Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = physical defence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 720 KB  
Review
Innovations in Biofilm Prevention and Eradication in Medical Sector: An Integrative Review
by Konrad Niedźwiadek, Magdalena Polak-Berecka and Adam Waśko
Pathogens 2025, 14(12), 1242; https://doi.org/10.3390/pathogens14121242 - 4 Dec 2025
Viewed by 345
Abstract
Background: Biofilm-associated infections remain a major challenge in modern medicine due to their high resistance to antibiotics and immune defences. Advances in materials science, chemistry, and nanotechnology have led to the development of innovative, non-antibiotic approaches to prevent or eradicate biofilms. Methods: This [...] Read more.
Background: Biofilm-associated infections remain a major challenge in modern medicine due to their high resistance to antibiotics and immune defences. Advances in materials science, chemistry, and nanotechnology have led to the development of innovative, non-antibiotic approaches to prevent or eradicate biofilms. Methods: This review summarises antibiofilm strategies reported between 2020 and 2025, grouped into chemical, enzymatic, physical–photonic, nanomaterial-based, and biological hybrid categories. Results: Chemical methods such as silver-based chemical systems, nitric oxide donors, and biosurfactants disrupt bacterial membranes, generate reactive oxygen species, and inhibit quorum sensing. Enzymatic coatings with DNase I or lysostaphin effectively reduce Staphylococcus aureus and S. epidermidis biofilms, showing stability after sterilisation and high biocompatibility. Physical–photonic techniques, including photocatalytic and light-activated coatings, provide controllable and renewable antibacterial activity. Nanomaterials such as silver nanomaterials, chitosan-based carriers, magnetic ferrites, and catalytic nanozymes enable targeted, ROS-mediated biofilm disruption. Biologically derived systems, including bacteriophage hydrogels and plant metabolites, offer eco-friendly, biocompatible alternatives. Conclusions: Recent antibiofilm innovations mark a transition from conventional antibiotics to multifunctional and adaptive systems integrating chemical, enzymatic, and physical mechanisms for effective biofilm control on medical surfaces. Full article
Show Figures

Figure 1

16 pages, 2380 KB  
Review
Host-Derived Reactive Oxygen Species in the Gut Epithelium: Defence Mechanism and Target of Bacterial Subversion
by Pranaya Kansakar, Subhadeep Gupta, Amirul Islam Mallick, Brendan W. Wren, Ezra Aksoy, Abdi Elmi and Ozan Gundogdu
Antioxidants 2025, 14(10), 1156; https://doi.org/10.3390/antiox14101156 - 24 Sep 2025
Viewed by 1133
Abstract
Host physical, chemical, and immune responses constitute well-established defences against bacterial invasion. Recent studies have highlighted the critical role of cellular mechanisms, particularly the production of reactive oxygen species (ROS) in antibacterial defence. This review focuses on ROS generation by mammalian intestinal epithelial [...] Read more.
Host physical, chemical, and immune responses constitute well-established defences against bacterial invasion. Recent studies have highlighted the critical role of cellular mechanisms, particularly the production of reactive oxygen species (ROS) in antibacterial defence. This review focuses on ROS generation by mammalian intestinal epithelial cells (IECs) and investigates whether ROS production is host-driven to eliminate bacteria or manipulated by bacteria to suppress or exploit ROS for enhanced internalisation. We examine the activation mechanisms of the NADPH oxidase (NOX) enzyme complex and the resulting ROS production in IECs, which, unlike professional phagocytes, lack the ability to engulf bacteria. The downstream effects of NOX-mediated ROS signalling are discussed in detail. Additionally, we explore the dynamic interplay between host and pathogen, with particular attention to how bacterial infection may disrupt or hijack host NOX-mediated ROS responses. The review concludes with key experimental considerations and outlines future directions in this evolving field. Overall, we present ROS as a double-edged sword, an essential antimicrobial effector that is also susceptible to bacterial subversion, highlighting its potential as a target in novel antimicrobial strategies. Full article
Show Figures

