The Evolution of Trait Disparity during the Radiation of the Plant Genus Macrocarpaea (Gentianaceae) in the Tropical Andes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Time-Calibrated Phylogeny
2.2. Morphological Data
2.3. Ecological Data
2.4. Functional Data
2.5. Disparification, Evolutionary Models and Phylogenetic Signal
3. Results
4. Discussion
4.1. Is the Radiation of Macrocarpaea in the Andes an Adaptive Radiation?
4.2. Pleistocene Climatic Oscillation, an Engine for the Disparity?
4.3. Evidence for Elevation Belt, Clade History and Region-Specific Evolution?
4.4. Note on Phylogenetic Half-Life (Phylogenetic Signal)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AHZ | Amotape-Huancabamba zone |
AICc | Akaike information criterion |
BioClim | bioclimatic |
BM | Brownian motion model of evolution |
BMM Regime | two-rate BM model |
BMM Geo | three rate BM model |
DTT | disparity through time |
EB | Early burst model |
ER | ecological release model |
LMF | lower montane forest |
Ma | Million years ago |
MCC tree | maximum clade credibility tree |
MDI | morphological disparity index |
MMF | middle elevation montane forest |
MRCA | most recent common ancestor |
Myr | million years |
NRMSE | normalized root squared error |
OU | Ornstein–Uhlenbeck model with a single optimum |
OUM Geo | OU model with three optima |
OUM Regime | OU model with two optima |
PIC | phylogenetic independent contrasts |
PCM | phylogenetic comparative method |
PCO | Pleistocene climatic oscillations |
pPCA | phylogenetic principal components analysis |
SHIFT | a two-rate BM model |
SLA | specific leaf area |
UMF | upper montane forest |
References
- Mahler, D.L.; Revell, L.J.; Glor, R.E.; Losos, J.B. Ecological Opportunity and the Rate of Morphological Evolution in the Diversification of Greater Antillean Anoles. Evol. Int. J. Org. Evol. 2010, 64, 2731–2745. [Google Scholar] [CrossRef]
- Losos, J.B. Adaptive Radiation, Ecological Opportunity, and Evolutionary Determinism. American Society of Naturalists E. O. Wilson Award Address. Am. Nat. 2010, 175, 623–639. [Google Scholar] [CrossRef]
- Yoder, J.B.; Clancey, E.; Des Roches, S.; Eastman, J.M.; Gentry, L.; Godsoe, W.; Hagey, T.J.; Jochimsen, D.; Oswald, B.P.; Robertson, J.; et al. Ecological Opportunity and the Origin of Adaptive Radiations. J. Evol. Biol. 2010, 23, 1581–1596. [Google Scholar] [CrossRef]
- Losos, J.B.; Mahler, D.L. Adaptive Radiation: The Interaction of Ecological Opportunity, Adaptation, and Speciation. In Evolution Since Darwin: The First 150 Years; Bell, M.A., Futuyma, D.J., Eanes, W.F., Levinton, J.S., Eds.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2010; pp. 381–420. [Google Scholar]
- Gavrilets, S.; Losos, J.B. Adaptive Radiation: Contrasting Theory with Data. Science 2009, 323, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Grant, P.R.; Grant, B.R. Evolution of Character Displacement in Darwin’s Finches. Science 2006, 313, 224–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Losos, J.B.; Jackman, T.R.; Arson, A.; Queiroz, K.; Rodriguez-Schettino, L. Contingency and Determinism in Replicated Adaptive Radiations of Island Lizards. Science 1998, 279, 2115–2118. [Google Scholar] [CrossRef] [PubMed]
- Seehausen, O. African Cichlid Fish: A Model System in Adaptive Radiation Research. Proc. R. Soc. B Biol. Sci. 2006, 273, 1987–1998. [Google Scholar] [CrossRef] [Green Version]
- Robichaux, R.H.; Carr, G.D.; Liebman, M.; Pearcy, R.W. Adaptive Radiation of the Hawaiian Silversword Alliance (Compositae-Madiinae): Ecological, Morphological and Physiological Diversity. Ann. Mo. Bot. Gard. 1990, 77, 64–72. [Google Scholar] [CrossRef]
- Burbrink, F.T.; Pyron, R.A. How Does Ecological Opportunity Influence Rates of Speciation, Extinction, and Morphological Diversification in New World Ratsnakes (Tribe Lampropeltini)? Evol. Int. J. Org. Evol. 2010, 64, 4817–4826. [Google Scholar] [CrossRef]
