Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = phylogenetic niche conservatism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 17061 KiB  
Article
Multiple Ecological Niche Modeling Reveals Niche Conservatism and Divergence in East Asian Yew (Taxus)
by Chuncheng Wang, Minqiu Wang, Shanshan Zhu, Xingtong Wu, Shaolong Yang, Yadan Yan and Yafeng Wen
Plants 2025, 14(7), 1094; https://doi.org/10.3390/plants14071094 - 1 Apr 2025
Cited by 1 | Viewed by 612
Abstract
Understanding ecological niche evolution patterns is crucial for elucidating biogeographic history and guiding biodiversity conservation. Taxus is a Tertiary relict gymnosperm with 11 lineages mainly distributed across East Asia, spanning from tropical to subarctic regions. However, the spatiotemporal dynamics of its ecological niche [...] Read more.
Understanding ecological niche evolution patterns is crucial for elucidating biogeographic history and guiding biodiversity conservation. Taxus is a Tertiary relict gymnosperm with 11 lineages mainly distributed across East Asia, spanning from tropical to subarctic regions. However, the spatiotemporal dynamics of its ecological niche evolution and the roles of ecological and geographical factors in lineage diversification, remain unclear. Using occurrence records, environmental data, and reconstructed phylogenies, we employed ensemble ecological niche models (eENMs), environmental principle components analysis (PCA-env), and phyloclimatic modeling to analyze niche similarity and evolution among 11 Taxus lineages. Based on reconstructed Bayesian trees and geographical distribution characteristics, we classified the eleven lineages into four clades: Northern (T. cuspidata), Central (T. chinensis, T. qinlingensis, and the Emei type), Western (T. wallichiana, T. florinii, and T. contorta), and Southern (T. calcicola, T. phytonii, T. mairei, and the Huangshan type). Orogenic activities and climate changes in the Tibetan Plateau since the Late Miocene likely facilitated the local adaptation of ancestral populations in Central China, the Hengduan Mountains, and the Yunnan–Guizhou Plateau, driving their expansion and diversification towards the west and south. Key environmental variables, including extreme temperature, temperature and precipitation variability, light, and altitude, were identified as major drivers of current niche divergence. Both niche conservatism and divergence were observed, with early conservatism followed by recent divergence. The Southern clade exhibits high heat and moisture tolerance, suggesting an adaptive shift, while the Central and Western clades retain ancestral drought and cold tolerance, displaying significant phylogenetic niche conservatism (PNC). We recommend prioritizing the conservation of T. qinlingensis, which exhibits the highest PNC level, particularly in the Qinling, Daba, and Taihang Mountains, which are highly degraded and vulnerable to future climate fluctuations. Full article
Show Figures

