Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (620)

Search Parameters:
Keywords = photonic circuit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 10014 KB  
Article
Directional Coupling of Surface Plasmon Polaritons at Exceptional Points in the Visible Spectrum
by Amer Abdulghani, Salah Abdo, Khalil As’ham, Ambali Alade Odebowale, Andrey E. Miroshnichenko and Haroldo T. Hattori
Materials 2025, 18(24), 5595; https://doi.org/10.3390/ma18245595 - 12 Dec 2025
Viewed by 232
Abstract
Robust control over the coupling and propagation of surface plasmon polaritons (SPPs) is essential for advancing various plasmonic applications. Traditional planar structures, commonly used to design SPP directional couplers, face limitations such as low extinction ratios and design complexities. These issues frequently hinder [...] Read more.
Robust control over the coupling and propagation of surface plasmon polaritons (SPPs) is essential for advancing various plasmonic applications. Traditional planar structures, commonly used to design SPP directional couplers, face limitations such as low extinction ratios and design complexities. These issues frequently hinder the dense integration and miniaturisation of photonic systems. Recently, exceptional points (EPs)—unique degeneracies within the parameter space of non-Hermitian systems—have garnered significant attention for enabling a range of counterintuitive phenomena in non-conservative photonic systems, including the non-trivial control of light propagation. In this work, we develop a rigorous temporal coupled-mode theory (TCMT) description of a non-Hermitian metagrating composed of alternating silicon–germanium nanostrips and use it to explore the unidirectional excitation of SPPs at EPs in the visible spectrum. Within this framework, EPs, typically associated with the coalescence of eigenvalues and eigenstates, are leveraged to manipulate light propagation in nonconservative photonic systems, facilitating the refined control of SPPs. By spatially modulating the permittivity profile at a dielectric–metal interface, we induce a passive parity–time (PT)-symmetry, which allows for refined tuning of the SPPs’ directional propagation by optimising the structure to operate at EPs. At these EPs, a unidirectional excitation of SPPs with a directional intensity extinction ratio as high as 40 dB between the left and right excited SPP modes can be reached, with potential applications in integrated optical circuits, visible communication technologies, and optical routing, where robust and flexible control of light at the nanoscale is crucial. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

11 pages, 1712 KB  
Article
Application of a CdTe Photovoltaic Dosimeter to Therapeutic Megavoltage Photon Beams
by Sang Hee Youn, Sangsu Kim, Jong Hoon Lee and Shinhaeng Cho
Appl. Sci. 2025, 15(24), 13091; https://doi.org/10.3390/app152413091 - 12 Dec 2025
Viewed by 124
Abstract
Accurate real-time dosimetry is key in megavoltage radiotherapy; however, many detectors require external biasing or complex instrumentation. This study evaluated thin-film CdTe solar cells operating in photovoltaic (zero-bias) mode as medical dosimeters. Superstrate ITO/CdS/CdTe/Cu/Au devices were fabricated and irradiated with 6-MV photons from [...] Read more.
Accurate real-time dosimetry is key in megavoltage radiotherapy; however, many detectors require external biasing or complex instrumentation. This study evaluated thin-film CdTe solar cells operating in photovoltaic (zero-bias) mode as medical dosimeters. Superstrate ITO/CdS/CdTe/Cu/Au devices were fabricated and irradiated with 6-MV photons from a clinical linear accelerator to 20 kGy cumulative dose. Electrical and dosimetric properties were assessed based on AM 1.5 current–voltage measurements, external quantum efficiency (EQE), dose linearity, dose-rate dependence, field-size dependence, percentage depth dose (PDD), and one-month reproducibility. With increasing dose (5–20 kGy), the open-circuit voltage and fill factor decreased by ~2–3%, the short-circuit current density by ~10%, retaining ~87% initial efficiency. Series and shunt resistances were stable, while EQE decreased uniformly (~5%), indicating degradation mainly from increased nonradiative recombination. Dose–signal linearity remained intact, and post-irradiation sensitivity loss was corrected with a single calibration factor. Dose-rate dependence was minor; low reverse bias (~3–7 V) enhanced response without nonlinearity. Field-size and PDD responses agreed with ionization chamber data within ~1%, and weekly stability was within ~1%. Parallel stacking of two cells increased signal nearly linearly. CdTe solar-cell detectors thus enable zero-bias, real-time, stable, and scalable dosimetry and strongly agree with reference standards. Full article
Show Figures

