Oxidative Stress Modulation and Glutathione System Response During a 10-Day Multi-Stressor Field Training
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
- Day 1–2 5.0 ± 0.9 METs (moderate, 3–6 METs);
- Day 3–5 8.3 ± 1.1 METs (vigorous, >6 METs);
- Day 6–10 5.4 ± 1.0 METs (upper-moderate).
2.2. Evaluation of Oxidative Stress Parameters
- Myoglobin ELISA Kit (Cat.# MAK120; Sigma-Aldrich, Burlington, VT, USA);
- Superoxide Dismutase Assay Kit (Cat.# 19160-1KT-F; Sigma-Aldrich, USA);
- Total Antioxidant Capacity Assay Kit (Cat.# MAK187; Sigma-Aldrich, USA);
- Glutathione Quantification Kit (Cat.# CS0260; Sigma-Aldrich, USA);
- Fluorometric Hydrogen Peroxide Assay Kit (Cat.# MAK165; Sigma-Aldrich, USA);
- Lipid Peroxidation (MDA) Assay Kit (Cat.# MAK085; Sigma-Aldrich, USA);
- 8-Hydroxy-2′-deoxyguanosine ELISA Kit (Cat.# ab201734; Abcam, Cambridge, UK).
- Myoglobin is released from damaged skeletal-muscle fibres and therefore tracks exercise-induced sarcolemmal disruption.
- 8-Hydroxy-2′-deoxyguanosine (8-OHdG) is generated by hydroxyl-radical attack on guanine and serves as a sensitive marker of oxidative DNA injury.
- Hydrogen peroxide (H2O2) represents a diffusible, relatively stable non-radical ROS capable of propagating redox signalling and oxidative damage.
- Malondialdehyde (MDA) is a terminal aldehyde product of polyunsaturated-fatty-acid peroxidation and reflects lipid oxidative injury.
- Superoxide dismutase (SOD) activity indexes the first-line enzymatic defence against superoxide anion.
- Reduced (GSH) and oxidised (GSSG) glutathione jointly reflect the principal low-molecular-weight thiol buffer; their ratio (GSSG·GSH−1) is reported as the oxidative-stress (OS) index.
2.3. Evaluation of Markers of Cell Damage
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
8-OHdG | 8-hydroxy-2-deoxyguanosine |
BMI | Body Mass Index |
CAT | Catalase |
CI | Confidence Interval |
EDTA | Ethylenediaminetetraacetic Acid |
ELISA | Enzyme-Linked Immunosorbent Assay |
GSH | Reduced Glutathione |
GSSG | Oxidised Glutathione |
H2O2 | Hydrogen Peroxide |
IQR | Interquartile Interval |
MDA | Malondialdehyde |
OS | Oxidative Stress |
OS index | Oxidative Stress Index |
ROS | Reactive Oxygen Species |
SPSS | Statistical Package for the Social Sciences |
SOD | Superoxide Dismutase |
TAC | Total Antioxidant Capacity |
opt. d. U. | Optical Density Units |
References
- Sies, H. Oxidative stress: Oxidants and antioxidants. Exp. Physiol Transl. Integr. 1997, 82, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Lushchak, V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 2014, 224, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Taherkhani, S.; Valaei, K.; Arazi, H.; Suzuki, K. An overview of physical exercise and antioxidant supplementation influences on skeletal muscle oxidative stress. Antioxidants 2021, 10, 1528. [Google Scholar] [CrossRef]
- Ceci, R.; Valls, M.R.B.; Duranti, G.; Dimauro, I.; Quaranta, F.; Pittaluga, M.; Sabatini, S.; Caserotti, P.; Parisi, P.; Parisi, A.; et al. Oxidative stress responses to a graded maximal exercise test in older adults following explosive-type resistance training. Redox Biol. 2014, 2, 65–72. [Google Scholar] [CrossRef]
- Kozakowska, M.; Pietraszek-Gremplewicz, K.; Jozkowicz, A.; Dulak, J. The role of oxidative stress in skeletal muscle injury and regeneration: Focus on antioxidant enzymes. J. Muscle Res. Cell Motil. 2015, 36, 377–393. [Google Scholar] [CrossRef]
