Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = photonic nanojet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2866 KiB  
Article
Non-Uniform Microlens Array Based on Photonic Nanojets for Remote Raman Sensing of Subsurface Analytes
by Xiang-Yu Li, Han-Yu Lin, Wen-Ding Ye, En-Ming You and Jing Liu
Photonics 2025, 12(3), 180; https://doi.org/10.3390/photonics12030180 - 21 Feb 2025
Viewed by 709
Abstract
Raman spectroscopy is a powerful technique for surface molecular analysis due to its ability to provide molecular fingerprint information. However, its application to subsurface analytes is limited by destructive or invasive methods that compromise the detection accuracy. To address this, we introduce a [...] Read more.
Raman spectroscopy is a powerful technique for surface molecular analysis due to its ability to provide molecular fingerprint information. However, its application to subsurface analytes is limited by destructive or invasive methods that compromise the detection accuracy. To address this, we introduce a non-uniform microlens array based on the photonic nanojet (PNJ) principle to realize subsurface remote Raman sensing. Using finite element simulations, the microlens design was optimized with a central lens radius of 5 μm and side lenses of half this radius, achieving a 52% increase in the focal length and a subwavelength spatial resolution compared to a single microlens. The non-uniform design also enhanced the Raman intensity by 85%, enabling sensitive detection of the subsurface analytes. The design’s versatility was validated with a rectangular microlens array, which showed similar improvements. Fabrication using 3D printing produced experimental results closely aligned with those of simulations, with focal length deviations of less than 9% at 1550 nm. These findings demonstrate that non-uniform microlens arrays are scalable, non-invasive, and effective tools for Raman spectroscopy, offering potential applications in biomedicine, materials science, and environmental monitoring, advancing the capabilities of subsurface sensing technologies. Full article
(This article belongs to the Special Issue Research, Development and Application of Raman Scattering Technology)
Show Figures

Figure 1

15 pages, 5986 KiB  
Article
Metasurface-Coated Liquid Microlens for Super Resolution Imaging
by Tongkai Gu, Kang Wang, Anjiang Cai, Fan Wu, Yasheng Chang, Haiyan Zhao and Lanlan Wang
Micromachines 2025, 16(1), 25; https://doi.org/10.3390/mi16010025 - 27 Dec 2024
Viewed by 900
Abstract
Inspired by metasurfaces’ control over light fields, this study created a liquid microlens coated with a layer of Au@TiO2, Core-Shell nanospheres. Utilizing the surface plasmon resonance (SPR) effect of Au@TiO2, Core-Shell nanospheres, and the formation of photonic nanojets (PNJs), [...] Read more.
Inspired by metasurfaces’ control over light fields, this study created a liquid microlens coated with a layer of Au@TiO2, Core-Shell nanospheres. Utilizing the surface plasmon resonance (SPR) effect of Au@TiO2, Core-Shell nanospheres, and the formation of photonic nanojets (PNJs), this study aimed to extend the imaging system’s cutoff frequency, improve microlens focusing, enhance the capture capability of evanescent waves, and utilize nanospheres to improve the conversion of evanescent waves into propagating waves, thus boosting the liquid microlens’s super-resolution capabilities. The finite difference time domain (FDTD) method analyzed the impact of parameters including nanosphere size, microlens sample contact width, and droplet’s initial contact angle on super-resolution imaging. The results indicate that the full width at half maximum (FWHM) of the field distribution produced by the uncoated microlens is 1.083 times that of the field distribution produced by the Au@TiO2, Core-Shell nanospheres coated microlens. As the nanosphere radius, droplet contact angle, and droplet base diameter increased, the microlens’s light intensity correspondingly increased. These findings confirm that metasurface coating enhances the super-resolution capabilities of the microlens. Full article
Show Figures

