that products are thoroughly validated and optimized before entering full-scale production. During this stage, a key challenge is how to leverage limited resources to [...] Read more.
Pilot production is a critical transitional phase in the process of new product development or manufacturing, aiming at ensuring that products are thoroughly validated and optimized before entering full-scale production. During this stage, a key challenge is how to leverage limited resources to build data infrastructure and conduct data analysis to establish and verify quality control. This paper presents the implementation of a cyber–physical system (CPS) for a lithium battery pilot assembly line. A machine learning-based predictive model was employed to establish quality control mechanisms. Process knowledge-guided data analysis was utilized to build a quality prediction model based on the collected battery data. The model-centric concept of ‘virtual quality’ enables early quality judgment during production, which allows for flexible quality control and the determination of optimal process parameters, thereby reducing production costs and minimizing energy consumption during manufacturing. Full article
(This article belongs to the Section Battery Processing, Manufacturing and Recycling)
Show Figures

Figure 1

27 pages, 1813 KiB  
Review
The Review on Adverse Effects of Energy Drinks and Their Potential Drug Interactions
by Lukasz Dobrek
Nutrients 2025, 17(15), 2435; https://doi.org/10.3390/nu17152435 - 25 Jul 2025
Viewed by 913
Abstract
Background: Energy drinks (EDs) are non-alcoholic, functional beverages sold worldwide in more than 165 countries. These products are very popular and often consumed by children, teenagers, and young adults to improve physical performance, reduce drowsiness, and improve memory and concentration with increased intellectual [...] Read more.
Background: Energy drinks (EDs) are non-alcoholic, functional beverages sold worldwide in more than 165 countries. These products are very popular and often consumed by children, teenagers, and young adults to improve physical performance, reduce drowsiness, and improve memory and concentration with increased intellectual effort. However, their consumption is associated with an increased risk of various health consequences. Objectives: The purpose of this non-systematic review was to discuss the components of EDs and their effects, summarize the AEs reported in the literature associated with the consumption of EDs, and briefly characterize the possible ED-related drug interactions. Methods: Scientific evidence was extracted by searching the databases PubMed and Google Scholar. In addition, the reference lists of the retrieved papers were reviewed and cross-referenced to reveal additional relevant scientific evidence. Results: The most common ingredients in EDs are caffeine, taurine, glucuronolactone, B vitamins, the vitamin-like compound inositol, and sweeteners (sugar, fructose, glucose–fructose syrup or artificial sweeteners). Although it is difficult to conclusively prove a cause-and-effect relationship between the consumption of EDs and the observed pathophysiological abnormalities, most scientific evidence (mostly clinical case reports) indicates that both occasional and especially chronic use of EDs is associated with the occurrence of numerous adverse effects (AEs). Among these, the best documented AEs are those on the cardiovascular system. It should also be noted that the components of EDs (primarily caffeine) may have drug interactions; therefore, EDs may be an important factor influencing the safety of pharmacotherapy in patients consuming EDs. Conclusions: Consuming energy drinks lead to various health problems and may interfere with pharmacotherapy due to the potential development of drug interactions. Due to the widespread availability of EDs, their suggestive advertising aimed at the youngest customers, and ambiguous regulations, new legislative policies are required to limit the widespread consumption of such products and their negative health effects. Full article
(This article belongs to the Special Issue Food Security, Food Insecurity, and Nutritional Health)
Show Figures

Figure 1

34 pages, 2842 KiB  
Review
Systematic Analysis of the Hydrogen Value Chain from Production to Utilization
by Miguel Simão Coelho, Guilherme Gaspar, Elena Surra, Pedro Jorge Coelho and Ana Filipa Ferreira
Appl. Sci. 2025, 15(15), 8242; https://doi.org/10.3390/app15158242 - 24 Jul 2025
Viewed by 443
Abstract
Hydrogen produced from renewable sources has the potential to tackle various energy challenges, from allowing cost-effective transportation of renewable energy from production to consumption regions to decarbonizing intensive energy consumption industries. Due to its application versatility and non-greenhouse gaseous emissions characteristics, it is [...] Read more.
Hydrogen produced from renewable sources has the potential to tackle various energy challenges, from allowing cost-effective transportation of renewable energy from production to consumption regions to decarbonizing intensive energy consumption industries. Due to its application versatility and non-greenhouse gaseous emissions characteristics, it is expected that hydrogen will play an important role in the decarbonization strategies set out for 2050. Currently, there are some barriers and challenges that need to be addressed to fully take advantage of the opportunities associated with hydrogen. The present work aims to characterize the state of the art of different hydrogen production, storage, transport, and distribution technologies, which compose the hydrogen value chain. Based on the information collected it was possible to conclude the following: (i) Electrolysis is the frontrunner to produce green hydrogen at a large scale (efficiency up to 80%) since some of the production technologies under this category have already achieved a commercially available state; (ii) in the storage phase, various technologies may be suitable based on specific conditions and purposes. Technologies of the physical-based type are the ones mostly used in real applications; (iii) transportation and distribution options should be viewed as complementary rather than competitive, as the most suitable option varies based on transportation distance and hydrogen quantity; and (iv) a single value chain configuration cannot be universally applied. Therefore, each case requires a comprehensive analysis of the entire value chain. Methodologies, like life cycle assessment, should be utilized to support the decision-making process. Full article
(This article belongs to the Special Issue The Present and the Future of Hydrogen Energy)
Show Figures