Figure 1

21 pages, 329 KiB  
Article
The Relationship between Grinnellian and Eltonian Niche Characteristics and Passerine Distribution across a Latitudinal Gradient
by Erin E. Stukenholtz and Richard D. Stevens
Diversity 2024, 16(6), 352; https://doi.org/10.3390/d16060352 - 18 Jun 2024
Viewed by 2685
Abstract
The degree to which Grinnellian and Eltonian niche characteristics influence species distribution may depend on latitude. Tropical regions are environmentally stable and resource-rich, whereas temperate regions are comparatively less environmentally stable (e.g., environmental filtering). Moreover, phylogenetic niche conservatism could influence distributions by inhibiting [...] Read more.
The degree to which Grinnellian and Eltonian niche characteristics influence species distribution may depend on latitude. Tropical regions are environmentally stable and resource-rich, whereas temperate regions are comparatively less environmentally stable (e.g., environmental filtering). Moreover, phylogenetic niche conservatism could influence distributions by inhibiting the ability for species to colonize environmentally different locations. Herein, we examine relationships between niche characteristics, passerine distributions, and phylogenetic niche conservatism across the latitudinal gradient. We used environmental and climatic variables to characterize Grinnellian niches and diets to characterize Eltonian niches. We conducted variation partitioning with retained components from ordination methods to evaluate the degree of association of Grinnellian and Eltonian niche characteristics with passerine distribution across latitudes. We examined the relationship between phylogenetic signal and niche characteristics with a phylogenetic regression. Passerine distributions were more related to environmental gradients than resources across latitudes. While niche conservatism was prevalent in Eltonian niche characteristics, phylogeny was related to Grinnellian niche characteristics in only 46% of biomes. There was no latitudinal gradient in phylogenetic niche conservatism or the degree to which Eltonian and Grinnellian niche characteristics relate to passerine distribution. Niche conservatism, albeit weak, was present for Grinnellian niche characteristics, thus potentially influencing the expansion of passerine distributions into the northern hemisphere. Full article
(This article belongs to the Section Biogeography and Macroecology)
23 pages, 4322 KiB  
Article
Exploring the Climatic Niche Evolution of the Genus Falco (Aves: Falconidae) in Europe
by Simona Mariana Popescu, Cristian Tigae, Aurelian Dobrițescu and Dragoș Mihail Ștefănescu
Biology 2024, 13(2), 113; https://doi.org/10.3390/biology13020113 - 11 Feb 2024
Viewed by 2306
Abstract
By integrating species distribution modeling techniques, phylogenetic comparative methods, and climatic data, we analyzed how European falcon climatic niches have changed over evolutionary time in order to understand their tempo and mode of evolution and gain phylogenetic insights related to the ecological context [...] Read more.
By integrating species distribution modeling techniques, phylogenetic comparative methods, and climatic data, we analyzed how European falcon climatic niches have changed over evolutionary time in order to understand their tempo and mode of evolution and gain phylogenetic insights related to the ecological context of falcon evolution. For this purpose, we tested the relative contributions of niche conservatism, convergent evolution, and divergent evolution in the evolutionary history of this group of species in Europe. The occupation of climatic niche spaces by falcon species in Europe was not similar, considering that their climatic niche evolution was characterized by heterotachy, especially after ca. 4 Mya. Our results indicate that convergent evolution and niche divergence played an important role in the evolutionary history of these species, with no significant evidence of closely related species retaining their fundamental niche over time (phylogenetic niche conservatism). In most analyses, less closely related falcon species occupied similar climatic environments. We found that speciation in the European genus Falco was influenced by climatic niche differentiation, more prevalent in the last 4 million years, with the main climatic niche shifts occurring between closely related falcon species. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

13 pages, 4709 KiB  
Article
Testing the Tropical Niche Conservatism Hypothesis: Climatic Niche Evolution of Escallonia Mutis ex L. F. (Escalloniaceae)
by María José Dibán and Luis Felipe Hinojosa
Plants 2024, 13(1), 133; https://doi.org/10.3390/plants13010133 - 3 Jan 2024
Cited by 1 | Viewed by 2029
Abstract
We assess the Tropical Niche Conservatism Hypothesis in the genus Escallonia in South America using phylogeny, paleoclimate estimation and current niche modelling. We tested four predictions: (1) the climatic condition where the ancestor of Escallonia grew is megathermal; (2) the temperate niche is [...] Read more.
We assess the Tropical Niche Conservatism Hypothesis in the genus Escallonia in South America using phylogeny, paleoclimate estimation and current niche modelling. We tested four predictions: (1) the climatic condition where the ancestor of Escallonia grew is megathermal; (2) the temperate niche is a derived condition from tropical clades; (3) the most closely related species have a similar current climate niche (conservation of the phylogenetic niche); and (4) there is a range expansion from the northern Andes to high latitudes during warm times. Our phylogenetic hypothesis shows that Escallonia originated 52.17 ± 0.85 My, in the early Eocene, with an annual mean temperature of 13.8 °C and annual precipitation of 1081 mm, corresponding to a microthermal to mesothermal climate; the species of the northern and central tropical Andes would be the ancestral ones, and the temperate species evolved between 32 and 20 My in a microthermal climate. The predominant evolutionary models were Brownian and Ornstein–Uhlenbeck. There was phylogenetic signal in 7 of the 9 variables, indicating conservation of the climatic niche. Escallonia would have originated in the central and southern Andes and reached the other environments by dispersion. Full article
(This article belongs to the Collection Paleobotany, Paleoecology, Biogeography and Evolution)
Show Figures