Figure 1

18 pages, 2380 KB  
Article
New Insights into the Role of Secondary Metabolic Pathways in Resistance of Potato to Dickeya solani
by Anna Grupa-Urbańska, Katarzyna Szajko, Waldemar Marczewski and Renata Lebecka
Int. J. Mol. Sci. 2025, 26(17), 8370; https://doi.org/10.3390/ijms26178370 - 28 Aug 2025
Viewed by 768
Abstract
Dickeya solani causes soft rot in potato (Solanum tuberosum L.) tubers. We used bulk RNA-seq to compare the early transcriptional responses of the diploid F1 genotypes from the mapping population that varied in tuber resistance to D. solani. RNA was [...] Read more.
Dickeya solani causes soft rot in potato (Solanum tuberosum L.) tubers. We used bulk RNA-seq to compare the early transcriptional responses of the diploid F1 genotypes from the mapping population that varied in tuber resistance to D. solani. RNA was collected from wounded tubers inoculated with D. solani (B), wounded tubers treated with sterile water (W), and non-treated tubers (NT) at 8, 24, and 48 hours post-inoculation (hpi). The largest transcriptional divergence between resistant (R) and susceptible (S) genotypes occurred at 8 hpi, with R tubers showing stronger induction of phenylpropanoid biosynthesis, phenylalanine and tyrosine metabolism, amino sugar and nucleotide sugar metabolism, isoquinoline alkaloid biosynthesis, and glutathione metabolism. Phenylpropanoid biosynthesis was dominant in R tubers, in 17 differentially expressed genes (DEGs), consistent with rapid suberin and lignin deposition as a physical barrier. RT-qPCR of nine defence-related genes corroborated the RNA-seq trends. The suberisation-associated anionic peroxidase POPA was located within a QTL for D. solani resistance on chromosome II, supporting its role as a candidate for future functional studies. This is the first transcriptome-based comparison of R and S potato genotypes challenged with D. solani, providing candidate pathways and genes that may guide future molecular breeding once their roles are validated. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

25 pages, 4837 KB  
Article
Multimodal Computational Approach for Forecasting Cardiovascular Aging Based on Immune and Clinical–Biochemical Parameters
by Madina Suleimenova, Kuat Abzaliyev, Ainur Manapova, Madina Mansurova, Symbat Abzaliyeva, Saule Doskozhayeva, Akbota Bugibayeva, Almagul Kurmanova, Diana Sundetova, Merey Abdykassymova and Ulzhas Sagalbayeva
Diagnostics 2025, 15(15), 1903; https://doi.org/10.3390/diagnostics15151903 - 29 Jul 2025
Cited by 1 | Viewed by 1032
Abstract
Background: This study presents an innovative approach to cardiovascular disease (CVD) risk prediction based on a comprehensive analysis of clinical, immunological and biochemical markers using mathematical modelling and machine learning methods. Baseline data include indices of humoral and cellular immunity (CD59, CD16, [...] Read more.
Background: This study presents an innovative approach to cardiovascular disease (CVD) risk prediction based on a comprehensive analysis of clinical, immunological and biochemical markers using mathematical modelling and machine learning methods. Baseline data include indices of humoral and cellular immunity (CD59, CD16, IL-10, CD14, CD19, CD8, CD4, etc.), cytokines and markers of cardiovascular disease, inflammatory markers (TNF, GM-CSF, CRP), growth and angiogenesis factors (VEGF, PGF), proteins involved in apoptosis and cytotoxicity (perforin, CD95), as well as indices of liver function, kidney function, oxidative stress and heart failure (albumin, cystatin C, N-terminal pro B-type natriuretic peptide (NT-proBNP), superoxide dismutase (SOD), C-reactive protein (CRP), cholinesterase (ChE), cholesterol, and glomerular filtration rate (GFR)). Clinical and behavioural risk factors were also considered: arterial hypertension (AH), previous myocardial infarction (PICS), aortocoronary bypass surgery (CABG) and/or stenting, coronary heart disease (CHD), atrial fibrillation (AF), atrioventricular block (AB block), and diabetes mellitus (DM), as well as lifestyle (smoking, alcohol consumption, physical activity level), education, and body mass index (BMI). Methods: The study included 52 patients aged 65 years and older. Based on the clinical, biochemical and immunological data obtained, a model for predicting the risk of premature cardiovascular aging was developed using mathematical modelling and machine learning methods. The aim of the study was to develop a predictive model allowing for the early detection of predisposition to the development of CVDs and their complications. Numerical methods of mathematical modelling, including Runge–Kutta, Adams–Bashforth and backward-directed Euler methods, were used to solve the prediction problem, which made it possible to describe the dynamics of changes in biomarkers and patients’ condition over time with high accuracy. Results: HLA-DR (50%), CD14 (41%) and CD16 (38%) showed the highest association with aging processes. BMI was correlated with placental growth factor (37%). The glomerular filtration rate was positively associated with physical activity (47%), whereas SOD activity was negatively correlated with it (48%), reflecting a decline in antioxidant defence. Conclusions: The obtained results allow for improving the accuracy of cardiovascular risk prediction, and form personalised recommendations for the prevention and correction of its development. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