- Schweizer, M.; Hertwig, S.T.; Seehausen, O. Diversity versus Disparity and the Role of Ecological Opportunity in a Continental Bird Radiation. J. Biogeogr. 2014, 41, 1301–1312. [Google Scholar] [CrossRef]
- Slater, G.J.; Price, S.A.; Santini, F.; Alfaro, M.E. Diversity versus Disparity and the Radiation of Modern Cetaceans. Proc. R. Soc. B Biol. Sci. 2010, 277, 3097–3104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benkman, C.W. Divergent Selection Drives the Adaptive Radiation of Crossbills. Evol. Int. J. Org. Evol. 2003, 57, 1176–1181. [Google Scholar] [CrossRef] [PubMed]
- Schluter, D. The Ecology of Adaptive Radiation (Oxford Series in Ecology and Evolution); Oxford University Press: Oxford, UK; New York, NY, USA, 2000; ISBN 978-0-19-850522-8. [Google Scholar]
- Adams, D.C.; Berns, C.M.; Kozak, K.H.; Wiens, J.J. Are Rates of Species Diversification Correlated with Rates of Morphological Evolution? Proc. R. Soc. B Biol. Sci. 2009, 276, 2729–2738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harmon, L.J.; Losos, J.B.; Jonathan Davies, T.; Gillespie, R.G.; Gittleman, J.L.; Bryan Jennings, W.; Kozak, K.H.; McPeek, M.A.; Moreno-Roark, F.; Near, T.J.; et al. Early Bursts of Body Size and Shape Evolution Are Rare in Comparative Data. Evol. Int. J. Org. Evol. 2010, 64, 2385–2396. [Google Scholar] [CrossRef]
- Burbrink, F.T.; Chen, X.; Myers, E.A.; Brandley, M.C.; Pyron, R.A. Evidence for Determinism in Species Diversification and Contingency in Phenotypic Evolution during Adaptive Radiation. Proc. R. Soc. B Biol. Sci. 2012, 279, 4817–4826. [Google Scholar] [CrossRef] [Green Version]
- Hipsley, C.A.; Miles, D.B.; Müller, J. Morphological Disparity Opposes Latitudinal Diversity Gradient in Lacertid Lizards. Biol. Lett. 2014, 10, 20140101. [Google Scholar] [CrossRef] [PubMed]
- Rabosky, D.L.; Donnellan, S.C.; Grundler, M.; Lovette, I.J. Analysis and Visualization of Complex Macroevolutionary Dynamics: An Example from Australian Scincid Lizards. Syst. Biol. 2014, 63, 610–627. [Google Scholar] [CrossRef] [Green Version]
- Rowe, K.C.; Aplin, K.P.; Baverstock, P.R.; Moritz, C. Recent and Rapid Speciation with Limited Morphological Disparity in the Genus Rattus. Syst. Biol. 2011, 60, 188–203. [Google Scholar] [CrossRef] [Green Version]
- Rundell, R.J.; Price, T.D. Adaptive Radiation, Nonadaptive Radiation, Ecological Speciation and Nonecological Speciation. Trends Ecol. Evol. 2009, 24, 394–399. [Google Scholar] [CrossRef]
- Wiens, J.J. Speciation and Ecology Revisited: Phylogenetic Niche Conservatism and the Origin of Species. Evolution 2004, 58, 193–197. [Google Scholar] [CrossRef]
- Gittenberger, E. What about Non-Adaptive Radiation? Biol. J. Linn. Soc. 1991, 43, 263–272. [Google Scholar] [CrossRef]
- Kozak, K.H.; Weisrock, D.W.; Larson, A. Rapid Lineage Accumulation in a Non-Adaptive Radiation: Phylogenetic Analysis of Diversification Rates in Eastern North American Woodland Salamanders (Plethodontidae: Plethodon). Proc. R. Soc. B Biol. Sci. 2006, 273, 539–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wellenreuther, M.; Sánchez-Guillén, R.A. Nonadaptive Radiation in Damselflies. Evol. Appl. 2016, 9, 103–118. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.W.; Reichard, M.; Pincheira-Donoso, D. Live Fast, Diversify Non-Adaptively: Evolutionary Diversification of Exceptionally Short-Lived Annual Killifishes. BMC Evol. Biol. 2019, 19, 10. [Google Scholar] [CrossRef] [Green Version]