Figure 1

21 pages, 10008 KiB  
Article
Coupling Nanowire Quantum Dots to Optical Waveguides by Microsphere-Induced Photonic Nanojet
by Symeon I. Tsintzos, Konstantinos Tsimvrakidis, James C. Gates, Ali W. Elshaari, Peter G. R. Smith, Val Zwiller and Christos Riziotis
Photonics 2024, 11(4), 343; https://doi.org/10.3390/photonics11040343 - 9 Apr 2024
Cited by 3 | Viewed by 2465
Abstract
Silica-on-silicon is a major optical integration platform, while the emergent class of the integrated laser-written circuits’ platform offers additionally high customizability and flexibility for rapid prototyping. However, the inherent waveguides’ low core/cladding refractive index contrast characteristic, compared to other photonic platforms in silicon [...] Read more.
Silica-on-silicon is a major optical integration platform, while the emergent class of the integrated laser-written circuits’ platform offers additionally high customizability and flexibility for rapid prototyping. However, the inherent waveguides’ low core/cladding refractive index contrast characteristic, compared to other photonic platforms in silicon or silicon nitride, sets serious limitations for on-chip efficient coupling with single photon emitters, like semiconductor nanowires with quantum dots, limiting the applications in quantum computing. A new light coupling scheme proposed here overcomes this limitation, providing means for light coupling >50%. The scheme is based on the incorporation of an optical microsphere between the nanowire and the waveguide, which is properly optimized and arranged in terms of size, refractive index, and the distance of the microsphere between the nanowire and waveguide. Upon suitable design of the optical arrangement, the photonic nanojet emitted by the illuminated microsphere excites efficiently the guided eigenmodes of the input channel waveguide, thus launching light with high-coupling efficiency. The method is tolerant in displacements, misalignments, and imperfections and is fabricationally feasible by the current state of art techniques. The proposed method enables the on-chip multiple single photon emitters’ integration, thus allowing for the development of highly customizable and scalable quantum photonic-integrated circuits for quantum computing and communications. Full article
(This article belongs to the Section Quantum Photonics and Technologies)
Show Figures

Figure 1

11 pages, 8580 KiB  
Article
Temperature-Controlled Switchable Photonic Nanojet Generated by Truncated Cylindrical Structure
by Ning Su, Weiming Zhang, Xintao Zeng, Pinghui Wu, Lina Cui and Xiaohui Chen
Materials 2023, 16(22), 7209; https://doi.org/10.3390/ma16227209 - 17 Nov 2023
Cited by 2 | Viewed by 1363
Abstract
We propose a novel micro-nano structure that can realize a photonic nanojet (PNJ) switch by adjusting the temperature, which is composed of a truncated cylinder coated with a thin vanadium dioxide (VO2) film. The influence of temperature on the maximum strength, [...] Read more.
We propose a novel micro-nano structure that can realize a photonic nanojet (PNJ) switch by adjusting the temperature, which is composed of a truncated cylinder coated with a thin vanadium dioxide (VO2) film. The influence of temperature on the maximum strength, full width at half maximum (FWHM), working distance, and focal length of the PNJ were studied by finite-difference time-domain (FDTD) method. The results demonstrate that the structure can adjust the open and close state of the PNJ by changing the temperature. A PNJ with varying characteristics can be obtained at both high and low temperatures, and the maximum intensity ratio of the PNJ can reach up to 7.25. This discovery provides a new way of optical manipulation, sensing and detection, microscopy imaging, optoelectronic devices, and other fields. Full article
Show Figures

Figure 1

14 pages, 7582 KiB  
Article
Microsphere-Based Microsensor for Miniature Motors’ Vibration Measurement
by Kaichuan Xu, Chunlei Jiang, Qilu Ban, Pan Dai, Yaqiang Fan, Shijie Yang, Yue Zhang, Jiacheng Wang, Yu Wang, Xiangfei Chen, Jie Zeng and Feng Wang
Sensors 2023, 23(22), 9196; https://doi.org/10.3390/s23229196 - 15 Nov 2023
Cited by 2 | Viewed by 1419
Abstract
We present a microsphere-based microsensor that can measure the vibrations of the miniature motor shaft (MMS) in a small space. The microsensor is composed of a stretched fiber and a microsphere with a diameter of 5 μm. When a light source is incident [...] Read more.
We present a microsphere-based microsensor that can measure the vibrations of the miniature motor shaft (MMS) in a small space. The microsensor is composed of a stretched fiber and a microsphere with a diameter of 5 μm. When a light source is incident on the microsphere surface, the microsphere induces the phenomenon of photonic nanojet (PNJ), which causes light to pass through the front. The PNJ’s full width at half maximum is narrow, surpassing the diffraction limit, enables precise focusing on the MMS surface, and enhances the scattered or reflected light emitted from the MMS surface. With two of the proposed microsensors, the axial and radial vibration of the MMS are measured simultaneously. The performance of the microsensor has been calibrated with a standard vibration source, demonstrating measurement errors of less than 1.5%. The microsensor is expected to be used in a confined space for the vibration measurement of miniature motors in industry. Full article
(This article belongs to the Special Issue Advances in the Design and Application of Optical Fiber Sensors)
Show Figures