24 pages, 7080 KB  
Review
Responsible Resilience in Cyber–Physical–Social Systems: A New Paradigm for Emergent Cyber Risk Modeling
by Theresa Sobb, Nour Moustafa and Benjamin Turnbull
Future Internet 2025, 17(7), 282; https://doi.org/10.3390/fi17070282 - 25 Jun 2025
Cited by 3 | Viewed by 1036
Abstract
As cyber systems increasingly converge with physical infrastructure and social processes, they give rise to Complex Cyber–Physical–Social Systems (C-CPSS), whose emergent behaviors pose unique risks to security and mission assurance. Traditional cyber–physical system models often fail to address the unpredictability arising from human [...] Read more.
As cyber systems increasingly converge with physical infrastructure and social processes, they give rise to Complex Cyber–Physical–Social Systems (C-CPSS), whose emergent behaviors pose unique risks to security and mission assurance. Traditional cyber–physical system models often fail to address the unpredictability arising from human and organizational dynamics, leaving critical gaps in how cyber risks are assessed and managed across interconnected domains. The challenge lies in building resilient systems that not only resist disruption, but also absorb, recover, and adapt—especially in the face of complex, nonlinear, and often unintentionally emergent threats. This paper introduces the concept of ‘responsible resilience’, defined as the capacity of systems to adapt to cyber risks using trustworthy, transparent agent-based models that operate within socio-technical contexts. We identify a fundamental research gap in the treatment of social complexity and emergence in existing the cyber–physical system literature. To address this, we propose the E3R modeling paradigm—a novel framework for conceptualizing Emergent, Risk-Relevant Resilience in C-CPSS. This paradigm synthesizes human-in-the-loop diagrams, agent-based Artificial Intelligence simulations, and ontology-driven representations to model the interdependencies and feedback loops driving unpredictable cyber risk propagation more effectively. Compared to conventional cyber–physical system models, E3R accounts for adaptive risks across social, cyber, and physical layers, enabling a more accurate and ethically grounded foundation for cyber defence and mission assurance. Our analysis of the literature review reveals the underrepresentation of socio-emergent risk modeling in the literature, and our results indicate that existing models—especially those in industrial and healthcare applications of cyber–physical systems—lack the generalizability and robustness necessary for complex, cross-domain environments. The E3R framework thus marks a significant step forward in understanding and mitigating emergent threats in future digital ecosystems. Full article
(This article belongs to the Special Issue Internet of Things and Cyber-Physical Systems, 3rd Edition)
Show Figures