- Comes, H.P.; Tribsch, A.; Bittkau, C. Plant Speciation in Continental Island Floras as Exemplified by Nigella in the Aegean Archipelago. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2008, 363, 3083–3096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orme, C.D.L.; Davies, R.G.; Burgess, M.; Eigenbrod, F.; Pickup, N.; Olson, V.A.; Webster, A.J.; Ding, T.-S.; Rasmussen, P.C.; Ridgely, R.S.; et al. Global Hotspots of Species Richness Are Not Congruent with Endemism or Threat. Nature 2005, 436, 1016–1019. [Google Scholar] [CrossRef] [PubMed]
- Vieu, J.C.; Hughes, C.E.; Kissling, J.; Grant, J.R. Evolutionary Diversification in the Hyper-Diverse Montane Forests of the Tropical Andes: The Radiation of the Plant Genus Macrocarpaea (Gentianaceae) and the Possible Role of Range Expansion. Bot. J. Linn. Soc. 2021, in press. [Google Scholar]
- Doebeli, M.; Dieckmann, U. Speciation along Environmental Gradients. Nature 2003, 421, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Coyne, J.A. Genetics and Speciation. Nature 1992, 355, 511–515. [Google Scholar] [CrossRef]
- Hoorn, C.; Wesselingh, F.P.; ter Steege, H.; Bermudez, M.A.; Mora, A.; Sevink, J.; Sanmartín, I.; Sanchez-Meseguer, A.; Anderson, C.L.; Figueiredo, J.P.; et al. Amazonia Through Time: Andean Uplift, Climate Change, Landscape Evolution, and Biodiversity. Science 2010, 330, 927–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Insel, N.; Poulsen, C.J.; Ehlers, T.A.; Sturm, C. Response of Meteoric Δ18O to Surface Uplift—Implications for Cenozoic Andean Plateau Growth. Earth Planet. Sci. Lett. 2012, 317–318, 262–272. [Google Scholar] [CrossRef]
- van der Hammen, T.; Hooghiemstra, H. Neogene and Quaternary History of Vegetation, Climate, and Plant Diversity in Amazonia. Quat. Sci. Rev. 2000, 19, 725–742. [Google Scholar] [CrossRef] [Green Version]
- Flantua, S.G.A.; Hooghiemstra, H.; van Boxel, J.H.; Cabrera, M.; González-Carranza, Z.; González-Arango, C. Connectivity Dynamics Since the Last Glacial Maximum in the Northern Andes: A Pollen-Driven Framework to Assess Potential Migration; Botanical Garden Press: St. LouisMissouri, MI, USA, 2014; ISBN 978-0-915279-97-5. [Google Scholar]
- Hooghiemstra, H.; Van der Hammen, T. Quaternary Ice-Age Dynamics in the Colombian Andes: Developing an Understanding of Our Legacy. Philos. Trans. R. Soc. B Biol. Sci. 2004, 359, 173–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rull, V. Neotropical Biodiversity: Timing and Potential Drivers. Trends Ecol. Evol. 2011, 26, 508–513. [Google Scholar] [CrossRef]
- Elias, M.; Joron, M.; Willmott, K.; Silva-Brandão, K.L.; Kaiser, V.; Arias, C.F.; Gomez Piñerez, L.M.; Uribe, S.; Brower, A.V.Z.; Freitas, A.V.L.; et al. Out of the Andes: Patterns of Diversification in Clearwing Butterflies. Mol. Ecol. 2009, 18, 1716–1729. [Google Scholar] [CrossRef]
- Benham, P.M.; Cuervo, A.M.; McGuire, J.A.; Witt, C.C. Biogeography of the Andean Metaltail Hummingbirds: Contrasting Evolutionary Histories of Tree Line and Habitat-Generalist Clades. J. Biogeogr. 2014, 42, 763–777. [Google Scholar] [CrossRef]
- Gutiérrez-Pinto, N.; Cuervo, A.M.; Miranda, J.; Pérez-Emán, J.L.; Brumfield, R.T.; Cadena, C.D. Non-Monophyly and Deep Genetic Differentiation across Low-Elevation Barriers in a Neotropical Montane Bird (Basileuterus Tristriatus; Aves: Parulidae). Mol. Phylogenet. Evol. 2012, 64, 156–165. [Google Scholar] [CrossRef]
- Casner, K.L.; Pyrcz, T.W. Patterns and Timing of Diversification in a Tropical Montane Butterfly Genus, Lymanopoda (Nymphalidae, Satyrinae). Ecography 2010, 33, 251–259. [Google Scholar] [CrossRef]
- Hutter, C.R.; Guayasamin, J.M.; Wiens, J.J. Explaining Andean Megadiversity: The Evolutionary and Ecological Causes of Glassfrog Elevational Richness Patterns. Ecol. Lett. 2013, 16, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Patton, J.L.; Smith, M.F. MtDNA Phylogeny of Andean Mice: A Test of Diversification across Ecological Gradients. Evolution 1992, 46, 174–183. [Google Scholar] [CrossRef]