Figure 1

19 pages, 8482 KiB  
Article
Waste Heat Recovery in the Energy-Saving Technology of Stretch Film Production
by Krzysztof Górnicki, Paweł Obstawski and Krzysztof Tomczuk
Energies 2025, 18(15), 3957; https://doi.org/10.3390/en18153957 - 24 Jul 2025
Viewed by 337
Abstract
The stretch film production is highly energy intensive. The components of the technological line are powered by electrical energy, and the heat is used to change the physical state of the raw material (granules). The raw material is poured into FCR (the first [...] Read more.
The stretch film production is highly energy intensive. The components of the technological line are powered by electrical energy, and the heat is used to change the physical state of the raw material (granules). The raw material is poured into FCR (the first calender roller). To solidify the liquid raw material, the calendar must be cooled. The low-temperature heat, treated as waste heat, has dissipated in the atmosphere. Technological innovations were proposed: (a) the raw material comprises raw material (primary) and up to 80% recyclate (waste originating mainly from agriculture), (b) the use of low-temperature waste heat (the cooling of FCR in the process of foil stretch production). A heat recovery line based on two compressor heat pumps (HP, hydraulically coupled) was designed. The waste heat (by low-temperature HP) was transformed into high-temperature heat (by high-temperature HP) and used to prepare the raw material. The proposed technological line enables the management of difficult-to-manage post-production waste (i.e., agriculture and other economic sectors). It reduces energy consumption and raw materials from non-renewable sources (CO2 and other greenhouse gas emissions are reducing). It implements a closed-loop economy based on renewable energy sources (according to the European Green Deal). Full article
(This article belongs to the Special Issue Challenges and Research Trends of Energy Management)
Show Figures

Figure 1

26 pages, 3405 KiB  
Article
Digital Twins for Intelligent Vehicle-to-Grid Systems: A Multi-Physics EV Model for AI-Based Energy Management
by Michela Costa and Gianluca Del Papa
Appl. Sci. 2025, 15(15), 8214; https://doi.org/10.3390/app15158214 - 23 Jul 2025
Viewed by 285
Abstract
This paper presents a high-fidelity multi-physics dynamic model for electric vehicles, serving as a fundamental building block for intelligent vehicle-to-grid (V2G) integration systems. The model accurately captures complex vehicle dynamics of the powertrain, battery, and regenerative braking, enabling precise energy consumption evaluation, including [...] Read more.
This paper presents a high-fidelity multi-physics dynamic model for electric vehicles, serving as a fundamental building block for intelligent vehicle-to-grid (V2G) integration systems. The model accurately captures complex vehicle dynamics of the powertrain, battery, and regenerative braking, enabling precise energy consumption evaluation, including in AI-driven V2G scenarios. Validated using real-world data from a Citroën Ami operating on urban routes in Naples, Italy, it achieved exceptional accuracy with a root mean square error (RMSE) of 1.28% for dynamic state of charge prediction. This robust framework provides an essential foundation for AI-driven digital twin technologies in V2G applications, significantly advancing sustainable transportation and smart grid integration through predictive simulation. Its versatility supports diverse fleet applications, from residential energy management and coordinated charging optimization to commercial car sharing operations, leveraging backup power during peak demand or grid outages, so to maximize distributed battery storage utilization. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in the Novel Power System)
Show Figures

Figure 1

15 pages, 562 KiB  
Article
Transforming Agri-Waste into Health Innovation: A Circular Framework for Sustainable Food Design
by Smita Mortero, Jirarat Anuntagool, Achara Chandrachai and Sanong Ekgasit
Sustainability 2025, 17(15), 6712; https://doi.org/10.3390/su17156712 - 23 Jul 2025
Viewed by 400
Abstract
This study addresses the problem of agricultural waste utilization and nutrition for older adults by developing a food product based on a circular design approach. Pineapple core was used to produce a clean-label dietary powder without chemical or enzymatic treatment, relying on repeated [...] Read more.
This study addresses the problem of agricultural waste utilization and nutrition for older adults by developing a food product based on a circular design approach. Pineapple core was used to produce a clean-label dietary powder without chemical or enzymatic treatment, relying on repeated rinsing and hot-air drying. The development process followed a structured analysis of physical, chemical, and sensory properties. The powder contained 83.46 g/100 g dietary fiber, 0° Brix sugar, pH 4.72, low water activity (aw < 0.45), and no detectable heavy metals or microbial contamination. Sensory evaluation by expert panelists confirmed that the product was acceptable in appearance, aroma, and texture, particularly for older adults. These results demonstrate the feasibility and safety of valorizing agri-waste into functional ingredients. The process was guided by the Transformative Circular Product Blueprint, which integrates clean-label processing, IoT-enabled solar drying, and decentralized production. This model supports traceability, low energy use, and adaptation at the community scale. This study contributes to sustainable food innovation and aligns with Sustainable Development Goals (SDGs) 3 (Good Health and Well-being), 9 (Industry, Innovation and Infrastructure), and 12 (Responsible Consumption and Production). Full article
Show Figures