Figure 1

19 pages, 3272 KB  
Article
Moving Beyond Mosaic: Co-Creating Educational and Psychosocial Resources Using Military Children’s Voices
by Marg Rogers, Margaret Sims, Philip Siebler, Michelle Gossner and Einar Thorsteinsson
Educ. Sci. 2025, 15(6), 695; https://doi.org/10.3390/educsci15060695 - 4 Jun 2025
Cited by 2 | Viewed by 1060
Abstract
The Mosaic approach has been effectively used to gather children’s voices in early childhood settings using a children’s voices framework, although research translation using these voices is less reported. This paper bridges this gap by reporting on the voices of young children from [...] Read more.
The Mosaic approach has been effectively used to gather children’s voices in early childhood settings using a children’s voices framework, although research translation using these voices is less reported. This paper bridges this gap by reporting on the voices of young children from military and veteran families and the free, narrative-based resources co-created using these voices to strengthen children’s capacity to survive and thrive in these families. Children from military families can experience frequent relocations, multiple and prolonged parental deployments and heightened anxiety about the safety of the member parent. Children from military and veteran families might also experience the challenges of living with a parent who is injured (physically, mentally and/or morally). The children’s voices gathered in an initial study revealed four themes about their experiences in Australian military and veteran families, namely, (i) Department of Defence supports, (ii) communication, (iii) acculturation and ritual, and (iv) narrative. The research team worked with the affected community and partners to co-create resources that aligned with these themes. To achieve this, the team conducted an additional online survey with community members who had lived experience in military and veteran families, along with research partners and professionals who supported these families. The aim was to identify the types of resources and content they felt would best support children’s psychosocial development. The children’s voices, subsequent research data, and the literature were woven together to co-create free, online research-based educational and psychosocial resources to strengthen the coping strategies of young children from these families. This will interest those who aim for children’s voices not only to be heard but to have an impact on the world. Full article
(This article belongs to the Section Early Childhood Education)
Show Figures

Figure 1

10 pages, 647 KB  
Brief Report
Oxidative Stress Modulation and Glutathione System Response During a 10-Day Multi-Stressor Field Training
by Liāna Pļaviņa and Edgars Edelmers
J. Funct. Morphol. Kinesiol. 2025, 10(2), 166; https://doi.org/10.3390/jfmk10020166 - 10 May 2025
Cited by 2 | Viewed by 1427
Abstract
Objectives: To evaluate how a 10-day multi-stressor field-training course—combining high physical and psycho-emotional demands, caloric restriction, and severe sleep deprivation—affects systemic oxidative/antioxidative status and biomarkers of nucleic-acid and skeletal-muscle damage in trained military cadets. Methods: Seventy-five healthy cadets (8 women, 67 men; 22–34 [...] Read more.
Objectives: To evaluate how a 10-day multi-stressor field-training course—combining high physical and psycho-emotional demands, caloric restriction, and severe sleep deprivation—affects systemic oxidative/antioxidative status and biomarkers of nucleic-acid and skeletal-muscle damage in trained military cadets. Methods: Seventy-five healthy cadets (8 women, 67 men; 22–34 y) completed the course. Standardised operational rations (700–800 kcal day¹) and two 20 min tactical naps per 24 h were enforced. Pre- and post-course venous blood was collected after an overnight fast. Plasma superoxide-dismutase activity (SOD), reduced and oxidised glutathione (GSH, GSSG), malondialdehyde (MDA), and hydrogen peroxide (H₂O₂) were quantified by colourimetric/fluorometric assays; 8-hydroxy-2-deoxyguanosine (8-OHdG) and myoglobin were measured by ELISA. The oxidative-stress index (OSI) was calculated as GSSG·GSH¹. Within-subject differences were assessed with Wilcoxon signed-rank tests; associations between biomarker changes were explored by Spearman correlation. Results: After training, GSH (+175%, p < 0.001) and GSSG (+32%, p < 0.001) rose significantly, whereas SOD (−19%, p = 0.002), H₂O₂ (−20%, p = 0.015), MDA (−50%, p < 0.001), 8-OHdG (−23%, p < 0.001), and OSI (−47%, p < 0.001) declined. Myoglobin remained unchanged (p = 0.603). Reductions in MDA correlated inversely with increases in GSSG (rₛ = −0.25, p = 0.041), while H₂O₂ changes correlated positively with GSSG (rₛ = 0.25, p = 0.046), indicating a glutathione-driven adaptive response. Conclusions: Ten consecutive days of vigorous, calorie- and sleep-restricted field training elicited a favourable redox adaptation characterised by enhanced glutathione-mediated antioxidant capacity and lower circulating oxidant concentrations, without evidence of DNA or skeletal-muscle damage. The data suggest that, in physically prepared individuals, prolonged multi-stressor exposure can strengthen endogenous antioxidant defences rather than precipitate oxidative injury. Full article
(This article belongs to the Special Issue Understanding Sports-Related Health Issues, 2nd Edition)
Show Figures