Figure 1

16 pages, 5393 KB  
Article
High-Efficiency Fiber Edge Coupling for Silicon Nitride Integrated Photonics
by Sergey S. Avdeev, Aleksandr S. Baburin, Evgeniy V. Sergeev, Alexei B. Kramarenko, Arseniy V. Belyaev, Danil V. Kushnev, Kirill A. Buzaverov, Ilya A. Stepanov, Vladimir V. Echeistov, Ales S. Loginov, Sergey V. Bukatin, Ali Sh. Amiraslanov, Evgeniy S. Lotkov, Dmitriy A. Baklykov and Ilya A. Rodionov
Micromachines 2025, 16(12), 1401; https://doi.org/10.3390/mi16121401 - 12 Dec 2025
Viewed by 429
Abstract
Photonic integrated circuits play a crucial role in almost every aspect of modern life, such as data storage, telecommunications, medical diagnostics, green energy, autonomous driving, agriculture, and high-performance computing. To fully harness their benefits, an efficient coupling mechanism is required to successfully launch [...] Read more.
Photonic integrated circuits play a crucial role in almost every aspect of modern life, such as data storage, telecommunications, medical diagnostics, green energy, autonomous driving, agriculture, and high-performance computing. To fully harness their benefits, an efficient coupling mechanism is required to successfully launch light into on-chip waveguides from fibers. This study introduces low-loss coupling strategies and their implementation for silicon nitride integrated photonics. Here we present an overview of coupling technologies, optimized designs, and a fabrication technique for inverse tapers, which enable effective coupling for both transverse-magnetic and transverse-electric modes. We measured the coupling losses of 0.15 dB for UHNA-7 fiber at 1550 nm per facet for single-mode 220 × 1200 nm waveguides. We also designed, fabricated, and experimentally characterized a multi-tip taper, yielding 1.5 dB per facet at 1550 nm with broadband stability over 1500–1600 nm. We believe that our approach is universal and can be used both for individual fiber and fiber arrays coupling and for subsequent assembly of fiber with a chip, ensuring minimal losses. Full article
(This article belongs to the Section A1: Optical MEMS and Photonic Microsystems)
Show Figures

Figure 1

11 pages, 1982 KB  
Article
Improving Channel Uniformity of Multiplexer with High-Degree-of-Freedom Auxiliary Waveguides
by Qingran Liu, Chenyan Zhang, Pengju Hu, Huanjie Chen, Xiyan Xu and Chongfu Zhang
Optics 2025, 6(4), 65; https://doi.org/10.3390/opt6040065 - 11 Dec 2025
Viewed by 140
Abstract
In order to further mitigate the channel non-uniformity at the junction between the input slab and the arrayed waveguide grating in traditional AWG structures, we design a highly flexible, structurally adaptive linear auxiliary waveguide. Through systematic parameter scanning utilizing the Particle Swarm Optimization [...] Read more.
In order to further mitigate the channel non-uniformity at the junction between the input slab and the arrayed waveguide grating in traditional AWG structures, we design a highly flexible, structurally adaptive linear auxiliary waveguide. Through systematic parameter scanning utilizing the Particle Swarm Optimization (PSO) algorithm, an optimal set of geometric parameters for the auxiliary waveguide is identified. This optimization strategy achieves a significant reduction in loss non-uniformity by 0.5 dB relative to the conventional AWG configuration, culminating in a final non-uniformity of merely 0.253 dB. This improvement underscores the critical role of advanced structural tuning and algorithmic optimization in enhancing the performance of photonic integrated circuits, particularly in dense wavelength division multiplexing (DWDM) applications for next-generation communication systems such as radio-over-fiber (RoF) architecture-based 6G. The method can provide a scalable and efficient pathway toward high-uniformity, AWG designs without introducing additional fabrication complexity or incurring substantial costs. Full article
Show Figures