Figure 1

21 pages, 5433 KiB  
Review
Research Progress on Adhesion Mechanism and Testing Methods of Emulsified Asphalt–Aggregate Interface
by Hao-Yue Huang, Xiao Han, Sen Han, Xiao Ma, Jia Guo and Yao Huang
Buildings 2025, 15(15), 2611; https://doi.org/10.3390/buildings15152611 - 23 Jul 2025
Viewed by 370
Abstract
With the deepening of the green and low-carbon concept in the field of road engineering, the cold construction asphalt pavement technology has developed rapidly due to its advantages such as low energy consumption, low pollution, and convenient construction. The adhesion between emulsified asphalt [...] Read more.
With the deepening of the green and low-carbon concept in the field of road engineering, the cold construction asphalt pavement technology has developed rapidly due to its advantages such as low energy consumption, low pollution, and convenient construction. The adhesion between emulsified asphalt and aggregates, as a core factor affecting the performance of cold-mixed mixtures and the lifespan of the pavement, has attracted much attention in terms of its mechanism of action and evaluation methods. However, at present, there are still many issues that need to be addressed in terms of the stability control of adhesion between emulsified asphalt and aggregates, the explanation of the microscopic mechanism, and the standardization of testing methods in complex environments. These problems restrict the further promotion and application of the cold construction technology. Based on this, this paper systematically analyzes the current development status, application scenarios, and future trends of the theory and testing methods of the adhesion between emulsified asphalt and aggregates by reviewing a large number of relevant studies. The research aims to provide theoretical support and practical references for the improvement of adhesion in the cold construction asphalt pavement technology. Research shows that in terms of the adhesion mechanism, the existing results have deeply analyzed the infiltration and demulsification adhesion process of emulsified asphalt on the surface of aggregates and clarified the key links of physical and chemical interactions, but the understanding of the microscopic interface behavior and molecular-scale mechanism is still insufficient. In terms of testing methods, although objective and subjective evaluation methods such as mechanical tensile tests, surface energy evaluation, and adhesion fatigue tests have been developed, the standardization of testing, data comparability, and practical engineering applicability still need to be optimized. Comprehensive analysis shows that the research on the adhesion between emulsified asphalt and aggregates is showing a trend from macroscopic to microscopic, from static to dynamic. There are challenges in predicting and controlling the adhesion performance under complex environments, as well as important opportunities for developing advanced characterization techniques and multiscale simulation methods. Full article
(This article belongs to the Special Issue Advances in Performance-Based Asphalt and Asphalt Mixtures)
Show Figures

Figure 1

36 pages, 9902 KiB  
Article
Digital-Twin-Enabled Process Monitoring for a Robotic Additive Manufacturing Cell Using Wire-Based Laser Metal Deposition
by Alberto José Alvares, Efrain Rodriguez and Brayan Figueroa
Processes 2025, 13(8), 2335; https://doi.org/10.3390/pr13082335 - 23 Jul 2025
Viewed by 360
Abstract
Digital Twins (DTs) are transforming manufacturing by bridging the physical and digital worlds, enabling real-time insights, predictive analytics, and enhanced decision making. In Industry 4.0, DTs facilitate automation and data integration, while Industry 5.0 emphasizes human-centric, resilient, and sustainable production. However, implementing DTs [...] Read more.
Digital Twins (DTs) are transforming manufacturing by bridging the physical and digital worlds, enabling real-time insights, predictive analytics, and enhanced decision making. In Industry 4.0, DTs facilitate automation and data integration, while Industry 5.0 emphasizes human-centric, resilient, and sustainable production. However, implementing DTs in robotic metal additive manufacturing (AM) remains challenging because of the complexity of the wire-based laser metal deposition (LMD) process, the need for real-time monitoring, and the demand for advanced defect detection to ensure high-quality prints. This work proposes a structured DT architecture for a robotic wire-based LMD cell, following a standard framework. Three DT implementations were developed. First, a real-time 3D simulation in RoboDK, integrated with a 2D Node-RED dashboard, enabled motion validation and live process monitoring via MQTT (message queuing telemetry transport) telemetry, minimizing toolpath errors and collisions. Second, an Industrial IoT-based system using KUKA iiQoT (Industrial Internet of Things Quality of Things) facilitated predictive maintenance by analyzing motor loads, joint temperatures, and energy consumption, allowing early anomaly detection and reducing unplanned downtime. Third, the Meltio dashboard provided real-time insights into the laser temperature, wire tension, and deposition accuracy, ensuring adaptive control based on live telemetry. Additionally, a prescriptive analytics layer leveraging historical data in FireStore was integrated to optimize the process performance, enabling data-driven decision making. Full article
Show Figures