Figure 1

19 pages, 4479 KB  
Article
Reducing Wave Overtopping on Rubble Mound Breakwaters Using Floating Kelp Farms
by Filipe Miranda, Tomás Calheiros-Cabral, Diogo Mendes, Paulo Rosa-Santos, Francisco Taveira-Pinto and Tiago Fazeres-Ferradosa
J. Mar. Sci. Eng. 2025, 13(5), 850; https://doi.org/10.3390/jmse13050850 - 25 Apr 2025
Cited by 1 | Viewed by 1633
Abstract
Near-surface floating kelp farms constitute a Nature-Based Solution (NBS) capable of damping incident wind-generated waves, which might be beneficial to reduce wave overtopping on maritime structures. As the global mean sea level rises, the mean wave overtopping discharge is expected to increase. The [...] Read more.
Near-surface floating kelp farms constitute a Nature-Based Solution (NBS) capable of damping incident wind-generated waves, which might be beneficial to reduce wave overtopping on maritime structures. As the global mean sea level rises, the mean wave overtopping discharge is expected to increase. The incorporation of this NBS, as a green–grey solution, might be beneficial to mitigate this effect. Physical modelling experiments with random waves have been conducted to assess the ability of this NBS to reduce the mean wave overtopping discharge on a rubble mound breakwater. Results show that while the mean wave overtopping discharge was reduced by 47% with a kelp farm length of 50 m (prototype scale), a kelp farm of 200 m achieved a reduction of 93% for the tested conditions. This reduction is mainly a function of the ratio between floating kelp farm length and incident wavelength. An idealized case study at the Port of Leixões breakwater suggests that, under storm wave conditions with return period of 2 and 5 years, floating kelp farms could maintain mean wave overtopping discharges below present levels until 2070. Thus, this study highlights the relevance of incorporating NBS with existing coastal and port defence structures as an adaptation measure to mitigate climate change effects. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

14 pages, 1144 KB  
Review
Silicon-Mediated Interactions Between Plant Antagonists
by Marie-Emma Denarié, Uffe N. Nielsen, Susan E. Hartley and Scott N. Johnson
Plants 2025, 14(8), 1204; https://doi.org/10.3390/plants14081204 - 14 Apr 2025
Cited by 2 | Viewed by 1732
Abstract
The prolonged arms race between plants and their antagonists has resulted in the evolution of multiple plant defence mechanisms to combat attacks by pests and pathogens. Silicon (Si) accumulation occurs mainly in grasses and provides a physical barrier against antagonists. Biochemical pathways may [...] Read more.
The prolonged arms race between plants and their antagonists has resulted in the evolution of multiple plant defence mechanisms to combat attacks by pests and pathogens. Silicon (Si) accumulation occurs mainly in grasses and provides a physical barrier against antagonists. Biochemical pathways may also be involved in Si-mediated plant resistance, although the precise mode of action in this case is less clear. Most studies have focussed on Si-based effects against single attackers. In this review, we consider how Si-based plant resistance operates when simultaneously and/or sequentially attacked by insect herbivores, fungal phytopathogens, and plant parasitic nematodes and how the plant hormones jasmonic acid (JA) and salicylic acid (SA) are involved. Si defence may mediate both intra- and interspecific competition and facilitation. Si has been found to impact plant-mediated interactions between insect herbivores within the same feeding guild and across different feeding guilds, with varying patterns of JA and SA. These results suggest that hormonal crosstalk may play a role in the Si-mediated effects, although this finding varied between studies. While some reports support the notion that JA is linked to Si responses, others indicate that Si supplementation reduces JA production. In terms of phytopathogens, SA has not been found to be involved in Si-mediated defences. Improving our understanding of Si-mediated plant defence could be beneficial for sustainable agriculture under future climates. Full article
(This article belongs to the Special Issue Biochemical Defenses of Plants)
Show Figures