Figure 1

29 pages, 700 KB  
Review
Towards 6G: A Review of Optical Transport Challenges for Intelligent and Autonomous Communications
by Evelio Astaiza Hoyos, Héctor Fabio Bermúdez-Orozco and Jorge Alejandro Aldana-Gutierrez
Computation 2025, 13(12), 286; https://doi.org/10.3390/computation13120286 - 5 Dec 2025
Viewed by 497
Abstract
The advent of sixth-generation (6G) communications envisions a paradigm of ubiquitous intelligence and seamless physical–digital fusion, demanding unprecedented performance from the optical transport infrastructure. Achieving terabit-per-second capacities, microsecond latency, and nanosecond synchronisation precision requires a convergent, flexible, open, and AI-native x-Haul architecture that [...] Read more.
The advent of sixth-generation (6G) communications envisions a paradigm of ubiquitous intelligence and seamless physical–digital fusion, demanding unprecedented performance from the optical transport infrastructure. Achieving terabit-per-second capacities, microsecond latency, and nanosecond synchronisation precision requires a convergent, flexible, open, and AI-native x-Haul architecture that integrates communication with distributed edge computing. This study conducts a systematic literature review of recent advances, challenges, and enabling optical technologies for intelligent and autonomous 6G networks. Using the PRISMA methodology, it analyses sources from IEEE, ACM, and major international conferences, complemented by standards from ITU-T, 3GPP, and O-RAN. The review examines key optical domains including Coherent PON (CPON), Spatial Division Multiplexing (SDM), Hollow-Core Fibre (HCF), Free-Space Optics (FSO), Photonic Integrated Circuits (PICs), and reconfigurable optical switching, together with intelligent management driven by SDN, NFV, and Artificial Intelligence/Machine Learning (AI/ML). The findings reveal that achieving 6G transport targets will require synergistic integration of multiple optical technologies, AI-based orchestration, and nanosecond-level synchronisation through Precision Time Protocol (PTP) over fibre. However, challenges persist regarding scalability, cost, energy efficiency, and global standardisation. Overcoming these barriers will demand strategic R&D investment, open and programmable architectures, early AI-native integration, and sustainability-oriented network design to make optical fibre a key enabler of the intelligent and autonomous 6G ecosystem. Full article
(This article belongs to the Topic Computational Complex Networks)
Show Figures

Graphical abstract

26 pages, 8395 KB  
Article
Design and Performance Insights in Backbone Node Upgrades: From Single-Band WSS to UWB-Based Flex-WBSS Solutions
by Charalampos Papapavlou, Konstantinos Paximadis, Dan M. Marom and Ioannis Tomkos
Telecom 2025, 6(4), 93; https://doi.org/10.3390/telecom6040093 - 4 Dec 2025
Viewed by 243
Abstract
Emerging services such as artificial intelligence (AI), 5G, the Internet of Things (IoT), cloud data services and teleworking are growing exponentially, pushing bandwidth needs to the limit. Space Division Multiplexing (SDM) in the spatial domain, along with Ultra-Wide Band (UWB) transmission in the [...] Read more.
Emerging services such as artificial intelligence (AI), 5G, the Internet of Things (IoT), cloud data services and teleworking are growing exponentially, pushing bandwidth needs to the limit. Space Division Multiplexing (SDM) in the spatial domain, along with Ultra-Wide Band (UWB) transmission in the spectrum domain, represent two degrees of freedom that will play a crucial role in the evolution of backbone optical networks. SDM and UWB technologies necessitate the replacement of conventional Wavelength-Selective-Switch (WSS)-based architectures with innovative optical switching elements capable of handling both higher port counts and flexible switching across various granularities. In this work, we introduce a novel Photonic Integrated Circuit (PIC)-based switching element called flex-Waveband Selective Switch (WBSS), designed to provide flexible band switching across the UWB spectrum (~21 THz). The proposed flex-WBSS supports a hierarchical three-layered Multi-Granular Optical Node (MG-ON) architecture incorporating optical switching across various granularities ranging from entire fibers and flexibly defined bands down to individual wavelengths. To evaluate its performance, we develop a custom network simulator, enabling a thorough performance analysis on the critical performance metrics of the node. Simulations are conducted over an existing network topology evaluating three traffic-oriented switching policies: Full Fiber Switching (FFS), Waveband Switching (WBS) and Wavelength Switching (WS). Simulation results reveal high Optical-to-Signal Ratio (OSNR) and low Bit Error Rate (BER) values, particularly under the FFS policy. In contrast, the integration of the WBS policy bridges the gap between existing WSS- and future FFS-based architectures and manages to mitigate capacity bottlenecks, enabling rapid scalable network upgrades in existing infrastructures. Additionally, we propose a probabilistic framework to evaluate the node’s bandwidth utilization and scaling behavior, exploring trade-offs among scalability, component numbers and complexity. The proposed framework can be easily adapted for the design of future transport optical networks. Finally, we perform a SWaP-C (Size, Weight, Power and Cost) analysis. Results show that our novel MG-ON achieves strong performance, reaching a throughput exceeding 10 Pb/s with high OSNR values ≈14–20 dB and BER ≈10−9 especially under the FFS policy. Moreover, it delivers up to 7.5× cost reduction compared to alternative architectures, significantly reducing deployment/upgrade costs while maintaining low power consumption. Full article
(This article belongs to the Special Issue Optical Communication and Networking)
Show Figures