- Antonelli, A.; Sanmartín, I. Mass Extinction, Gradual Cooling, or Rapid Radiation? Reconstructing the Spatiotemporal Evolution of the Ancient Angiosperm Genus Hedyosmum (Chloranthaceae) Using Empirical and Simulated Approaches. Syst. Biol. 2011, 60, 596–615. [Google Scholar] [CrossRef] [Green Version]
- Givnish, T.J.; Barfuss, M.H.J.; Ee, B.V.; Riina, R.; Schulte, K.; Horres, R.; Gonsiska, P.A.; Jabaily, R.S.; Crayn, D.M.; Smith, J.A.C.; et al. Adaptive Radiation, Correlated and Contingent Evolution, and Net Species Diversification in Bromeliaceae. Mol. Phylogenet. Evol. 2014, 71, 55–78. [Google Scholar] [CrossRef] [PubMed]
- Lagomarsino, L.P.; Condamine, F.L.; Antonelli, A.; Mulch, A.; Davis, C.C. The Abiotic and Biotic Drivers of Rapid Diversification in Andean Bellflowers (Campanulaceae). New Phytol. 2016, 210, 1430–1442. [Google Scholar] [CrossRef] [PubMed]
- Spriggs, E.L.; Clement, W.L.; Sweeney, P.W.; Madriñán, S.; Edwards, E.J.; Donoghue, M.J. Temperate Radiations and Dying Embers of a Tropical Past: The Diversification of Viburnum. New Phytol. 2015, 207, 340–354. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.R. A monographic revision of the neotropical genus Macrocarpaea (Gentianaceae) in Ecuador. In The Gentianaceae—Volume 1: Characterization and Ecology; Rybczyński, J.J., Davey, M.R., Mikuła, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 37–147. ISBN 978-3-642-54010-3. [Google Scholar]
- Grant, J.R. De Macrocarpaeae Grisebach (Ex Gentianaceis) Speciebus Novis XI: Five New Species from the Andes of Ecuador and Colombia. Harv. Pap. Bot. 2014, 19, 227–239. [Google Scholar] [CrossRef]
- Grant, J.R. De Macrocarpaeae Grisebach (Ex Gentianaceis) Speciebus Novis IX: A Synopsis of the Genus in Bolivia. Harv. Pap. Bot. 2011, 16, 389–397. [Google Scholar] [CrossRef]
- Grant, J.R. De Macrocarpaeae Grisebach (Ex Gentianaceis) Speciebus Novis VIII: Two New Species from Ecuador. Harv. Pap. Bot. 2008, 13, 253–259. [Google Scholar] [CrossRef]
- Grant, J.R. De Macrocarpaeae Grisebach (Ex Gentianaceis) Speciebus Novis VII: Four New Species and Two Natural Hybrids. Harv. Pap. Bot. 2007, 11, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Grant, J.R. De Macrocarpaeae Grisebach (Ex Gentianaceis) Speciebus Novis VI: Seed Morphology, Palynology, an Infrageneric Classification, and Another Twenty-Three New Species, Largely from Colombia. Harv. Pap. 2005, 9, 305–342. [Google Scholar]
- Grant, J.R. De Macrocarpaeae Grisebach (Ex Gentianaceis) Speciebus Novis V: Twenty-Three New Species Largely from Peru, and Typification of All Species in the Genus. Harv. Pap. Bot. 2004, 9, 11–49. [Google Scholar]
- Grant, J.R. De Macrocarpaeae Grisebach (Ex Gentianaceis) Speciebus Novis II: Typification of the Ruiz & Pavon Names. Harv. Pap. Bot. 2003, 7, 423–436. [Google Scholar]
- Grant, J.R.; Struwe, L. De Macrocarpaeae Grisebach (Ex Gentianaceis) Speciebus Novis III: Six New Species of Moon-Gentians (Macrocarpaea, Gentianaceae: Helieae) from Parque Nacional Podocarpus, Ecuador. Harv. Pap. Bot. 2003, 8, 61–81. [Google Scholar]
- Grant, J.R.; Struwe, L. De Macrocarpaeae Grisebach (Ex Gentianaceis) Speciebus Novis I: An Introduction to the Genus Macrocarpaea and Three New Species from Colombia, Ecuador, and Guyana. Harv. Pap. Bot. 2001, 5, 489–498. [Google Scholar]
- Grant, J.R.; Trunz, V. De Macrocarpaeae Grisebach (Ex Gentianaceis) Speciebus Novis X: A Synopsis of the Genus in Montane Atlantic Forests of Brazil. Harv. Pap. Bot. 2011, 16, 399–420. [Google Scholar] [CrossRef] [Green Version]
- Grant, J.R.; Vieu, J. De Macrocarpaeae Grisebach (Ex Gentianaceis) Speciebus Novis XII: Three New Species from the Andes of Peru. Harv. Pap. Bot. 2014, 19, 241–246. [Google Scholar] [CrossRef]