Figure 1

13 pages, 2306 KiB  
Article
Historical Assembly of Andean Tree Communities
by Sebastián González-Caro, J. Sebastián Tello, Jonathan A. Myers, Kenneth Feeley, Cecilia Blundo, Marco Calderón-Loor, Julieta Carilla, Leslie Cayola, Francisco Cuesta, William Farfán, Alfredo F. Fuentes, Karina Garcia-Cabrera, Ricardo Grau, Álvaro Idarraga, M. Isabel Loza, Yadvinder Malhi, Agustina Malizia, Lucio Malizia, Oriana Osinaga-Acosta, Esteban Pinto, Norma Salinas, Miles Silman, Andrea Terán-Valdéz and Álvaro Duqueadd Show full author list remove Hide full author list
Plants 2023, 12(20), 3546; https://doi.org/10.3390/plants12203546 - 12 Oct 2023
Cited by 2 | Viewed by 2626
Abstract
Patterns of species diversity have been associated with changes in climate across latitude and elevation. However, the ecological and evolutionary mechanisms underlying these relationships are still actively debated. Here, we present a complementary view of the well-known tropical niche conservatism (TNC) hypothesis, termed [...] Read more.
Patterns of species diversity have been associated with changes in climate across latitude and elevation. However, the ecological and evolutionary mechanisms underlying these relationships are still actively debated. Here, we present a complementary view of the well-known tropical niche conservatism (TNC) hypothesis, termed the multiple zones of origin (MZO) hypothesis, to explore mechanisms underlying latitudinal and elevational gradients of phylogenetic diversity in tree communities. The TNC hypothesis posits that most lineages originate in warmer, wetter, and less seasonal environments in the tropics and rarely colonize colder, drier, and more seasonal environments outside of the tropical lowlands, leading to higher phylogenetic diversity at lower latitudes and elevations. In contrast, the MZO hypothesis posits that lineages also originate in temperate environments and readily colonize similar environments in the tropical highlands, leading to lower phylogenetic diversity at lower latitudes and elevations. We tested these phylogenetic predictions using a combination of computer simulations and empirical analyses of tree communities in 245 forest plots located in six countries across the tropical and subtropical Andes. We estimated the phylogenetic diversity for each plot and regressed it against elevation and latitude. Our simulated and empirical results provide strong support for the MZO hypothesis. Phylogenetic diversity among co-occurring tree species increased with both latitude and elevation, suggesting an important influence on the historical dispersal of lineages with temperate origins into the tropical highlands. The mixing of different floras was likely favored by the formation of climatically suitable corridors for plant migration due to the Andean uplift. Accounting for the evolutionary history of plant communities helps to advance our knowledge of the drivers of tree community assembly along complex climatic gradients, and thus their likely responses to modern anthropogenic climate change. Full article
(This article belongs to the Special Issue New Perspectives on New World Tropical Forests)
Show Figures

Figure 1

15 pages, 2156 KiB  
Article
The Influence of Macroclimatic Drivers on the Macrophyte Phylogenetic Diversity in South African Estuaries
by Dimitri Allastair Veldkornet
Diversity 2023, 15(9), 986; https://doi.org/10.3390/d15090986 - 1 Sep 2023
Cited by 6 | Viewed by 2319
Abstract
The geographical distribution of plants is influenced by macroclimate and dispersal limitations, which have led to lineage isolation and subsequent diversification within and across various environmental gradients. Macroclimatic variables in coastal wetlands influence plant species and lineages across biogeographical boundaries. This study aimed [...] Read more.
The geographical distribution of plants is influenced by macroclimate and dispersal limitations, which have led to lineage isolation and subsequent diversification within and across various environmental gradients. Macroclimatic variables in coastal wetlands influence plant species and lineages across biogeographical boundaries. This study aimed to determine the influence of macroclimatic variables on species and phylogenetic richness in South African estuaries. Open-source chloroplast DNA barcoding sequences, species distribution and climatic data layers were used to determine the relationship between species richness, MPD, MNTD and each bioclimatic variable individually. Temperate species richness and phylogenetic diversity were positively correlated with temperature bioclimatic variables whereas subtropical and tropical species were associated with increases in precipitation. Phylogenetic niche conservatism is evident in malvids and rosids which are restricted to tropical and subtropical regions due to their physiological adaptations to tropical climates. Caryophylales was mostly associated with temperate regions. Poales and Alismatales showed wide distributions that is likely attributed to traits related to wind pollination and hydrochory, rapid, clonal, and high reproductive output, tolerance to stressful conditions, and intraspecific genetic diversity. The findings highlight the importance of considering macroclimate and phylogenetic factors in understanding the distribution and diversity of coastal wetland plants. Full article
(This article belongs to the Special Issue DNA Barcoding for Biodiversity Conservation and Restoration)
Show Figures