Figure 1

12 pages, 4101 KiB  
Article
Generation of Photonic Nanojet Using Gold Film Dielectric Microdisk Structure
by Xintao Zeng, Ning Su, Weiming Zhang, Zhibin Ye, Pinghui Wu and Bin Liu
Materials 2023, 16(8), 3146; https://doi.org/10.3390/ma16083146 - 16 Apr 2023
Cited by 3 | Viewed by 2393
Abstract
Due to their narrow beam waist size, high intensity, and long propagation distance, photonic nanojets (PNJs) can be used in various fields such as nanoparticle sensing, optical subwavelength detection, and optical data storage. In this paper, we report a strategy to realize an [...] Read more.
Due to their narrow beam waist size, high intensity, and long propagation distance, photonic nanojets (PNJs) can be used in various fields such as nanoparticle sensing, optical subwavelength detection, and optical data storage. In this paper, we report a strategy to realize an SPP-PNJ by exciting a surface plasmon polariton (SPP) on a gold-film dielectric microdisk. In detail, an SPP is excited by the grating–coupling method, then it irradiates the dielectric microdisk to form an SPP-PNJ. The characteristics of the SPP-PNJ, including maximum intensity, full width at half maximum (FWHM), and propagation distance, are studied by using finite difference time domain (FDTD) numerical solutions. The results demonstrate that the proposed structure can produce a high-quality SPP-PNJ, the maximum quality factor of which is 62.20, and the propagation distance of the SPP-PNJ is 3.08 λ. Furthermore, the properties of the SPP-PNJ can be modified flexibly by changing the thickness and refractive index of the dielectric microdisk. Full article
(This article belongs to the Special Issue New Advances in Photonic Materials and Devices)
Show Figures

Figure 1

12 pages, 5680 KiB  
Article
Step-Index (Semi-Immersed) Model for Photonic Nanojet and Experimental Characterization via Near-Field Optical Microscopy with Microcylinder
by Tal Elbaz, Ankit Chauhan, Aviran Halstuch, Gil Shalev and Alina Karabchevsky
Nanomaterials 2023, 13(6), 1033; https://doi.org/10.3390/nano13061033 - 13 Mar 2023
Cited by 2 | Viewed by 2434
Abstract
Experimental limitations such as design complexity and low optical throughput have prevented photonic nanojet (PNJ) and photonic hook (PH) measurements from demonstrating and characterizing the implementation of narrow intense electromagnetic beams generated from dielectric microelements with circular symmetry. Near-fields optical microscopy can mitigate [...] Read more.
Experimental limitations such as design complexity and low optical throughput have prevented photonic nanojet (PNJ) and photonic hook (PH) measurements from demonstrating and characterizing the implementation of narrow intense electromagnetic beams generated from dielectric microelements with circular symmetry. Near-fields optical microscopy can mitigate these limitations and still present a capability of detecting a highly localized electromagnetic beam for applications in step-index media. Here we model a localized PNJ and PH formation in step-index media. We show that despite negligible refractive index contrast between the water (nwater=1.33) and silica microcylinder (∼1.1), a formation of PNJ and PH is observed with equivalent performance compared to that of silica microcylinder embedded in air (nair=1). This model features a practical fiber source and silica microcylinder as an auxiliary structure. Simultaneously, we performed experimental characterization of a photonic nanojet generated from an optical fiber and studied the resulting near-fields. Our electromagnetic simulation results are in good agreement with the experimental ones, demonstrating a full width at half maximum (FHWM) with a relative error of 0.64%. This system will make fiber-based nanojet realization and characterization accessible and practical for optics and laser engineering applications, super-resolution imaging, and nanolithography. Full article
(This article belongs to the Special Issue Nanostructure-Based Plasmonic Sensing and Devices)
Show Figures

