Photonic Hook with Modulated Bending Angle Formed by Using Triangular Mesoscale Janus Prisms
Abstract
:1. Introduction
2. Simulation Model
3. Simulations and Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alderman:, P.; Owston, P. The square pyramidal configuration in a five-co-ordinate nitrosyl complex. Nature 1956, 178, 1071–1072. [Google Scholar] [CrossRef]
- Alamer, B.; Bootharaju, M.; Kozlov, S.; Cao, Z.; Shkurenko, A.; Nematulloev, S.; Maity, P.; Mohammed, O.; Eddaoudi, M.; Cavallo, L.; et al. [Ag9(1,2-BDT)6]3–: How square-pyramidal building blocks self-assemble into the smallest silver nanocluster. Inorg. Chem. 2021, 60, 4306–4312. [Google Scholar] [CrossRef] [PubMed]
- Bragg, W.H. The Structure of Magnetite and the Spinels. Nature 1915, 95, 561. [Google Scholar] [CrossRef] [Green Version]
- Natural Pyramids. Sci. Am. 1857, 13, 88. [CrossRef]
- Narimanov, A. Pyramid effect. Science 1999, 5446, 286. [Google Scholar]
- Minin, I.V.; Minin, O.V.; Yue, L. Electromagnetic properties of pyramids from positions of photonics. Russ. Phys. J. 2020, 62, 1763–1769. [Google Scholar] [CrossRef]
- Gershoni, D. Pyramidal quantum dots. Nat. Photon. 2010, 4, 271–272. [Google Scholar] [CrossRef]
- Fallahazad, P.; Naderi, N.; Taherkhani, M.; Bazargan, A. Porous pyramidal silicon structures for improved light sensing performance. Optik 2020, 222, 165433. [Google Scholar] [CrossRef]
- Weber, F.; Karl, M.; Lupaca-Schomber, J.; Löffler, W.; Li, S.; Passow., T. Optical modes in pyramidal GaAs microcavities. Appl. Phys. Lett. 2007, 90, 161104. [Google Scholar] [CrossRef]
- Al-Wahsh, H.; Dobrzyński, L.; Akjouj, A. Long-lived resonances: Photonic triangular pyramid. Photonics Nanostructures Fundam. Appl. 2022, 50, 101022. [Google Scholar] [CrossRef]
- Desiatov, B.; Goykhman, I.; Mazurski, N.; Shappir, J.; Khurgin, J.; Levy, U. Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime. Optica 2015, 2, 335–338. [Google Scholar] [CrossRef]
- Syu, H.; Chuang, H.; Lin, M.; Cheng, C.; Huang, P.; Lin, C. Ultra-broadband photoresponse of localized surface plasmon resonance from Si-based pyramid structures. Photonics Res. 2019, 7, 1119–1126. [Google Scholar] [CrossRef]
- Fan, Y.; Han, P.; Liang, P.; Xing, Y.; Ye, Z.; Hu, S. Differences in etching characteristics of TMAH and KOH on preparing inverted pyramids for silicon solar cells. Appl. Surf. Sci. 2013, 264, 761–766. [Google Scholar] [CrossRef]
- Almenabawy, S.; Zhang, Y.; Flood, A.; Prinja, R.; Kherani, N. Nanometer-mesa inverted-pyramid photonic crystals for thin silicon solar cells. ACS Appl. Energy Mater. 2022, in press. [Google Scholar] [CrossRef]
- Lindquist, N.; Johnson, T.; Nagpal, P.; Norris, D.; Oh, S. Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture. Sci. Rep. 2013, 3, 1857. [Google Scholar] [CrossRef] [Green Version]
- Mu, J.; Liu, Z.; Li, J.; Hao, T.; Wang, Y.; Sun, S.; Li, Z.; Li, J.; Li, W.; Gu, C. Direct laser writing of pyramidal plasmonic structures with apertures and asymmetric gratings towards efficient subwavelength light focusing. Opt. Express 2015, 23, 22564–22571. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.; Proust, J.; Gérard, D.; Bijeon, J.; Plain, J. Intense Bessel-like beams arising from pyramid-shaped microtips. Opt. Lett. 2012, 37, 1274–1276. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Chen, S.; Jiang, Z.; Shi, Z.; Wang, J.; Du, L. Highly sensitive and reproducible SERS substrates based on ordered micropyramid array and silver nanoparticles. ACS Appl. Mater. Interfaces 2021, 13, 29222–29229. [Google Scholar] [CrossRef]