Figure 1

16 pages, 2054 KiB  
Article
Climatic Niche Dynamics of the Astereae Lineage and Haplopappus Species Distribution following Amphitropical Long-Distance Dispersal
by Marcelo R. Rosas, Ricardo A. Segovia and Pablo C. Guerrero
Plants 2023, 12(14), 2721; https://doi.org/10.3390/plants12142721 - 21 Jul 2023
Viewed by 2350
Abstract
The tribe Astereae (Asteraceae) displays an American Amphitropical Disjunction. To understand the eco-evolutionary dynamics associated with a long-distance dispersal event and subsequent colonization of extratropical South America, we compared the climatic and geographic distributions of South American species with their closest North American [...] Read more.
The tribe Astereae (Asteraceae) displays an American Amphitropical Disjunction. To understand the eco-evolutionary dynamics associated with a long-distance dispersal event and subsequent colonization of extratropical South America, we compared the climatic and geographic distributions of South American species with their closest North American relatives, focusing on the diverse South American Astereae genus, Haplopappus. Phylogenetic analysis revealed that two South American genera are closely related to seven North American genera. The climatic niche overlap (D = 0.5) between South and North America exhibits high stability (0.89), low expansion (0.12), and very low unfilling (0.04). The distribution of the North American species predicted the climatic and geographic space occupied by the South American species. In central Chile, Haplopappus showed a non-random latitudinal gradient in species richness, with Mediterranean climate variables mainly explaining the variation. Altitudinal patterns indicated peak richness at 600 m, declining at lower and higher elevations. These findings support climatic niche conservatism in shaping Haplopappus species distribution and diversity. Two major endemism zones were identified in central Chile and the southern region, with a transitional zone between Mediterranean and Temperate macro-bioclimates. Our results indicate strong niche conservatism following long-distance dispersal and slight niche expansion due to unique climatic variables in each hemisphere. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

16 pages, 3373 KiB  
Article
Human Disturbance and Geometric Constraints Drive Small Mammal Diversity and Community Structure along an Elevational Gradient in Eastern China
by Xiaoxin Pei, Xueyang Ren, Jiangxiao Hu, Kenneth Otieno Onditi, Yifan Xu, Min Zhang, Wenqing Chang and Zhongzheng Chen
Animals 2022, 12(15), 1915; https://doi.org/10.3390/ani12151915 - 27 Jul 2022
Cited by 3 | Viewed by 2696
Abstract
Understanding the mechanisms influencing patterns and processes of biological diversity is critical to protecting biodiversity, particularly in species-rich ecosystems such as mountains. Even so, there is limited knowledge of biodiversity patterns and processes in the mountains of eastern China, especially about small mammals. [...] Read more.
Understanding the mechanisms influencing patterns and processes of biological diversity is critical to protecting biodiversity, particularly in species-rich ecosystems such as mountains. Even so, there is limited knowledge of biodiversity patterns and processes in the mountains of eastern China, especially about small mammals. In this study, we examined the taxonomic, functional, and phylogenetic diversity of small mammal distribution and community structure along the elevational gradient of Qingliang Mountain, eastern China. We then evaluated how they are influenced by space (area and mid-domain effect (MDE)), environment (temperature, precipitation, and normalized difference vegetation index (NDVI)), and human disturbance. The results showed hump-shaped patterns of taxonomic and phylogenetic diversity along elevation gradients, peaking at 1000 m, unlike functional diversity, which peaked at lower elevations (600 m). The mean pairwise distance and mean nearest taxon distance of functional and phylogenetic variance (MFD and MPD, respectively) were also incongruent. The MFD and MPD showed hump-shaped patterns along elevations; however, unlike MFD, which peaked at lower elevations (600 m), MPD peaked at higher elevations (1200 m). The mean nearest functional taxon distance (MNFD) decreased, while the mean nearest phylogenetic taxon distance (MNTD) increased along the elevation gradient. The higher elevations were functionally more clustered, while the lower elevations were phylogenetically more clustered, suggesting that environmental filtering for traits was stronger at higher elevations. In comparison, phylogenetic conservatism of ecological niches had a stronger influence at lower elevations. The diversity and community structure indices were inconsistently explained, with human disturbance and MDE accounting for the biggest proportions of the model-explained variances. Overall, the results confirm that environmental filtering and human disturbance significantly influence small mammals’ diversity and community structure. These findings also emphasize the need for increased conservation efforts in the middle and lower elevation regions of Qingliang Mountain. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