Figure 1

18 pages, 2657 KB  
Article
The Impact of Recreational Diving to a Depth of 40 m on Selected Intracellular DAMPs
by Anna Nowakowska, Małgorzata Marchelek-Myśliwiec, Marta Skórka-Majewicz, Wojciech Żwierełło, Konrad Grzeszczak and Izabela Gutowska
Int. J. Mol. Sci. 2025, 26(7), 3061; https://doi.org/10.3390/ijms26073061 - 27 Mar 2025
Viewed by 1458
Abstract
Increasingly popular, recreational diving is a physical activity that takes place under extreme environmental conditions, which include hyperoxia, hyperbaria and exposure to cold water. The effects of these factors on the human body induce increased levels of reactive oxygen and nitrogen species in [...] Read more.
Increasingly popular, recreational diving is a physical activity that takes place under extreme environmental conditions, which include hyperoxia, hyperbaria and exposure to cold water. The effects of these factors on the human body induce increased levels of reactive oxygen and nitrogen species in divers’ bodies, which may modulate damage-associated molecular pattern (DAMPs), their receptors and the antioxidant response. This study involved 21 divers who descended to a depth of 40 metres. Determinations of selected intracellular DAMPs (high-mobility group box protein 1,HMGB1, S100 calcium-binding proteins A9 and A8, S100A8 and S100A9, heat shock protein family A member 1A, HSPA1A (Hsp70), heat shock protein family B, (small) member 1, HSPB1(Hsp27), thioredoxin, TXN), their receptors (Toll-like receptor 4, TLR4 and receptors for advanced glycation end products, RAGE), nuclear factor-κB (NF-κB) and antioxidant defence markers were performed before, after and 1 h after the dive. A significant transient reduction in HMGB1 expression was observed immediately after the dive at both the mRNA and protein levels. We noted an increase in S100A9 expression, which occurred 1 h post-dive compared to the post-dive time point, and a post-dive decrease in TLR4 expression only at the mRNA level. Diving also influenced the expression of genes encoding key enzymes associated with glutathione synthesis, (glutamate-cysteine ligase, catalytic subunit, GCLC and glutathione synthetase, GSS), and reduced plasma glutathione levels. However, no significant changes were observed in the expression of NF-κB, nitric oxide synthase 2 (NOS2) or circulating DAMP receptors (TLR4 and RAGE). The findings suggest an adaptive response to diving-induced oxidative stress, which appears to be a protective mechanism against an excessive inflammatory response. To our knowledge, this is the first study to analyse the role of intracellular DAMPs in recreational divers. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

22 pages, 1200 KB  
Article
An Interphase Short-Circuit Fault Location Method for Distribution Networks Considering Topological Flexibility
by Hua Xie, Zhe Liu, Kai Li, Qifang Chen, Chao Yang and Tong Li
Processes 2025, 13(3), 782; https://doi.org/10.3390/pr13030782 - 7 Mar 2025
Cited by 1 | Viewed by 1051
Abstract
The location of faults in distribution networks represents a crucial line of defence, ensuring the safe and reliable operation of these networks. This paper puts forth a methodology for the location of short-circuit faults between phases within the context of a distribution network [...] Read more.
The location of faults in distribution networks represents a crucial line of defence, ensuring the safe and reliable operation of these networks. This paper puts forth a methodology for the location of short-circuit faults between phases within the context of a distribution network information physics system. Firstly, a distribution network topology identification model is constructed, and a switching function based on the characteristics of an interphase short-circuit fault current is constructed to form a physical layer interphase short-circuit preconceived fault set. Subsequently, methodologies for processing information perturbations, including distortion, delay, and failure, are proposed. Fault current information is then extracted to form an information layer fault current array. Ultimately, a similarity function is constructed to correlate the fault characteristics of the physical and information layers. This is achieved through the utilization of the variational bee colony algorithm, which is employed to address the aforementioned issue. The efficacy and suitability of the proposed methodology are assessed in the context of single-point and multi-point faults, dynamic topology alterations, and information perturbations in distribution networks. To this end, a real-world project in Hebei and the IEEE system are employed as illustrative examples. The methodology proposed in this paper can facilitate the rapid and precise location of phase-to-phase short-circuits in physical information systems of distribution networks, thereby enhancing the reliability of power supply in new intelligent distribution networks. Full article
Show Figures