Figure 1

10 pages, 7460 KiB  
Communication
Photonic Hook with Modulated Bending Angle Formed by Using Triangular Mesoscale Janus Prisms
by Wei-Yu Chen, Cheng-Yang Liu, Yu-Kai Hsieh, Oleg V. Minin and Igor V. Minin
Photonics 2022, 9(12), 948; https://doi.org/10.3390/photonics9120948 - 8 Dec 2022
Cited by 2 | Viewed by 1896
Abstract
In this study, we propose a novel design of triangular mesoscale Janus prisms for the generation of the long photonic hook. Numerical simulations based on the finite-difference time-domain method are used to examine the formation mechanism of the photonic hook. The electric intensity [...] Read more.
In this study, we propose a novel design of triangular mesoscale Janus prisms for the generation of the long photonic hook. Numerical simulations based on the finite-difference time-domain method are used to examine the formation mechanism of the photonic hook. The electric intensity distributions near the micro-prisms are calculated for operation at different refractive indices and spaces of the two triangular micro-prisms. The asymmetric vortices of intensity distributions result in a long photonic hook with a large bending angle. The length and the bending angle of the photonic hook are efficiently modulated by changing the space between the two triangular micro-prisms. Moreover, the narrow width of the photonic hook is achieved beyond the diffraction limit. The triangular Janus micro-prisms have high potential for practical applications in optical tweezers, nanoparticle sorting and manipulation and photonic circuits. Full article
(This article belongs to the Special Issue Recent Advances in Optical Diffraction and Imaging)
Show Figures

Figure 1

16 pages, 2527 KiB  
Article
Silica Nanospheres Coated Silver Islands as an Effective Opto-Plasmonic SERS Active Platform for Rapid and Sensitive Detection of Prostate Cancer Biomarkers
by Anamika Pandey, Subhankar Sarkar, Sumit Kumar Pandey and Anchal Srivastava
Molecules 2022, 27(22), 7821; https://doi.org/10.3390/molecules27227821 - 13 Nov 2022
Cited by 6 | Viewed by 2418
Abstract
The in vitro diagnostics of cancer are not represented well yet, but the need for early-stage detection is undeniable. In recent decades, surface-enhanced Raman spectroscopy (SERS) has emerged as an efficient, adaptable, and unique technique for the detection of cancer molecules in their [...] Read more.
The in vitro diagnostics of cancer are not represented well yet, but the need for early-stage detection is undeniable. In recent decades, surface-enhanced Raman spectroscopy (SERS) has emerged as an efficient, adaptable, and unique technique for the detection of cancer molecules in their early stages. Herein, we demonstrate an opto-plasmonic hybrid structure for sensitive detection of the prostate cancer biomarker sarcosine using silica nanospheres coated silver nano-islands as a facile and efficient SERS active substrate. The SERS active platform has been developed via thin (5–15 nm) deposition of silver islands using a simple and cost-effective Radio Frequency (RF) sputtering technique followed by the synthesis and decoration of silica nanospheres (~500 nm) synthesized via Stober’s method. It is anticipated that the coupling of Whispering Gallery Modes and photonic nano-jets in SiO2 nanospheres induce Localized Surface Plasmon Resonance (LSPR) in Ag nano-islands, which is responsible for the SERS enhancement. The as-fabricated SERS active platform shows a linear response in the physiological range (10 nM to 100 μM) and an extremely low limit of detection (LOD) of 1.76 nM with a correlation coefficient of 0.98 and enhancement factor ~2 × 107. The findings suggest that our fabricated SERS platform could be potentially used for the rapid detection of bio-chemical traces with high sensitivity. Full article
(This article belongs to the Special Issue Nano-Based Drug Delivery and Diagnostics: Innovation and Applications)
Show Figures

Graphical abstract

9 pages, 3684 KiB  
Communication
Generation of Photonic Hooks under Point-Source Illumination from Patchy Microcylinders
by Qingqing Shang, Chu Xu, Fen Tang, Jiaji Li, Yao Fan, Caojin Yuan, Zengbo Wang, Chao Zuo and Ran Ye
Photonics 2022, 9(9), 667; https://doi.org/10.3390/photonics9090667 - 19 Sep 2022
Cited by 6 | Viewed by 2133
Abstract
Photonic hook (PH) is a new type of non-evanescent light beam with subwavelength curved structures. It has shown promising applications in super-resolution imaging and has the potential to be used in micromachining, optical trapping, etc. PHs are generally produced by illuminating mesoscale asymmetric [...] Read more.
Photonic hook (PH) is a new type of non-evanescent light beam with subwavelength curved structures. It has shown promising applications in super-resolution imaging and has the potential to be used in micromachining, optical trapping, etc. PHs are generally produced by illuminating mesoscale asymmetric particles with optical plane waves. In this work, we used the finite-difference time-domain (FDTD) method to investigate the PH phenomenon under point-source illumination. We found that the PHs can be effectively generated from point-source illuminated patchy particles. By changing the background refractive index, particle diameters and the position and coverage ratio of Ag patches, the characteristics of the PHs can be effectively tuned. Moreover, the structure of the intensity distribution of the light field generated from small and large particles can have an opposite bending direction due to the near-field light-matter interaction. Full article
(This article belongs to the Special Issue Extreme Photonics)
Show Figures