28 pages, 3049 KiB  
Article
The Evolution of Trait Disparity during the Radiation of the Plant Genus Macrocarpaea (Gentianaceae) in the Tropical Andes
by Julien C. Vieu, Darina Koubínová and Jason R. Grant
Biology 2021, 10(9), 825; https://doi.org/10.3390/biology10090825 - 25 Aug 2021
Cited by 2 | Viewed by 3002
Abstract
The evolutionary processes responsible for the extraordinary diversity in the middle elevation montane forests of the Tropical Andes (MMF; 1000–3500 m) remain poorly understood. It is not clear whether adaptive divergence, niche conservatism or geographical processes were the main contributors to the radiation [...] Read more.
The evolutionary processes responsible for the extraordinary diversity in the middle elevation montane forests of the Tropical Andes (MMF; 1000–3500 m) remain poorly understood. It is not clear whether adaptive divergence, niche conservatism or geographical processes were the main contributors to the radiation of the respective lineages occurring there. We investigated the evolutionary history of plant lineages in the MMF. We used the vascular plant genus Macrocarpaea (Gentianaceae) as a model, as it consists of 118 morphologically diverse species, a majority of which are endemic to the MMF. We used a time-calibrated molecular phylogeny and morphological and climatic data to compare a set of evolutionary scenarios of various levels of complexity in a phylogenetic comparative framework. In this paper, we show that the hypothesis of adaptive radiation for Macrocarpaea in the MMF is unlikely. The genus remained confined to the upper montane forests (UMF > 1800 m) during more than a half of its evolutionary history, possibly due to evolutionary constraints. Later, coinciding with the beginning of the Pleistocene (around 2.58 Ma), a phylogenetically derived (recently branching) clade, here referred to as the M. micrantha clade (25 species), successfully colonized and radiated in the lower montane forests (LMF < 1800 m). This colonization was accompanied by the evolution of a new leaf phenotype that is unique to the species of the M. micrantha clade that likely represents an adaptation to life in this new environment (adaptive zone). Therefore, our results suggest that niche conservatism and geographical processes have dominated most of the diversification history of Macrocarpaea, but that a rare adaptive divergence event allowed a transition into a new adaptive zone and enabled progressive radiation in this zone through geographical processes. Full article
(This article belongs to the Special Issue Biological Novelty as Source of Biodiversity in Mountains)
Show Figures