Graphical abstract

16 pages, 3775 KiB  
Article
Optimizing Energy Efficiency in Last-Mile Delivery: A Collaborative Approach with Public Transportation System and Drones
by Pierre Romet, Charbel Hage, El-Hassane Aglzim, Tonino Sophy and Franck Gechter
Drones 2025, 9(8), 513; https://doi.org/10.3390/drones9080513 - 22 Jul 2025
Viewed by 324
Abstract
Accurately estimating the energy consumption of unmanned aerial vehicles (UAVs) in real-world delivery scenarios remains a critical challenge, particularly when UAVs operate in complex urban environments and are coupled with public transportation systems. Most existing models rely on oversimplified assumptions or static mission [...] Read more.
Accurately estimating the energy consumption of unmanned aerial vehicles (UAVs) in real-world delivery scenarios remains a critical challenge, particularly when UAVs operate in complex urban environments and are coupled with public transportation systems. Most existing models rely on oversimplified assumptions or static mission profiles, limiting their applicability to realistic, scalable drone-based logistics. In this paper, we propose a physically-grounded and scenario-aware energy sizing methodology for UAVs operating as part of a last-mile delivery system integrated with a city’s bus network. The model incorporates detailed physical dynamics—including lift, drag, thrust, and payload variations—and considers real-time mission constraints such as delivery execution windows and infrastructure interactions. To enhance the realism of the energy estimation, we integrate computational fluid dynamics (CFD) simulations that quantify the impact of surrounding structures and moving buses on UAV thrust efficiency. Four mission scenarios of increasing complexity are defined to evaluate the effects of delivery delays, obstacle-induced aerodynamic perturbations, and early return strategies on energy consumption. The methodology is applied to a real-world transport network in Belfort, France, using a graph-based digital twin. Results show that environmental and operational constraints can lead to up to 16% additional energy consumption compared to idealized mission models. The proposed framework provides a robust foundation for UAV battery sizing, mission planning, and sustainable integration of aerial delivery into multimodal urban transport systems. Full article
(This article belongs to the Special Issue Urban Air Mobility Solutions: UAVs for Smarter Cities)
Show Figures

Figure 1

23 pages, 3863 KiB  
Review
Memristor-Based Spiking Neuromorphic Systems Toward Brain-Inspired Perception and Computing
by Xiangjing Wang, Yixin Zhu, Zili Zhou, Xin Chen and Xiaojun Jia
Nanomaterials 2025, 15(14), 1130; https://doi.org/10.3390/nano15141130 - 21 Jul 2025
Viewed by 616
Abstract
Threshold-switching memristors (TSMs) are emerging as key enablers for hardware spiking neural networks, offering intrinsic spiking dynamics, sub-pJ energy consumption, and nanoscale footprints ideal for brain-inspired computing at the edge. This review provides a comprehensive examination of how TSMs emulate diverse spiking behaviors—including [...] Read more.
Threshold-switching memristors (TSMs) are emerging as key enablers for hardware spiking neural networks, offering intrinsic spiking dynamics, sub-pJ energy consumption, and nanoscale footprints ideal for brain-inspired computing at the edge. This review provides a comprehensive examination of how TSMs emulate diverse spiking behaviors—including oscillatory, leaky integrate-and-fire (LIF), Hodgkin–Huxley (H-H), and stochastic dynamics—and how these features enable compact, energy-efficient neuromorphic systems. We analyze the physical switching mechanisms of redox and Mott-type TSMs, discuss their voltage-dependent dynamics, and assess their suitability for spike generation. We review memristor-based neuron circuits regarding architectures, materials, and key performance metrics. At the system level, we summarize bio-inspired neuromorphic platforms integrating TSM neurons with visual, tactile, thermal, and olfactory sensors, achieving real-time edge computation with high accuracy and low power. Finally, we critically examine key challenges—such as stochastic switching origins, device variability, and endurance limits—and propose future directions toward reconfigurable, robust, and scalable memristive neuromorphic architectures. Full article
(This article belongs to the Special Issue Neuromorphic Devices: Materials, Structures and Bionic Applications)
Show Figures

Figure 1

Back to TopTop