Figure 1

17 pages, 5239 KB  
Article
Low-Loss Multimode Waveguide Bends with Direct Laser Writing in Polymer
by Tigran Baghdasaryan, Neshteh Kourian, Mushegh Rafayelyan and Tatevik Sarukhanyan
Micromachines 2025, 16(12), 1361; https://doi.org/10.3390/mi16121361 - 29 Nov 2025
Viewed by 469
Abstract
Waveguide bends are critical components for compact routing in integrated photonic circuits, yet their design in air-clad polymer waveguides fabricated by two-photon polymerization direct laser writing (2PP-DLW) is challenging due to multimode behavior. We address this by systematically modeling Bézier-shaped 90° bends and [...] Read more.
Waveguide bends are critical components for compact routing in integrated photonic circuits, yet their design in air-clad polymer waveguides fabricated by two-photon polymerization direct laser writing (2PP-DLW) is challenging due to multimode behavior. We address this by systematically modeling Bézier-shaped 90° bends and S-bends using a variational FDTD solver, exploring bend span, curvature, and waveguide dimensions. Our results show that smaller waveguides (widths 2–4 µm) and lower Bézier parameters (B = 0–0.2) consistently yield superior performance, enabling sharper bends with minimal loss. For 90° bends, spans as small as 20–30 µm achieve near-unity transmission, while for S-bends, aspect ratios below 1 are feasible, allowing highly compact layouts. Although all configurations transmit energy to the fundamental mode, wider waveguides exhibit stronger higher-order mode excitation and greater sensitivity to fabrication imperfections. Smaller waveguides reduce these effects but approach the resolution limits of 2PP-DLW. Thus, a 2 µm wide waveguide represents an optimal compromise between fabrication feasibility and optical performance. Experimental demonstrations confirm the practicality of these design rules, illustrating trends predicted by simulations. These findings establish clear guidelines for designing low-loss, space-efficient 3D photonic circuits and highlight the critical role of simulation-driven optimization in fully exploiting 2PP-DLW technology, while providing deeper insight for future device architectures. Full article
(This article belongs to the Special Issue Laser Micro/Nano Fabrication, Second Edition)
Show Figures

Figure 1

20 pages, 2430 KB  
Article
Tunable Band-Pass Filters with Long Periodicity Using Cascaded Mach-Zehnder Interferometer Networks
by Sergio Rivera, Jessica César-Cuello, Daniel Gallego and Guillermo Carpintero
Photonics 2025, 12(12), 1154; https://doi.org/10.3390/photonics12121154 - 24 Nov 2025
Viewed by 330
Abstract
This paper introduces a theoretical framework for designing and tuning band-pass filters with a highly extended periodicity using cascaded Mach-Zehnder Interferometer (MZI) networks. We show that a filter centered at frequency f0 with a bandwidth of FSR0 and an arbitrarily large [...] Read more.
This paper introduces a theoretical framework for designing and tuning band-pass filters with a highly extended periodicity using cascaded Mach-Zehnder Interferometer (MZI) networks. We show that a filter centered at frequency f0 with a bandwidth of FSR0 and an arbitrarily large free spectral range (FSR) can be built with a minimal number of MZIs by using stages with FSRs that are prime multiples of FSR0. Due to the inherent multi-spectral transparency of materials, this design ensures that only a single narrow passband is transparent. We derive the total power transmission for such a cascaded system and show that the filter’s overall periodicity is the product of the individual MZI transfer functions. Furthermore, we deduce the linear relationship between the applied differential voltage and the resulting frequency shift, offering a precise method for continuous spectral tuning without altering the filter’s intrinsic FSR. We propose a new, simplified electronic circuit that uses a single input current and series impedances for continuous resonant peak tuning and analyze the feasibility of such a design. This circuit improves practical implementation and allows for compensation of fabrication errors. This work offers crucial analytical tools and insights for developing advanced reconfigurable photonic integrated filters, essential for future optical communication and sensing systems. Full article
Show Figures