Figure 1

23 pages, 4352 KiB  
Article
Evidence of Constrained Divergence and Conservatism in Climatic Niches of the Temperate Maples (Acer L.)
by Jake J. Grossman
Forests 2021, 12(5), 535; https://doi.org/10.3390/f12050535 - 26 Apr 2021
Cited by 12 | Viewed by 4329
Abstract
Research highlights: The availability of global distribution data and new, fossil-calibrated phylogenies has made it possible to compare the climatic niches of the temperate maple (Acer L.) taxa and assess phylogenetic and continental patterns in niche overlap. Background and Objectives: The maples [...] Read more.
Research highlights: The availability of global distribution data and new, fossil-calibrated phylogenies has made it possible to compare the climatic niches of the temperate maple (Acer L.) taxa and assess phylogenetic and continental patterns in niche overlap. Background and Objectives: The maples have radiated from East Asia into two other temperate continental bioregions, North America and Eurasia (Europe and West Asia), over a roughly 60-million-year period. During this time, the Earth’s climate experienced pronounced cooling and drying, culminating in cyclic periods of widespread temperate glaciation in the Pliocene to Pleistocene. The objective of this study is to use newly available data to model the climatic niches of 60% of the temperate maples and assess patterns of niche divergence, constraint, and conservatism in the genus’s radiation out of East Asia. Materials and Methods: I assembled global occurrence data and associated climatic information for 71 maple taxa, including all species endemic to temperate North America and Eurasia and their closely related East Asian congeners. I constructed Maxent niche models for all taxa and compared the climatic niches of 184 taxa pairs and assessed phylogenetic signal in key niche axes for each taxon and in niche overlap at the continental and global scale. Results: Maxent models define a fundamental climatic niche for temperate maples and suggest that drought-intolerant taxa have been lost from the Eurasian maple flora, with little continental difference in temperature optima or breadth. Niche axes and niche overlap show minimal evidence of phylogenetic signal, suggesting adaptive evolution. Pairwise niche comparisons reveal infrequent niche overlap continentally and globally, even among sister pairs, with few taxa pairs sharing ecological niche space, providing evidence for constrained divergence within the genus’s fundamental climatic niche. Evidence of niche conservatism is limited to three somewhat geographically isolated regions of high maple diversity (western North America, the Caucasus, and Japan). Conclusions: Over 60 million years of hemispheric radiation on a cooling and drying planet, the maple genus experienced divergent, though constrained, climatic niche evolution. High climatic niche diversity across spatial and phylogenetic scales along with very limited niche overlap or conservatism suggests that the radiation of the genus has largely been one of adaptive diversification. Full article
(This article belongs to the Special Issue Patterns of Tree Species Diversity and Forest Structure)
Show Figures

Figure 1

20 pages, 4235 KiB  
Article
Leaf Habit and Stem Hydraulic Traits Determine Functional Segregation of Multiple Oak Species along a Water Availability Gradient
by Maribel Arenas-Navarro, Felipe García-Oliva, Teresa Terrazas, Andrés Torres-Miranda and Ken Oyama
Forests 2020, 11(8), 894; https://doi.org/10.3390/f11080894 - 18 Aug 2020
Cited by 14 | Viewed by 4216
Abstract
Oaks are a dominant woody plant genus in the northern hemisphere that occupy a wide range of habitats and are ecologically diverse. We implemented a functional trait approach that included nine functional traits related to leaves and stems in order to explain the [...] Read more.
Oaks are a dominant woody plant genus in the northern hemisphere that occupy a wide range of habitats and are ecologically diverse. We implemented a functional trait approach that included nine functional traits related to leaves and stems in order to explain the species coexistence of 21 oak species along a water availability gradient in a temperate forest in Mexico. This particular forest is characterized as a biodiversity hotspot, with many oak species including some endemics. Our main aim was to investigate whether the different oak species had specific trait associations that allow them to coexist along an environmental gradient at regional scale. First, we explored trait covariation and determined the main functional dimensions in which oaks were segregated. Second, we explored how environmental variation has selected for restricted functional dimensions that shape oak distributions along the gradient, regardless of their leaf life span or phylogeny (section level). Third, we quantified the niche overlap between the oak functional spaces at different levels. The analyzed species showed three functional dimensions of trait variation: a primary axis related to the leaf economic spectrum, which corresponds to the segregation of the species according to leaf habit; a second axis that reflects the stem hydraulic properties and corresponds to species segregation followed by phylogenetic segregation, reflecting some degree of trait conservatism, and a third axis, represented mainly by leaf area and plant height, that corresponds to species segregation. Finally, our findings indicated that the functional space measured with leaf traits and stem traits such as hydraulic capacity was integrally linked to niche differentiation. This linkage suggests that the earliest mechanism of species segregation was related to habitat suitability and that the stem hydraulic trade-off reflects differences between phylogenetic sections; these traits may promote coexistence between distantly related oak species. Full article
(This article belongs to the Special Issue The Physiology of Tree Response to Drought)
Show Figures