- Abdelsamie, M.; Rahman, R.; Mustafa, S. Pyramid shape power as a new halal-compliant food preservation and packaging technique. Procedia Soc. Behav. Sci. 2014, 121, 232–242. [Google Scholar] [CrossRef] [Green Version]
- Abdelsamie, M.; Rahman, R.; Mustafa, S.; Hashim, D. Effect of packaging shape and storage on the keeping quality of mineral water and development of a water-treatment device. J. Food Process Technol. 2013, 4, 231. [Google Scholar] [CrossRef] [Green Version]
- Horiuchi, N. Photonic nanojets. Nat. Photonics 2012, 6, 138–139. [Google Scholar] [CrossRef]
- Minin, I.V.; Minin, O.V. Diffractive Optics and Nanophotonics Resolution Below the Diffraction Limit; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Minin, I.V.; Minin, O.V.; Geints, Y. Localized EM and photonic jets from non-spherical and non-symmetrical dielectric mesoscale objects. Ann. Phys. 2015, 527, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Ge, S.; Liu, W.; Zhang, J.; Huang, Y.; Xi, Y.; Yang, P.; Sun, S.; Li, S.; Lin, D.; Zhou, S.; et al. Novel bilayer micropyramid structure photonic nanojet for enhancing a focused optical field. Nanomaterials 2021, 11, 2034. [Google Scholar] [CrossRef] [PubMed]
- Abramov, A.; Yue, Y.; Wang, M.; Wang, Z.; Xu, Y. Numerical modeling of photonic jet behind triangular Prism. Asian J. Res. Rev. Phys. 2021, 4, 1–6. [Google Scholar] [CrossRef]
- Zaitsev, V.; Stafeev, S. The photonic nanojets formation by two-dimensional microprisms. Comput. Opt. 2020, 44, 909–916. [Google Scholar] [CrossRef]
- Dholakia, K.; Bruce, G. Optical hooks. Nat. Photonics 2019, 13, 229–230. [Google Scholar] [CrossRef]
- Gu, G.; Shao, L.; Song, J.; Qu, J.; Zheng, K.; Shen, X.; Peng, Z.; Hu, J.; Chen, X.; Chen, M.; et al. Photonic hooks from Janus microcylinders. Opt. Express 2019, 27, 37771–37780. [Google Scholar] [CrossRef] [Green Version]
- Minin, I.V.; Minin, O.V.; Yue, L.; Wang, Z.; Christodoulides, D. Photonic hook —A new type of subwavelength self-bending structured light beams: A tutorial review. arXiv 2019, arXiv:1910.09543. [Google Scholar]
- Minin, O.V.; Minin, I.V. The Photonic Hook: From Optics to Acoustics and Plasmonics; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Minin, I.V.; Minin, O.V.; Liu, C.; Wei, H.; Geints, Y.; Karabchevsky, A. Experimental demonstration of tunable photonic hook by partially illuminated dielectric microcylinder. Opt. Lett. 2020, 45, 4899–4902. [Google Scholar] [CrossRef]
- Liu, C.; Chen, Y.; Li, C.; Chen, W.; Chien, S. Photonic hook generated by the Janus microcylinder under point-source illumination. J. Opt. Soc. Am. B 2021, 38, 2938–2944. [Google Scholar] [CrossRef]
- Zhou, S. Twin photonic hooks generated from two coherent illuminations of a micro-cylinder. J. Opt. 2020, 22, 085602. [Google Scholar] [CrossRef]
- Zhou, S. Twin photonic hooks generated from two adjacent dielectric cylinders. Opt. Quantum Electron. 2020, 52, 389. [Google Scholar] [CrossRef]
- Shen, X.; Gu, G.; Shao, L.; Peng, Z.; Hu, J.; Bandyopadhyay, S.; Liu, Y.; Jiang, J.; Chen, M. Twin photonic hooks generated by twin-ellipse microcylinder. IEEE Photonics J. 2020, 12, 6500609. [Google Scholar] [CrossRef]
- Minin, I.V.; Minin, O.V. Mesotronics: Some new unusual optical effects. Photonics 2022, 9, 762. [Google Scholar] [CrossRef]
- Hu, J.; Zhou, S.; Sun, Y.; Fang, X.; Wu, L. Fabrication, properties and applications of Janus particles. Chem. Soc. Rev. 2012, 41, 4356–4378. [Google Scholar] [CrossRef] [PubMed]