Figure 1

23 pages, 3243 KB  
Entry
Nanoimprint—Mo(o)re than Lithography
by Helmut Schift
Encyclopedia 2025, 5(4), 197; https://doi.org/10.3390/encyclopedia5040197 - 21 Nov 2025
Viewed by 1272
Definition
Nanoimprint lithography (NIL) is a high-resolution parallel patterning method based on molding. It has proven resolution down to the nanometer range and can be scaled up for large areas and high throughput. Its main characteristic is that the surface pattern of a mold [...] Read more.
Nanoimprint lithography (NIL) is a high-resolution parallel patterning method based on molding. It has proven resolution down to the nanometer range and can be scaled up for large areas and high throughput. Its main characteristic is that the surface pattern of a mold is imprinted on a material that is displaced locally by using the difference in hardness of the mold and the moldable material, thus replicating its surface topography. This can be achieved by shaping a thermoplastic film by heating and cooling (T-NIL) or a photosensitive resin followed by a curing process for hardening (UV-NIL). In lithography, the local thickness contrast of the thin molded film can be used as a masking layer to transfer the pattern onto the underlying substrate. Therefore, NIL will be an alternative in fields in which electron-beam lithography and photolithography do not provide sufficient resolution at reasonable throughput. Direct imprint enables applications where a modified functional surface is needed without pattern transfer. NIL is currently used for high-volume manufacturing in different applications, like patterned sapphire substrates, wire grid polarizers, photonic devices, lightguides for AR/VR devices, metalenses, and biosensors for DNA analysis, and is being tested for semiconductor integrated circuit chips. Full article
(This article belongs to the Collection Encyclopedia of Engineering)
Show Figures

Graphical abstract

26 pages, 6322 KB  
Article
Silicon-on-Silica Microring Resonators for High-Quality, High-Contrast, High-Speed All-Optical Logic Gates
by Amer Kotb, Antonios Hatziefremidis and Kyriakos E. Zoiros
Nanomaterials 2025, 15(22), 1736; https://doi.org/10.3390/nano15221736 - 17 Nov 2025
Viewed by 777
Abstract
With the increasing demand for ultrafast optical signal processing, silicon-on-silica (SoS) waveguides with ring resonators have emerged as a promising platform for integrated all-optical logic gates (AOLGs). In this work, we design and simulate a SoS-based waveguide structure, operating at the telecommunication wavelength [...] Read more.
With the increasing demand for ultrafast optical signal processing, silicon-on-silica (SoS) waveguides with ring resonators have emerged as a promising platform for integrated all-optical logic gates (AOLGs). In this work, we design and simulate a SoS-based waveguide structure, operating at the telecommunication wavelength of 1550 nm, consisting of a circular ring resonator coupled to straight bus waveguides using Lumerical FDTD solutions. The design achieves a high Q-factor of 11,071, indicating low optical loss and strong light confinement. The evanescent coupling between the ring and waveguides, along with optimized waveguide dimensions, enables efficient interference, realizing a complete suite of AOLGs (XOR, AND, OR, NOT, NOR, NAND, and XNOR). Numerical simulations demonstrate robust performance across all gates, with high contrast ratios between 11.40 dB and 13.72 dB and an ultra-compact footprint of 1.42 × 1.08 µm2. The results confirm the device’s capability to manipulate optical signals at data rates up to 55 Gb/s, highlighting its potential for scalable, high-speed, and energy-efficient optical computing. These findings provide a solid foundation for the future experimental implementation and integration of SoS-based photonic logic circuits in next-generation optical communication systems. Full article
Show Figures