Figure 1

12 pages, 2536 KiB  
Article
Differentiation of Environmental Conditions Promotes Variation of Two Quercus wutaishanica Community Assembly Patterns
by Mao Wang, Jinshi Xu, Yongfu Chai, Yaoxin Guo, Xiao Liu and Ming Yue
Forests 2020, 11(1), 43; https://doi.org/10.3390/f11010043 - 27 Dec 2019
Cited by 8 | Viewed by 2852
Abstract
Two contradictory niche-based processes, environmental filtering and competitive exclusion, are important ecological processes in community assembly. Quercus wutaishanica forests are the climax communities in the Qinling Mountains and the Loess Plateau, China. Since these areas are characterized by different climate and evolutionary histories, [...] Read more.
Two contradictory niche-based processes, environmental filtering and competitive exclusion, are important ecological processes in community assembly. Quercus wutaishanica forests are the climax communities in the Qinling Mountains and the Loess Plateau, China. Since these areas are characterized by different climate and evolutionary histories, these forests could be a suitable study system to test the phylogenetic niche conservatism hypothesis. We compared variation in community assembly of two distinct Q. wutaishanica forest communities and analyzed how the variations are formed. Quercus wutaishanica forest communities had significantly different species pool, phylogenetic structure and phylogenetic diversity between the two regions that were driven by inconsistency in environment conditions and evolutionary history at the local scale. Soil ammonium nitrogen, soil water content, and nitrate nitrogen play a major role in phylogenetic beta diversity patterns. The effect of environmental filtering on community assembly was more significant on the Loess Plateau than in the Qinling Mountains. Our study also found that local environment is important in mediating the patterns of phylogenetic structure. These findings provide insights into the mechanisms of local community assembly. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

16 pages, 2207 KiB  
Article
The Use of DNA Barcoding to Assess Phylogenetic β-Diversity in Mid-Subtropical Evergreen Broad-Leaved Forests of China
by Juan Liu, Jiajia Liu, Xuejun Ge, Guomin Huang, Zengliang Zhou and Songze Wan
Forests 2019, 10(10), 923; https://doi.org/10.3390/f10100923 - 20 Oct 2019
Cited by 3 | Viewed by 6773
Abstract
The application of quantifying phylogenetic information into measures of forest β-diversity is increasing for investigating the underlying drivers of community assembly along environmental gradients. In terms of assessing evolutionary inferences of community processes, a variety of plant DNA barcodes has been widely used [...] Read more.
The application of quantifying phylogenetic information into measures of forest β-diversity is increasing for investigating the underlying drivers of community assembly along environmental gradients. In terms of assessing evolutionary inferences of community processes, a variety of plant DNA barcodes has been widely used in phylogenetic diversity measurements. However, relatively few studies have evaluated the effectiveness of DNA barcodes with using nuclear region in estimating phylogenetic β-diversity, particularly for communities in tropical or subtropical forests. In this study, we employed DNA barcodes combing with the nuclear region to construct the community phylogeny and examined the patterns of phylogenetic β-diversity of three mid-subtropical evergreen broad-leaved forests (EBLFs) in South China. Three phylogenetic construction methods were performed, including a Phylomatic-generated tree and two ML trees based on the combination of rbcL + matK + ITS with or without a constrained tree. Our results showed that the DNA barcodes including nuclear ITS constructed a highly resolved phylogenetic tree, but the application of a constrained tree had little influence on estimation of phylogenetic diversity metrics (mean pairwise distances and mean nearest taxon distances) based on branch lengths. Using both metrics and their standardized effect size metrics, we found that the patterns of phylogenetic β-diversity in mid-subtropical forests were non-random. There was a slight decline of phylogenetic β-diversity with increasing latitudes, but no trend was found along the altitude gradient. According to the analysis of variation partition, both environmental filtering and dispersion limitation could explain the variation of phylogenetic dissimilarity between communities in mid-subtropical EBLFs of China. Our results highlight the importance of neutrality and the niche conservatism in structuring the patterns of species diversity in subtropical woody communities. Full article
(This article belongs to the Special Issue Functional and Phylogenetic Signals of Forest Tree Communities)
Show Figures