- Jówko, E.; Różański, P.; Tomczak, A. Effects of a 36-h survival training with sleep deprivation on oxidative stress and muscle damage biomarkers in young healthy men. Int. J. Environ. Res. Public Health 2018, 15, 2066. [Google Scholar] [CrossRef]
- Radak, Z.; Zhao, Z.; Koltai, E.; Ohno, H.; Atalay, M. Oxygen consumption and usage during physical exercise: The balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid. Redox Signal. 2013, 18, 1208–1246. [Google Scholar] [CrossRef]
- Nocella, C.; Cammisotto, V.; Pigozzi, F.; Borrione, P.; Fossati, C.; D’Amico, A.; Cangemi, R.; Peruzzi, M.; Gobbi, G.; Ettorre, E.; et al. Impairment between oxidant and antioxidant systems: Short-and long-term implications for athletes’ health. Nutrients 2019, 11, 1353. [Google Scholar] [CrossRef] [PubMed]
- Kyröläinen, H.; Pihlainen, K.; Vaara, J.P.; Ojanen, T.; Santtila, M. Optimising training adaptations and performance in military environment. J. Sci. Med. Sport 2018, 21, 1131–1138. [Google Scholar] [CrossRef]
- Vikmoen, O.; Teien, H.K.; Tansø, R.; Aandstad, A.; Lander, E.; Cumming, K.T.; Ellefsen, S.; Helkala, K.; Raastad, T. The Effects of a 10-day Military Field Exercise on Body Composition, Physical Performance, and Muscle Cells in Men and Women. Med. Sci. Sports Exerc. 2023, 56, 682–696. [Google Scholar] [CrossRef]
- Tanskanen, M.M.; Uusitalo, A.L.; Kinnunen, H.; Häkkinen, K.; Kyröläinen, H.; Atalay, M. Association of military training with oxidative stress and overreaching. Med. Sci. Sports Exerc. 2011, 43, 1552–1560. [Google Scholar] [CrossRef] [PubMed]
- Plavina, L.; Kolesova, O.; Eglite, J.; Cakstins, A.; Cakstina, S.; Kolesovs, A. Antioxidative system capacity after a 10-day-long intensive training course and one-month-long recovery in military cadets. Phys. Act. Rev. 2021, 1, 62–69. [Google Scholar] [CrossRef]
- Keller, S.; Notbohm, H.L.; Bloch, W.; Schumann, M. Reduced serum concentrations of reactive oxygen and nitrogen species following strenuous exercise in the heat are not associated with an upregulation in serum antioxidative capacity. Balt. J. Health Phys. Act. 2022, 14, 3. [Google Scholar] [CrossRef]
- Radojevic-Popovic, R.; Nikolic, T.; Stojic, I.; Jeremic, J.; Srejovic, I.; Pesic, G.; Jakovljevic, V. The influence of different types of physical activity on the redox status of scuba divers. Exp. Appl. Biomed. Res. 2016, 18, 19–26. [Google Scholar] [CrossRef]
- Póvoas, S.; Ascensão, A.; Magalhães, J.; Silva, P.; Wiig, H.; Raastad, T.; Castagna, C.; Andersson, H. Technical match actions and plasma stress markers in elite female football players during an official FIFA Tournament. Scand. J. Med. Sci. Sports 2022, 32, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Sohail, M.U.; Al-Mansoori, L.; Al-Jaber, H.; Georgakopoulos, C.; Donati, F.; Botrè, F.; Sellami, M.; Elrayess, M.A. Assessment of serum cytokines and oxidative stress markers in elite athletes reveals unique profiles associated with different sport disciplines. Front. Physiol. 2020, 11, 600888. [Google Scholar] [CrossRef]
- Margonis, K.; Fatouros, I.G.; Jamurtas, A.Z.; Nikolaidis, M.G.; Douroudos, I.; Chatzinikolaou, A.; Mitrakou, A.; Mastorakos, G.; Papassotiriou, I.; Taxildaris, K.; et al. Oxidative stress biomarkers responses to physical overtraining: Implications for diagnosis. Free Radic. Biol. Med. 2007, 43, 901–910. [Google Scholar] [CrossRef]