Figure 1

10 pages, 902 KB  
Article
Phase-Matched Design for Efficient Entangled Photon Pair Generation in 3R-MoS2 Waveguides
by Shicheng Yu, Xiaojie Zhang, Xia Lei and Liang Zhai
Photonics 2025, 12(11), 1100; https://doi.org/10.3390/photonics12111100 - 8 Nov 2025
Viewed by 596
Abstract
Entangled photons are essential for photonic quantum technologies. Their generation typically relies on spontaneous parametric down-conversion, but conventional nonlinear crystals are bulky and hard to integrate on chips. Rhombohedral-stacked MoS2 combines a high refractive index, large second-order nonlinearity, and flexibility for heterogeneous [...] Read more.
Entangled photons are essential for photonic quantum technologies. Their generation typically relies on spontaneous parametric down-conversion, but conventional nonlinear crystals are bulky and hard to integrate on chips. Rhombohedral-stacked MoS2 combines a high refractive index, large second-order nonlinearity, and flexibility for heterogeneous integration, making it a promising platform for integrated quantum photonics. However, the typical thin-film form of 3R-MoS2 restricts the effective nonlinear interaction length, limiting entanglement generation efficiency in practical devices. To overcome this, phase-matching strategies in integrated waveguides are required but have so far remained undeveloped. Here, we introduce a waveguide-integrated 3R-MoS2 platform with periodic grooves to achieve quasi-phase matching, enhancing down-conversion efficiency. Leveraging χ(2) tensor symmetries and orthogonal waveguide modes, the design efficiently generates entangled photons, providing a compact, scalable route toward 2D-material-based integrated quantum photonic circuits. Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics)
Show Figures

Figure 1

27 pages, 5439 KB  
Article
320 × 240 SPAD Direct Time-of-Flight Image Sensor and Camera Based on In-Pixel Correlation and Switched-Capacitor Averaging
by Maarten Kuijk, Ayman Morsy, Thomas Lapauw, Thomas Van den Dries, Wannes Nevens, Mohamed A. Bounouar, Hans Ingelberts and Daniel Van Nieuwenhove
Sensors 2025, 25(21), 6772; https://doi.org/10.3390/s25216772 - 5 Nov 2025
Viewed by 1030
Abstract
Correlation-Assisted Direct Time-of-Flight (CA-dToF) is demonstrated for the first time on a large 320 × 240-pixel SPAD array sensor that includes on-chip high-speed timing support circuitry. SPAD events are processed in-pixel, avoiding data communication over the array and/or storage bottlenecks. This is accomplished [...] Read more.
Correlation-Assisted Direct Time-of-Flight (CA-dToF) is demonstrated for the first time on a large 320 × 240-pixel SPAD array sensor that includes on-chip high-speed timing support circuitry. SPAD events are processed in-pixel, avoiding data communication over the array and/or storage bottlenecks. This is accomplished by sampling two orthogonal triangle waves that are synchronized with short light pulses illuminating the scene. Using small switched-capacitor circuits, exponential moving averaging (EMA) is applied to the sampled voltages, delivering two analog voltages (VQ2, VI2). These contain the phase delay, or the time of flight between the light pulse and photon’s time of arrival (ToA). Uncorrelated ambient photons and dark counts are averaged out, leaving only their associated shot noise impacting the phase precision. The QVGA camera allows for capturing depth-sense images with sub-cm precision over a 6 m range of detection, even with a small PDE of 0.7% at an 850 nm wavelength. Full article
Show Figures

Figure 1

26 pages, 1572 KB  
Article
Pulse-Driven Spin Paradigm for Noise-Aware Quantum Classification
by Carlos Riascos-Moreno, Andrés Marino Álvarez-Meza and German Castellanos-Dominguez
Computers 2025, 14(11), 475; https://doi.org/10.3390/computers14110475 - 1 Nov 2025
Viewed by 640
Abstract
Quantum machine learning (QML) integrates quantum computing with classical machine learning. Within this domain, QML-CQ classification tasks, where classical data is processed by quantum circuits, have attracted particular interest for their potential to exploit high-dimensional feature maps, entanglement-enabled correlations, and non-classical priors. Yet, [...] Read more.
Quantum machine learning (QML) integrates quantum computing with classical machine learning. Within this domain, QML-CQ classification tasks, where classical data is processed by quantum circuits, have attracted particular interest for their potential to exploit high-dimensional feature maps, entanglement-enabled correlations, and non-classical priors. Yet, practical realizations remain constrained by the Noisy Intermediate-Scale Quantum (NISQ) era, where limited qubit counts, gate errors, and coherence losses necessitate frugal, noise-aware strategies. The Data Re-Uploading (DRU) algorithm has emerged as a strong NISQ-compatible candidate, offering universal classification capabilities with minimal qubit requirements. While DRU has been experimentally demonstrated on ion-trap, photonic, and superconducting platforms, no implementations exist for spin-based quantum processing units (QPU-SBs), despite their scalability potential via CMOS-compatible fabrication and recent demonstrations of multi-qubit processors. Here, we present a pulse-level, noise-aware DRU framework for spin-based QPUs, designed to bridge the gap between gate-level models and realistic spin-qubit execution. Our approach includes (i) compiling DRU circuits into hardware-proximate, time-domain controls derived from the Loss–DiVincenzo Hamiltonian, (ii) explicitly incorporating coherent and incoherent noise sources through pulse perturbations and Lindblad channels, (iii) enabling systematic noise-sensitivity studies across one-, two-, and four-spin configurations via continuous-time simulation, and (iv) developing a noise-aware training pipeline that benchmarks gate-level baselines against spin-level dynamics using information-theoretic loss functions. Numerical experiments show that our simulations reproduce gate-level dynamics with fidelities near unity while providing a richer error characterization under realistic noise. Moreover, divergence-based losses significantly enhance classification accuracy and robustness compared to fidelity-based metrics. Together, these results establish the proposed framework as a practical route for advancing DRU on spin-based platforms and motivate future work on error-attentive training and spin–quantum-dot noise modeling. Full article
Show Figures