Figure 1

37 pages, 17853 KB  
Article
COAST-PROSIM: A Model for Predicting Shoreline Evolution and Assessing the Impacts of Coastal Defence Structures
by Pietro Scala, Giorgio Manno, Loredana Claudia Cozar and Giuseppe Ciraolo
Water 2025, 17(2), 269; https://doi.org/10.3390/w17020269 - 18 Jan 2025
Cited by 7 | Viewed by 3529
Abstract
Coastal zones, at the interface between land and sea, face increasing challenges from erosion, sea-level rise, and anthropogenic interventions, necessitating innovative tools for effective management and protection. This study introduces COAST-PROSIM, a novel numerical model specifically designed to predict shoreline evolution [...] Read more.
Coastal zones, at the interface between land and sea, face increasing challenges from erosion, sea-level rise, and anthropogenic interventions, necessitating innovative tools for effective management and protection. This study introduces COAST-PROSIM, a novel numerical model specifically designed to predict shoreline evolution and assess the impacts of coastal defence structures on coastal morphology. Unlike existing models that often face a trade-off between computational efficiency and physical accuracy, COAST-PROSIM balances these demands by integrating two-dimensional wave propagation routines with advanced shoreline evolution equations. The model evaluates the effects of interventions such as breakwaters and groynes, enabling simulations of shoreline dynamics with reduced computational effort. By using high-resolution input data, COAST-PROSIM captures the interplay between hydrodynamics, sediment transport, and structural impacts. Tested on real-world case studies along the coasts of San Leone, Porto Empedocle, and Villafranca Tirrena, the model demonstrates its adaptability to diverse coastal environments. The results highlight its potential as a reliable tool for sustainable coastal management, allowing stakeholders to anticipate long-term changes in coastal morphology and design targeted mitigation strategies. Full article
Show Figures

Figure 1

13 pages, 233 KB  
Review
The Health Effects of Karate Training: A Review of 21st Century Research
by Paweł Adam Piepiora
Healthcare 2025, 13(2), 118; https://doi.org/10.3390/healthcare13020118 - 9 Jan 2025
Cited by 2 | Viewed by 5696
Abstract
Background/Objectives: To date, the health effects of karate have not been identified. Therefore, the aim of this article is to learn more about the health effects of karate training based on a review of current research. Methods: The Scopus database was searched from [...] Read more.
Background/Objectives: To date, the health effects of karate have not been identified. Therefore, the aim of this article is to learn more about the health effects of karate training based on a review of current research. Methods: The Scopus database was searched from 2000 onwards for available articles related only to karate. The following intermediate phrases were not included: combat sport, fighting art, hand-to-hand combat, martial art, and self-defence system. The filter used was desk review analysis. Only 14 scientific articles (research papers and review papers) strictly on karate were found. The method of source material analysis and critical analysis of the source text was then used. Results: It was shown that kumite appears to require significantly more metabolic power than kata. Furthermore, the greater skill of karatekas is associated with their greater physical fitness, and long-term karate training attenuates the decline in dynamic visual acuity (DVA). The role of modified and individualised forms of karate training is also highlighted as important for the health of practitioners. Furthermore, long-term karate practice is associated with extensive modulation of immunological parameters. Karate training can also significantly improve motor skills. It can also play an important role in the development of willpower and personality traits that contribute to the well-being of its practitioners. Furthermore, nutritional and psychological interventions combined with karate training may improve cardiometabolic parameters, oxidative stress and inflammation. Karate training may also contribute to the prevention of osteoporosis and strengthen the left ventricular myocardium. Conclusions: It was found that there is a paucity of contemporary research on the health effects of karate training. In addition, they are limited to the individuals studied, so that generalisations about these effects in the general population of karate practitioners cannot be made. Full article
20 pages, 3225 KB  
Article
Salivary Immunoglobulin a Alterations in Health and Disease: A Bibliometric Analysis of Diagnostic Trends from 2009 to 2024
by Jakub Jankowski and Kacper Nijakowski
Antibodies 2024, 13(4), 98; https://doi.org/10.3390/antib13040098 - 29 Nov 2024
Cited by 4 | Viewed by 5215
Abstract
Background/Objectives: Salivary immunoglobulin A (IgA) is a mediator of local immunity and host defence. Altered IgA levels may predispose to bacterial invasion of the mucosa in the gastrointestinal tract, including the oral cavity. Our study aimed to present the diagnostic trends related to [...] Read more.
Background/Objectives: Salivary immunoglobulin A (IgA) is a mediator of local immunity and host defence. Altered IgA levels may predispose to bacterial invasion of the mucosa in the gastrointestinal tract, including the oral cavity. Our study aimed to present the diagnostic trends related to salivary IgA in health and disease based on a bibliometric analysis of published papers between 2009 and 2024. Methods: By 14 September 2024, 1247 English original articles were found in the database Web of Science. We selected 838 records considering the diagnostic usefulness of IgA in human subjects. Based on bibliographic data, we created citation and keyword co-occurrence maps using VOSviewer 1.6.20. Results: Most articles belonged to the “Sport Sciences” category (n = 169), followed by the “Immunology” category (n = 93). The Brazilian researcher Alexandre Moreira from the University of Sao Paulo had the most published and most frequently cited papers. Most of the included articles came from the USA (n = 158), England (n = 105), Brazil (n = 95), and Japan (n = 95). The most cited article described research on IgA in response to SARS-CoV-2 infection (n = 690), but the subsequent two papers considered the role of salivary IgA in the dysbiosis of the intestinal microbiota in inflammatory bowel diseases (n = 272) and the formation of systemic immune responses from the gastrointestinal tract (n = 245). Conclusions: Salivary IgA is a widely evaluated diagnostic marker in both patients and healthy individuals. Numerous reports have identified its changes as a result of physical exertion in various groups of athletes, during infections (including SARS-CoV-2) and in the course of local diseases (e.g., periodontal disease) or systemic diseases (e.g., inflammatory bowel disease). Full article
Show Figures