- Poggi, E.; Gohy, J. Janus particles: From synthesis to application. Colloid Polym. Sci. 2017, 295, 2083–2108. [Google Scholar] [CrossRef]
- Pacheco-Peña, V.; Riley, J.; Liu, C.; Minin, O.V.; Minin, I.V. Diffraction limited photonic hook via scattering and diffraction of dual-dielectric structures. Sci. Rep. 2021, 11, 20278. [Google Scholar] [CrossRef]
- Taflove, A.; Hagness, S. Computational Electrodynamics: The Finite Difference Time Domain Method; Artech House: Boston, MA, USA, 2005. [Google Scholar]
- Martirosyan, A.; Altucci, C.; Lisio, C.; Porzio, A.; Solimeno, S.; Tosa, V. Fringe pattern of the field diffracted by axicons. J. Opt. Soc. Am. A 2004, 21, 770–776. [Google Scholar] [CrossRef] [Green Version]
- Luk’yanchuk, B.; Paniagua-Domínguez, R.; Minin, I.O.; Minin, O.V.; Wang, Z. Refractive index less than two: Photonic nanojets yesterday, today and tomorrow [Invited]. Opt. Mater. Express 2017, 7, 1820–1847. [Google Scholar] [CrossRef] [Green Version]
- Khonina, S.; Kazanskiy, N.; Khorin, P.; Butt, M. Modern types of axicons: New functions and applications. Sensors 2021, 21, 6690. [Google Scholar] [CrossRef]
- Khonina, S.; Degtyarev, S.; Savelyev, D.; Ustinov, A. Focused, evanescent, hollow, and collimated beams formed by microaxicons with different conical angles. Opt. Express 2017, 25, 19052–19064. [Google Scholar] [CrossRef]
- Liu, C.; Minin, O.V.; Minin, I.V. First experimental observation of array of photonic jets from saw-tooth phase diffraction grating. EPL 2018, 123, 54003. [Google Scholar] [CrossRef]
- Minin, O.V.; Minin, I.V. Optical Phenomena in Mesoscale Dielectric Particles. Photonics 2021, 8, 591. [Google Scholar] [CrossRef]
- Poco, J.; Hrubesh, L. Method of Producing Optical Quality Glass Having a Selected Refractive Index. U.S. Patent 6,158,244, 2008. [Google Scholar]
- Jiang, S.; Granick, S. Janus Particle Synthesis, Self-Assembly and Applications; The Royal Society of Chemistry: Cambridge, UK, 2012. [Google Scholar]
- Park, E.; Jin, S.; Park, Y.; Guo, S.; Chang, H.; Jung, Y. Trapping analytes into dynamic hot spots using Tyramine-medicated crosslinking chemistry for designing versatile sensor. J. Colloid. Interface Sci. 2022, 607, 782–790. [Google Scholar] [CrossRef] [PubMed]
- Geints, Y.; Minin, O.V.; Minin, I.V. Systematic study and comparison of photonic nanojets produced by dielectric microparticles in 2D- and 3D- spatial configurations. J. Opt. 2018, 20, 065606. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.-Y.; Liu, C.-Y.; Hsieh, Y.-K.; Minin, O.V.; Minin, I.V. Photonic Hook with Modulated Bending Angle Formed by Using Triangular Mesoscale Janus Prisms. Photonics 2022, 9, 948. https://doi.org/10.3390/photonics9120948
Chen W-Y, Liu C-Y, Hsieh Y-K, Minin OV, Minin IV. Photonic Hook with Modulated Bending Angle Formed by Using Triangular Mesoscale Janus Prisms. Photonics. 2022; 9(12):948. https://doi.org/10.3390/photonics9120948
Chicago/Turabian StyleChen, Wei-Yu, Cheng-Yang Liu, Yu-Kai Hsieh, Oleg V. Minin, and Igor V. Minin. 2022. "Photonic Hook with Modulated Bending Angle Formed by Using Triangular Mesoscale Janus Prisms" Photonics 9, no. 12: 948. https://doi.org/10.3390/photonics9120948
APA StyleChen, W. -Y., Liu, C. -Y., Hsieh, Y. -K., Minin, O. V., & Minin, I. V. (2022). Photonic Hook with Modulated Bending Angle Formed by Using Triangular Mesoscale Janus Prisms. Photonics, 9(12), 948. https://doi.org/10.3390/photonics9120948