- Grant, J.R.; Weaver, R.E. De Macrocarpaeae Grisebach (Ex Gentianaceis) Speciebus Novis IV: Twelve New Species of Macrocarpaea (Gentianaceae: Helieae) from Central and South America, and the First Report of the Presence of a Stipule in the Family. Harv. Pap. Bot. 2003, 8, 83–109. [Google Scholar]
- Struwe, L.; Haag, S.; Heiberg, E.; Grant, J.R. Andean Speciation and Vicariance in Neotropical Macrocarpaea (Gentianaceae-Helieae). Ann. Mo. Bot. Gard. 2009, 96, 450–469. [Google Scholar] [CrossRef]
- Struwe, L.; Albert, V.A.; Calió, F.M.; Frasier, C.; Lepis, K.B.; Mathews, K.G.; Grant, J.R. Evolutionary Patterns in Neotropical Helieae (Gentianaceae): Evidence from Morphology, Chloroplast and Nuclear DNA Sequences. Taxon 2009, 58, 479–499. [Google Scholar] [CrossRef]
- Leuschner, C.; Moser, G. Carbon allocation and productivity in tropical mountain forests. In Tropical Mountain Forest: Patterns and Processes in a Biodiversity Hotspot; Universitätsverlag Göttingen: Göttingen, Germany, 2008; Volume 2, pp. 109–128. ISBN 978-3-940344-22-9. [Google Scholar]
- Simpson, G.G. The Major Features of Evolution; Columbia University Press: New York, NY, USA, 1953; ISBN 978-0-231-89533-0. [Google Scholar]
- Weigend, M. Observations on the Biogeography of the Amotape-Huancabamba Zone in Northern Peru. Bot. Rev. 2002, 68, 38–54. [Google Scholar] [CrossRef]
- Mutke, J.; Jacobs, R.; Meyers, K.; Henning, T.; Weigend, M. Diversity Patterns of Selected Andean Plant Groups Correspond to Topography and Habitat Dynamics, Not Orogeny. Front. Genet. 2014, 5, 351. [Google Scholar] [CrossRef] [Green Version]
- Penone, C.; Davidson, A.D.; Shoemaker, K.T.; Marco, M.D.; Rondinini, C.; Brooks, T.M.; Young, B.E.; Graham, C.H.; Costa, G.C. Imputation of Missing Data in Life-History Trait Datasets: Which Approach Performs the Best? Methods Ecol. Evol. 2014, 5, 961–970. [Google Scholar] [CrossRef]
- Santos, T. Package “PVR”. Available online: https://CRAN.R-project.org/package=PVR (accessed on 1 December 2015).
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Stekhoven, D.J.; Buehlmann, P. MissForest—Non-Parametric Missing Value Imputation for Mixed-Type Data. Bioinformatics 2012, 28, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Revell, L.J. Phytools: An R Package for Phylogenetic Comparative Biology (and Other Things). Methods Ecol. Evol. 2012, 3, 217–223. [Google Scholar] [CrossRef]
- Revell, L.J. Size-Correction and Principal Components for Interspecific Comparative Studies. Evolution 2009, 63, 3258–3268. [Google Scholar] [CrossRef] [PubMed]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very High Resolution Interpolated Climate Surfaces for Global Land Areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Hijmans, R.J.; van Etten, J.; Mattiuzzi, M.; Hijmans, M.R.J. Package “Raster”. Available online: https://cran.r-project.org/web/packages/raster/index.html (accessed on 1 December 2015).
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The Worldwide Leaf Economics Spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Harmon, L.J.; Schulte, J.A.; Larson, A.; Losos, J.B. Tempo and Mode of Evolutionary Radiation in Iguanian Lizards. Science 2003, 301, 961–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harmon, L.J.; Weir, J.T.; Brock, C.D.; Glor, R.E.; Challenger, W. GEIGER: Investigating Evolutionary Radiations. Bioinformatics 2008, 24, 129–131. [Google Scholar] [CrossRef] [Green Version]
- Butler, M.A.; King, A.A. Phylogenetic Comparative Analysis: A Modeling Approach for Adaptive Evolution. Am. Nat. 2004, 164, 683–695. [Google Scholar] [CrossRef] [PubMed]
- Hansen, T.F. Stabilizing Selection and the Comparative Analysis of Adaptation. Evolution 1997, 51, 1341–1351. [Google Scholar] [CrossRef] [PubMed]
- O’Meara, B.C.; Ané, C.; Sanderson, M.J.; Wainwright, P.C. Testing for Different Rates of Continuous Trait Evolution Using Likelihood. Evol. Int. J. Org. Evol. 2006, 60, 922–933. [Google Scholar] [CrossRef]