Figure 1

17 pages, 988 KB  
Review
Myokines and Microbiota: New Perspectives in the Endocrine Muscle–Gut Axis
by Federica Saponaro, Andrea Bertolini, Riccardo Baragatti, Leonardo Galfo, Grazia Chiellini, Alessandro Saba and Giuseppina D’Urso
Nutrients 2024, 16(23), 4032; https://doi.org/10.3390/nu16234032 - 25 Nov 2024
Cited by 11 | Viewed by 5913
Abstract
This review explores the dual role of skeletal muscle as both a mechanical and endocrine organ, highlighting its contributions to overall health and its adaptability to various inputs such as nutrition, hormones, exercise, and injuries. In addition to its role in metabolism and [...] Read more.
This review explores the dual role of skeletal muscle as both a mechanical and endocrine organ, highlighting its contributions to overall health and its adaptability to various inputs such as nutrition, hormones, exercise, and injuries. In addition to its role in metabolism and energy conversion, skeletal muscle secretes signalling molecules called myokines (at rest) and exerkines (during/after physical exercise), which communicate with other organs like the brain, the cardiovascular system, and the immune system. Key molecules such as interleukins, irisin, and myostatin are discussed for their roles in mediating muscle health and inter-organ communication. This work also focuses on the muscle–gut axis, emphasising the bidirectional interaction between skeletal muscle and the gut microbiota, a complex ecosystem influencing immune defence, digestion, and metabolism. Muscle activity, particularly exercise, alters the gut microbial composition, promoting beneficial species, while gut-derived metabolites like short-chain fatty acids (SCFAs) impact muscle metabolism, mitochondrial function, and insulin sensitivity. Dysbiosis, or an imbalanced microbiota, can lead to muscle atrophy, inflammation, and metabolic dysfunction. This evidence highlights emerging research into myokines and exerkines as potential therapeutic targets for managing conditions like muscle decline, ageing, and metabolic diseases through muscle–gut interactions. Full article
(This article belongs to the Special Issue Nutrition–Microbiome Interaction in Healthy Metabolism)
Show Figures

Figure 1

Back to TopTop