Figure 1

17 pages, 1410 KiB  
Article
Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research
by Julien Thézé, Carlos Lopez-Vaamonde, Jenny S. Cory and Elisabeth A. Herniou
Viruses 2018, 10(7), 366; https://doi.org/10.3390/v10070366 - 11 Jul 2018
Cited by 40 | Viewed by 5974
Abstract
The Baculoviridae, a family of insect-specific large DNA viruses, is widely used in both biotechnology and biological control. Its applied value stems from millions of years of evolution influenced by interactions with their hosts and the environment. To understand how ecological interactions [...] Read more.
The Baculoviridae, a family of insect-specific large DNA viruses, is widely used in both biotechnology and biological control. Its applied value stems from millions of years of evolution influenced by interactions with their hosts and the environment. To understand how ecological interactions have shaped baculovirus diversification, we reconstructed a robust molecular phylogeny using 217 complete genomes and ~580 isolates for which at least one of four lepidopteran core genes was available. We then used a phylogenetic-concept-based approach (mPTP) to delimit 165 baculovirus species, including 38 species derived from new genetic data. Phylogenetic optimization of ecological characters revealed a general pattern of host conservatism punctuated by occasional shifts between closely related hosts and major shifts between lepidopteran superfamilies. Moreover, we found significant phylogenetic conservatism between baculoviruses and the type of plant growth (woody or herbaceous) associated with their insect hosts. In addition, we found that colonization of new ecological niches sometimes led to viral radiation. These macroevolutionary patterns show that besides selection during the infection process, baculovirus diversification was influenced by tritrophic interactions, explained by their persistence on plants and interactions in the midgut during horizontal transmission. This complete eco-evolutionary framework highlights the potential innovations that could still be harnessed from the diversity of baculoviruses. Full article
(This article belongs to the Special Issue Baculovirus Advances and Applications)
Show Figures

Figure 1

37 pages, 1524 KiB  
Article
Aquatic Biodiversity in the Amazon: Habitat Specialization and Geographic Isolation Promote Species Richness
by James S. Albert, Tiago P. Carvalho, Paulo Petry, Meghan A. Holder, Emmanuel L. Maxime, Jessica Espino, Isabel Corahua, Roberto Quispe, Blanca Rengifo, Hernan Ortega and Roberto E. Reis
Animals 2011, 1(2), 205-241; https://doi.org/10.3390/ani1020205 - 29 Apr 2011
Cited by 48 | Viewed by 18461
Abstract
The Neotropical freshwater ichthyofauna has among the highest species richness and density of any vertebrate fauna on Earth, with more than 5,600 species compressed into less than 12% of the world’s land surface area, and less than 0.002% of the world’s total liquid [...] Read more.
The Neotropical freshwater ichthyofauna has among the highest species richness and density of any vertebrate fauna on Earth, with more than 5,600 species compressed into less than 12% of the world’s land surface area, and less than 0.002% of the world’s total liquid water supply. How have so many species come to co-exist in such a small amount of total habitat space? Here we report results of an aquatic faunal survey of the Fitzcarrald region in southeastern Peru, an area of low-elevation upland (200–500 m above sea level) rainforest in the Western Amazon, that straddles the headwaters of four large Amazonian tributaries; the Juruá (Yurúa), Ucayali, Purús, and Madre de Dios rivers. All measures of fish species diversity in this region are high; there is high alpha diversity with many species coexisting in the same locality, high beta diversity with high turnover between habitats, and high gamma diversity with high turnover between adjacent tributary basins. Current data show little species endemism, and no known examples of sympatric sister species, within the Fitzcarrald region, suggesting a lack of localized or recent adaptive divergences. These results support the hypothesis that the fish species of the Fitzcarrald region are relatively ancient, predating the Late Miocene-Pliocene (c. 4 Ma) uplift that isolated its several headwater basins. The results also suggest that habitat specialization (phylogenetic niche conservatism) and geographic isolation (dispersal limitation) have contributed to the maintenance of high species richness in this region of the Amazon Basin. Full article
(This article belongs to the Special Issue Evolutionary Aspects of Taxonomic Diversity Patterns)
Show Figures

Back to TopTop