- Slater, G.J. Phylogenetic Evidence for a Shift in the Mode of Mammalian Body Size Evolution at the Cretaceous-Palaeogene Boundary. Methods Ecol. Evol. 2013, 4, 734–744. [Google Scholar] [CrossRef]
- Clavel, J.; Escarguel, G.; Merceron, G. Mvmorph: An r Package for Fitting Multivariate Evolutionary Models to Morphometric Data. Methods Ecol. Evol. 2015, 6, 1311–1319. [Google Scholar] [CrossRef]
- Boettiger, C.; Coop, G.; Ralph, P. Is Your Phylogeny Informative? Measuring the Power of Comparative Methods. Evolution 2012, 66, 2240–2251. [Google Scholar] [CrossRef]
- Beaulieu, J.M.; O’Meara, B.C. OUwie: Analysis of Evolutionary Rates in an OU Framework. R Package Version 2012, 1, 21. [Google Scholar] [CrossRef]
- Grandcolas, P.; Nattier, R.; Legendre, F.; Pellens, R. Mapping Extrinsic Traits Such as Extinction Risks or Modelled Bioclimatic Niches on Phylogenies: Does It Make Sense at All? Cladistics 2011, 27, 181–185. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002; ISBN 978-0-387-95364-9. [Google Scholar]
- Hansen, T.F. Use and Misuse of Comparative Methods in the Study of Adaptation. In Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology: Concepts and Practice; Garamszegi, L.Z., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 351–379. ISBN 978-3-662-43550-2. [Google Scholar]
- Münkemüller, T.; Boucher, F.C.; Thuiller, W.; Lavergne, S. Phylogenetic Niche Conservatism—Common Pitfalls and Ways Forward. Funct. Ecol. 2015, 29, 627–639. [Google Scholar] [CrossRef] [Green Version]
- Uyeda, J.C.; Harmon, L.J. A Novel Bayesian Method for Inferring and Interpreting the Dynamics of Adaptive Landscapes from Phylogenetic Comparative Data. Syst. Biol. 2014, 63, 902–918. [Google Scholar] [CrossRef] [Green Version]
- Slater, G.J.; Pennell, M.W. Robust Regression and Posterior Predictive Simulation Increase Power to Detect Early Bursts of Trait Evolution. Syst. Biol. 2014, 63, 293–308. [Google Scholar] [CrossRef] [Green Version]
- Boucher, F.C.; Thuiller, W.; Davies, T.J.; Lavergne, S. Neutral Biogeography and the Evolution of Climatic Niches. Am. Nat. 2014, 183, 573–584. [Google Scholar] [CrossRef] [Green Version]
- Donoghue, M.J. A Phylogenetic Perspective on the Distribution of Plant Diversity. Proc. Natl. Acad. Sci. USA 2008, 105, 11549–11555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eldredge, N.; Thompson, J.N.; Brakefield, P.M.; Gavrilets, S.; Jablonski, D.; Jackson, J.B.C.; Lenski, R.E.; Lieberman, B.S.; McPeek, M.A.; Miller, W. The Dynamics of Evolutionary Stasis. Paleobiology 2005, 31, 133–145. [Google Scholar] [CrossRef]
- Reich, P.B.; Walters, M.B.; Ellsworth, D.S. From Tropics to Tundra: Global Convergence in Plant Functioning. Proc. Natl. Acad. Sci. USA 1997, 94, 13730–13734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheepens, J.F.; Frei, E.S.; Stöcklin, J. Genotypic and Environmental Variation in Specific Leaf Area in a Widespread Alpine Plant after Transplantation to Different Altitudes. Oecologia 2010, 164, 141–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, G.L. The panorama of Neotropical cloud forests. In Biodiversity and Conservation of Neotropical Montane Forests: Proceedings of Neotropical Montane Forest Biodiversity and Conservation Symposium; Churchill, S.P., Balslev, H., Forero, E., Luteyn, J.L., Eds.; The New York Botanical Garden: New York, NY, USA, 1995; pp. 53–77. ISBN 0-89327-400-3. [Google Scholar]
- Beck, E.; Richter, M. Ecological aspects of a biodiversity hotspot in the Andes of southern Ecuador. In The Tropical Mountain Forest: Patterns and Processes in a Biodiversity Hotspot; Gradstein, S.R., Homeier, J., Gansert, D., Eds.; Biodiversity and Ecology Series; Göttingen Centre for Biodiversity and Ecology: Göttingen, Germany, 2008; pp. 195–217. ISBN 978-3-940344-22-9. [Google Scholar]