Figure 1

9 pages, 418 KiB  
Article
Investigation and Analysis of Acoustojets by Spectral Element Method
by Ibrahim Mahariq, Ibrahim H. Giden, Shadi Alboon, Wael Hosny Fouad Aly, Ahmed Youssef and Hamza Kurt
Mathematics 2022, 10(17), 3145; https://doi.org/10.3390/math10173145 - 1 Sep 2022
Cited by 23 | Viewed by 2176
Abstract
In this study, acoustic wave scattering in a homogeneous media by an obstacle is examined in the case of plane wave excitation and the formation of acoustic jets is explored. Spectral element method (SEM) is employed for the approximate solution of scattered acoustic [...] Read more.
In this study, acoustic wave scattering in a homogeneous media by an obstacle is examined in the case of plane wave excitation and the formation of acoustic jets is explored. Spectral element method (SEM) is employed for the approximate solution of scattered acoustic waves’ calculations. An important finding of the study is the concurrence of whispering gallery modes and acoustic jet in the case of proper adjustment of structural parameters, which has not been reported before in the literature. Furthermore, numerical findings based on SEM calculations show that the main characteristics of acoustic jet can be explored and controlled by changing the targeted parameters. Microscopy and imaging applications utilizing acoustic wave can benefit from the conducted study presented in this manuscript. Full article
(This article belongs to the Special Issue Applications of Partial Differential Equations in Engineering)
Show Figures

Figure 1

9 pages, 2594 KiB  
Communication
Photonic Nanojet Generation Using Integrated Silicon Photonic Chip with Hemispherical Structures
by Aneesh Vincent Veluthandath and Ganapathy Senthil Murugan
Photonics 2021, 8(12), 586; https://doi.org/10.3390/photonics8120586 - 17 Dec 2021
Cited by 7 | Viewed by 3444
Abstract
Photonic nanojet (PNJ) is a tightly focused diffractionless travelling beam generated by dielectric microparticles. The location of the PNJ depends on the refractive index of the material and it usually recedes to the interior of the microparticle when the refractive index is higher [...] Read more.
Photonic nanojet (PNJ) is a tightly focused diffractionless travelling beam generated by dielectric microparticles. The location of the PNJ depends on the refractive index of the material and it usually recedes to the interior of the microparticle when the refractive index is higher than 2, making high index materials unsuitable to produce useful PNJs while high index favours narrower PNJs. Here we demonstrate a design of CMOS compatible high index on-chip photonic nanojet based on silicon. The proposed design consists of a silicon hemisphere on a silicon substrate. The PNJs generated can be tuned by changing the radius and sphericity of the hemisphere. Oblate spheroids generate PNJs further away from the refracting surface and the PNJ length exceeds 17λ when the sphericity of the spheroid is 2.25 The proposed device can have potential applications in focal plane arrays, enhanced Raman spectroscopy, and optofluidic chips. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Graphical abstract

22 pages, 5252 KiB  
Review
Optical Trapping, Sensing, and Imaging by Photonic Nanojets
by Heng Li, Wanying Song, Yanan Zhao, Qin Cao and Ahao Wen
Photonics 2021, 8(10), 434; https://doi.org/10.3390/photonics8100434 - 11 Oct 2021
Cited by 26 | Viewed by 6335
Abstract
The optical trapping, sensing, and imaging of nanostructures and biological samples are research hotspots in the fields of biomedicine and nanophotonics. However, because of the diffraction limit of light, traditional optical tweezers and microscopy are difficult to use to trap and observe objects [...] Read more.
The optical trapping, sensing, and imaging of nanostructures and biological samples are research hotspots in the fields of biomedicine and nanophotonics. However, because of the diffraction limit of light, traditional optical tweezers and microscopy are difficult to use to trap and observe objects smaller than 200 nm. Near-field scanning probes, metamaterial superlenses, and photonic crystals have been designed to overcome the diffraction limit, and thus are used for nanoscale optical trapping, sensing, and imaging. Additionally, photonic nanojets that are simply generated by dielectric microspheres can break the diffraction limit and enhance optical forces, detection signals, and imaging resolution. In this review, we summarize the current types of microsphere lenses, as well as their principles and applications in nano-optical trapping, signal enhancement, and super-resolution imaging, with particular attention paid to research progress in photonic nanojets for the trapping, sensing, and imaging of biological cells and tissues. Full article
(This article belongs to the Special Issue Photonic Jet: Science and Application)
Show Figures