- Rago, V.; Leo, I.; Pizzuto, F.; Costa, J.; Angeicchio, G.; Tafuri, D.; Raiola, G. Variation of oxidative stress of elite football players during pre-season and in-season. J. Phys. Educ. Sport 2016, 6, 326–329. [Google Scholar] [CrossRef]
- Park, E.; Lee, Y.-J.; Lee, S.-W.; Bang, C.-H.; Lee, G.; Lee, J.-K.; Kwan, J.-S.; Huh, Y.-S. Changes of oxidative/antioxidative parameters and DNA damage in firefighters wearing personal protective equipment during treadmill walking training. J. Phys. Ther. Sci. 2016, 28, 3173–3177. [Google Scholar] [CrossRef]
- McAllister, M.J.; Basham, S.A.; Smith, J.W.; Waldman, H.S.; Krings, B.M.; Mettler, J.A.; Butawan, M.B.; Bloomer, R.J. Effects of environmental heat and antioxidant ingestion on blood markers of oxidative stress in professional firefighters performing structural fire exercises. J. Occup. Environ. Med. 2018, 60, e595–e601. [Google Scholar] [CrossRef]
- Erel, O. A New Automated Colorimetric Method for Measuring Total Oxidant Status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Erel, O. A Novel Automated Method to Measure Total Antioxidant Response against Potent Free Radical Reactions. Clin. Biochem. 2004, 37, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Thirupathi, A.; Pinho, R.A. Effects of reactive oxygen species and interplay of antioxidants during physical exercise in skeletal muscles. J. Physiol. Biochem. 2018, 74, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Kruk, J.; Aboul-Enein, H.Y.; Kładna, A.; Bowser, J.E. Oxidative stress in biological systems and its relation with pathophysiological functions: The effect of physical activity on cellular redox homeostasis. Free Radic. Res. 2019, 53, 497–521. [Google Scholar] [CrossRef]
Parameters | Baseline | After the Training | Wilcoxon Test | |
---|---|---|---|---|
Median (IQR) | Median (IQR) | W | p | |
H2O2, opt. d. U. | 0.10 (0.07; 0.15) | 0.08 (0.07; 0.10) | 1528.00 | 0.015 |
SOD, opt. d. U. | 0.62 (0.47; 0.70) | 0.50 (0.46; 0.58) | 1630.00 | 0.002 |
GSSG, opt. d. U. | 0.98 (0.90; 1.10) | 1.29 (1.19; 1.53) | 56.00 | <0.001 |
GSH, opt. d. U. | 0.56 (0.50; 0.64) | 1.54 (1.27; 1.76) | 1.00 | <0.001 |
OS index | 1.78 (1.63; 1.93) | 0.95 (0.75; 1.15) | 2302.00 | <0.001 |
8-OHdG, ng/mL | 1.95 (1.74; 2.27) | 1.50 (0.96; 1.93) | 2067.00 | <0.001 |
MDA, opt. d. U. | 0.14 (0.10; 0.15) | 0.07 (0.06; 0.09) | 2304.00 | <0.001 |
Myoglobin, ng/mL | 23.00 (18.47; 28.27) | 23.73 (18.53; 33.07) | 1255.50 | 0.603 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pļaviņa, L.; Edelmers, E. Oxidative Stress Modulation and Glutathione System Response During a 10-Day Multi-Stressor Field Training. J. Funct. Morphol. Kinesiol. 2025, 10, 166. https://doi.org/10.3390/jfmk10020166
Pļaviņa L, Edelmers E. Oxidative Stress Modulation and Glutathione System Response During a 10-Day Multi-Stressor Field Training. Journal of Functional Morphology and Kinesiology. 2025; 10(2):166. https://doi.org/10.3390/jfmk10020166
Chicago/Turabian StylePļaviņa, Liāna, and Edgars Edelmers. 2025. "Oxidative Stress Modulation and Glutathione System Response During a 10-Day Multi-Stressor Field Training" Journal of Functional Morphology and Kinesiology 10, no. 2: 166. https://doi.org/10.3390/jfmk10020166
APA StylePļaviņa, L., & Edelmers, E. (2025). Oxidative Stress Modulation and Glutathione System Response During a 10-Day Multi-Stressor Field Training. Journal of Functional Morphology and Kinesiology, 10(2), 166. https://doi.org/10.3390/jfmk10020166