- Gerold, G. Soil, climate and vegetation of tropical montane forests—A case study from the Yungas, Bolivia. In Tropical Mountain Forest: Patterns and Processes in a Biodiversity Hotspot; Gradstein, S.R., Homeier, J., Gansert, D., Eds.; Biodiversity and Ecology Series; Göttingen Centre for Biodiversity and Ecology: Göttingen, Germany, 2008; pp. 137–162. ISBN 978-3-940344-22-9. [Google Scholar]
- Moser, G.; Hertel, D.; Leuschner, C. Altitudinal Change in LAI and Stand Leaf Biomass in Tropical Montane Forests: A Transect Study in Ecuador and a Pan-Tropical Meta-Analysis. Ecosystems 2007, 10, 924–935. [Google Scholar] [CrossRef]
- Pupo, G.M.; Lan, R.; Reeves, P.R. Multiple Independent Origins of Shigella Clones of Escherichia Coli and Convergent Evolution of Many of Their Characteristics. Proc. Natl. Acad. Sci. USA 2000, 97, 10567–10572. [Google Scholar] [CrossRef] [Green Version]
- Losos, J.B. Convergence, Adaptation, and Constraint. Evol. Int. J. Org. Evol. 2011, 65, 1827–1840. [Google Scholar] [CrossRef]
- Frédérich, B.; Sorenson, L.; Santini, F.; Slater, G.J.; Alfaro, M.E.; Heard, A.E.S.B.; Day, E.T. Iterative Ecological Radiation and Convergence during the Evolutionary History of Damselfishes (Pomacentridae). Am. Nat. 2013, 181, 94–113. [Google Scholar] [CrossRef]
- Mahler, D.L.; Ingram, T.; Revell, L.J.; Losos, J.B. Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 2013, 341, 292–295. [Google Scholar] [CrossRef] [PubMed]
- Arnold, S.J. Constraints on Phenotypic Evolution. Am. Nat. 1992, 140, S85–S107. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.F.; Stinchcombe, J.R. How Much Do Genetic Covariances Alter the Rate of Adaptation? Proc. R. Soc. B Biol. Sci. 2009, 276, 1183–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Futuyma, D.J. Evolutionary Constraint and Ecological Consequences. Evolution 2010, 64, 1865–1884. [Google Scholar] [CrossRef] [PubMed]
- Wolff, D. Nectar Sugar Composition and Volumes of 47 Species of Gentianales from a Southern Ecuadorian Montane Forest. Ann. Bot. 2006, 97, 767–777. [Google Scholar] [CrossRef] [Green Version]
- Fleming, T.H.; Geiselman, C.; Kress, W.J. The Evolution of Bat Pollination: A Phylogenetic Perspective. Ann. Bot. 2009, 104, 1017–1043. [Google Scholar] [CrossRef]
- Muchhala, N. Functional Significance of Interspecific Variation in Burmeistera Flower Morphology: Evidence from Nectar Bat Captures in Ecuador. Biotropica 2008, 40, 332–337. [Google Scholar] [CrossRef]
- Monasterio, M.; Sarmiento, L. Adaptive Radiation of Espeletia in the Cold Andean Tropics. Trends Ecol. Evol. 1991, 6, 387–391. [Google Scholar] [CrossRef]
- Nei, M. Mutation-Driven Evolution; Oxford University Press: New York, NY, USA, 2013; ISBN 978-0-19-966173-2. [Google Scholar]
- Revell, L.J.; Harmon, L.J.; Collar, D.C. Phylogenetic Signal, Evolutionary Process, and Rate. Syst. Biol. 2008, 57, 591–601. [Google Scholar] [CrossRef]
pPC1 | pPC2 | |
---|---|---|
Blade length | −0.96 | 0.08 |
Blade width | −0.97 | 0.09 |
Calyx width | −0.40 | −0.78 |
Corolla length | −0.28 | −0.65 |
Corolla width | −0.11 | −0.89 |
Eigenvalue | 0.19 | 0.05 |
Proportion of Variance | 0.70 | 0.18 |
Cumulative proportion | 0.70 | 0.88 |
pPC1 | pPC2 | |
---|---|---|
LAT | 0.06 | 0.88 |
LONG | 0.06 | −0.82 |
ALT | −0.92 | 0.11 |
BIO1 | 0.89 | −0.19 |
BIO2 | −0.48 | −0.54 |
BIO3 | −0.03 | 0.69 |
BIO4 | 0.02 | −0.82 |
BIO5 | 0.86 | −0.33 |
BIO6 | 0.92 | 0.09 |
BIO7 | −0.41 | −0.77 |
BIO8 | 0.88 | −0.23 |
BIO9 | 0.92 | −0.08 |
BIO10 | 0.90 | −0.24 |
BIO11 | 0.89 | −0.10 |
BIO12 | 0.82 | 0.07 |
BIO13 | 0.71 | −0.14 |
BIO14 | 0.71 | 0.26 |
BIO15 | −0.36 | −0.46 |
BIO16 | 0.71 | −0.15 |
BIO17 | 0.72 | 0.26 |
BIO18 | 0.70 | −0.14 |
BIO19 | 0.68 | 0.30 |
Eigenvalue | 10.67 | 4.27 |
Proportion of Variance | 0.48 | 0.19 |