Figure 1

7 pages, 1065 KiB  
Article
Photonic Jet-Shaped Optical Fiber Tips versus Lensed Fibers
by Djamila Bouaziz, Grégoire Chabrol, Assia Guessoum, Nacer-Eddine Demagh and Sylvain Lecler
Photonics 2021, 8(9), 373; https://doi.org/10.3390/photonics8090373 - 7 Sep 2021
Cited by 12 | Viewed by 3338
Abstract
Shaped optical fiber tips have recently attracted a lot of interest for photonic jet light focusing due to their easy manipulation to scan a sample. However, lensed optical fibers are not new. This study analyzes how fiber tip parameters can be used to [...] Read more.
Shaped optical fiber tips have recently attracted a lot of interest for photonic jet light focusing due to their easy manipulation to scan a sample. However, lensed optical fibers are not new. This study analyzes how fiber tip parameters can be used to control focusing properties. Our study shows that the configurations to generate a photonic jet (PJ) can clearly be distinguished from more classical-lensed fibers focusing. PJ is a highly concentrated, propagative light beam, with a full width at half maximum (FWHM) that can be lower than the diffraction limit. According to the simulations, the PJs are obtained when light is coupled in the guide fundamental mode and when the base diameter of the microlens is close to the core diameter. For single mode fibers or fibers with a low number of modes, long tips with a relatively sharp shape achieve PJ with smaller widths. On the contrary, when the base diameter of the microlens is larger than the fiber core, the focus point tends to move away from the external surface of the fiber and has a larger width. In other words, the optical system (fiber/microlens) behaves in this case like a classical-lensed fiber with a larger focus spot size. The results of this study can be used as guidelines for the tailored fabrication of shaped optical fiber tips according to the targeted application. Full article
(This article belongs to the Special Issue Photonic Jet: Science and Application)
Show Figures

Figure 1

10 pages, 5461 KiB  
Communication
Photonic Nanojet Modulation Achieved by a Spider-Silk-Based Metal–Dielectric Dome Microlens
by Ching-Bin Lin, Yu-Hsiang Lin, Wei-Yu Chen and Cheng-Yang Liu
Photonics 2021, 8(8), 334; https://doi.org/10.3390/photonics8080334 - 14 Aug 2021
Cited by 10 | Viewed by 3191
Abstract
The photonic nanojet is a non-resonance focusing phenomenon with high intensity and narrow spot that can serve as a powerful biosensor for in vivo detection of red blood cells, micro-organisms, and tumor cells in blood. In this study, we first demonstrated photonic nanojet [...] Read more.
The photonic nanojet is a non-resonance focusing phenomenon with high intensity and narrow spot that can serve as a powerful biosensor for in vivo detection of red blood cells, micro-organisms, and tumor cells in blood. In this study, we first demonstrated photonic nanojet modulation by utilizing a spider-silk-based metal–dielectric dome microlens. A cellar spider was employed in extracting the silk fiber, which possesses a liquid-collecting ability to form a dielectric dome microlens. The metal casing on the surface of the dielectric dome was coated by using a glancing angle deposition technique. Due to the nature of surface plasmon polaritons, the characteristics of photonic nanojets are strongly modulated by different metal casings. Numerical and experimental results showed that the intensity of the photonic nanojet was increased by a factor of three for the gold-coated dome microlens due to surface plasmon resonance. The spider-silk-based metal-dielectric dome microlens could be used to scan a biological target for large-area imaging with a conventional optical microscope. Full article
(This article belongs to the Special Issue Photonic Jet: Science and Application)
Show Figures

Figure 1

Back to TopTop