Cumulative proportion | 0.48 | 0.68 |
Model | Leaf Size | Flower Size | Plant Size | SLA | Altitudinal Niche | Latitudinal Niche |
---|---|---|---|---|---|---|
BM1 | 14.25 (8.13;15.36;23.30) | 13.97 (5.96;12.61;17.78) | 4.40 (3.23;5.04;7.20) | 9.99 (5.72;8.34;20.27) | 77.93 (63.48;77.38;100.04) | 79.40 (60.24;80.58;91.53) |
EB | 16.49 (10.37;17.60;25.54) | 16.21 (8.20;14.85;20.02) | 6.64 (5.47;7.28;9.44) | 12.45 (8.18;10.80;22.73) | 80.14 (65.69;79.59;102.26) | 81.61 (62.45;82.79;93.74) |
OU1 | 7.66 (0.00;7.68;11.42) | 7.03 (0.50;5.31;9.07) | 6.73 (4.31;6.07;7.85) | 9.17 (6.37;8.06;11.78) | 59.96 (55.68;59.31;63.19) | 82.57 (58.71;82.73;93.85) |
SHIFT | 9.60 (3.27;11.13;16.00) | 9.06 (2.09;7.81;11.88) | 2.16 (0.97;2.94;5.16) | 9.36 (5.17;7.46;17.95) | 70.22 (57.76;69.77;90.41) | 81.17 (60.62;82.01;92.99) |
ER | 9.378 (2.95;10.76;15.97) | 9.06 (1.36;7.82;11.96) | 1.84 (0.73;2.59;4.33) | 8.75 (4.90;7.01;17.72) | 70.22 (57.76;69.77;90.41) | 81.47 (61.31;82.60;93.43) |
BMM Regime | 14.01 (7.16;14.42;20.22) | 14.37 (4.88;13.31;17.19) | 5.58 (4.51;6.35;8.81) | 10.66 (7.02;9.51;15.76) | 58.95 (51.94;61.23;74.03) | 76.40 (59.06;78.32;88.14) |
OUM Regime | 9.04 (1.22;8.60;12.62) | 9.29 (2.74;7.45;11.20) | 9.06 (6.61;8.39;10.07) | 1.74 (0.00;0.00;4.28) | 0.00 (0.00;0.00;0.00) | 81.46 (57.20;80.35;91.47) |
BMM Clade | 15.77 (8.04;15.69;22.33) | 0.00 (0.00;0.00;1.05) | 3.74 (3.16;6.39;8.67) | 11.46 (7.71;10.15;17.33) | 80.13 (63.68;79.59;101.79) | 81.60 (59.39;81.21;92.58) |
OUM Clade | 0.00 (0.00;0.00;1.72) | 9.36 (0.69;7.48;11.19) | 8.59 (6.35;8.12;9.80) | 0.00 (0.00;0.091;9.24) | 50.92 (43.44;50.43;58.57) | 84.80 (60.10;84.43;95.96) |
BMM Geo | 9.99 (2.31;10.06;16.67) | 14.45 (6.80;12.38;19.10) | 0.00 (0.00;0.00;0.00) | 12.35 (8.10;10.63;21.75) | 76.03 (65.59;75.68;94.45) | 33.94 (30.36;42.10;57.67) |
OUM Geo | 11.28 (3.36;11.24;14.90) | 10.13 (3.33;8.11;11.80) | 7.04 (4.32;6.37;8.47) | 11.80 (8.93;10.70;14.43) | 60.40 (56.80;59.81;63.16) | 0.00 (0.00;0.00;0.00) |
Trait | Half-Life OU1 | Stationary Variance OU1 | Half-Life OUM | Stationary Variance OUM |
---|---|---|---|---|
Leaf size | 1.938 (1.294;1.635;2.415) | 0.066 (0.043;0.094;0.151) | 0.312 (0.054;0.266;1.47) | 1.69 (0.106;2.389;56.093) |
Flower size | 1.797 (1.340;1.729;2.359) | 0.019 (0.011;0.021;0.034) | NA | NA |
Plant Size | 3.658 (2.266;2.925;4.385) | 0.009 (0.006;0.013;0.021) | NA | NA |
SLA | 1.951 (1.117;1.978;2.557) | 0.028 (0.017;0.028;0.089) | 0.022 (0.014;0.888;1.828) | 123.654 (0.026;0.094;316.945) |
Altitudinal niche | 1.011 (0.086;0.920;1.497) | 9.483 (5.454;10.156;769.061) | 0.027 (0.008;0.020;0.194) | 4676.83 (88.81;8948.43;39845.79) |
Latitudinal niche | 6.758 (2.764;5.435;8.854) | 0.279 (0.195;0.368;0.858) | 0.139 (0.033;0.125;0.563) | 64.658 (4.228;81.014;1139.458) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieu, J.C.; Koubínová, D.; Grant, J.R. The Evolution of Trait Disparity during the Radiation of the Plant Genus Macrocarpaea (Gentianaceae) in the Tropical Andes. Biology 2021, 10, 825. https://doi.org/10.3390/biology10090825
Vieu JC, Koubínová D, Grant JR. The Evolution of Trait Disparity during the Radiation of the Plant Genus Macrocarpaea (Gentianaceae) in the Tropical Andes. Biology. 2021; 10(9):825. https://doi.org/10.3390/biology10090825
Chicago/Turabian StyleVieu, Julien C., Darina Koubínová, and Jason R. Grant. 2021. "The Evolution of Trait Disparity during the Radiation of the Plant Genus Macrocarpaea (Gentianaceae) in the Tropical Andes" Biology 10, no. 9: 825. https://doi.org/10.3390/biology10090825
APA StyleVieu, J. C., Koubínová, D., & Grant, J. R. (2021). The Evolution of Trait Disparity during the Radiation of the Plant Genus Macrocarpaea (Gentianaceae) in the Tropical Andes. Biology, 10(9), 825. https://doi.org/10.3390/biology10090825