Figure 1

29 pages, 8225 KB  
Review
Quantum Biosensors on Chip: A Review from Electronic and Photonic Integrated Circuits to Future Integrated Quantum Photonic Circuits
by Yasaman Torabi, Shahram Shirani and James P. Reilly
Microelectronics 2025, 1(2), 5; https://doi.org/10.3390/microelectronics1020005 - 22 Oct 2025
Cited by 3 | Viewed by 1944
Abstract
Quantum biosensors offer a promising route to overcome the sensitivity and specificity limitations of conventional biosensing technologies. Their ability to detect biochemical signals at extremely low concentrations makes them strong candidates for next-generation sensing systems. This paper reviews the current state of quantum [...] Read more.
Quantum biosensors offer a promising route to overcome the sensitivity and specificity limitations of conventional biosensing technologies. Their ability to detect biochemical signals at extremely low concentrations makes them strong candidates for next-generation sensing systems. This paper reviews the current state of quantum biosensors and discusses their future implementation in chip-scale platforms that combine microelectronic and photonic technologies. It covers key quantum biosensing approaches including quantum dots (QDs), and nitrogen-vacancy (NV) centers. This paper also considers their potential compatibility with electronic integrated circuits (EICs), photonic integrated circuits (PICs) and integrated quantum photonic (IQP) systems for future biosensing applications. To our knowledge, this is the first review to systematically connect quantum biosensing technologies with the development of microelectronic and photonic chip-based devices. The goal is to clarify the technological trajectory toward compact, scalable, and high-performance quantum biosensing systems. Full article
Show Figures

Figure 1

16 pages, 2574 KB  
Article
Addressing a Special Case of Zero-Crossing Range Adjustment Detection in a Passive Autoranging Circuit for the FBG/PZT Photonic Current Transducer
by Burhan Mir, Grzegorz Fusiek and Pawel Niewczas
Sensors 2025, 25(20), 6311; https://doi.org/10.3390/s25206311 - 12 Oct 2025
Viewed by 608
Abstract
This paper analyses a special case in evaluating the passive autoranging (AR) technique that dynamically extends the measurement range of a fiber Bragg grating/piezoelectric transducer (FBG/PZT) operating with a current transformer (CT) to realize a dual-purpose metering and protection photonic current transducer (PCT). [...] Read more.
This paper analyses a special case in evaluating the passive autoranging (AR) technique that dynamically extends the measurement range of a fiber Bragg grating/piezoelectric transducer (FBG/PZT) operating with a current transformer (CT) to realize a dual-purpose metering and protection photonic current transducer (PCT). The technique relies on shorting serially connected burden resistors operating with the CT, using MOSFET switches that react to a changing input current to extend measurement range. The rapid changes in the voltage at the FBG/PZT transducer that are associated with the MOSFET switching are then used on the FBG interrogator side to select the correct measurement range. However, when the MOSFET switching in the AR circuit occurs near the zero-crossing of the input current, the rapid changes in the voltage presented to the FBG/PZT no longer occur, rendering the correct range setting at the interrogator side problematic. The basic switching detection algorithm based on voltage derivative (dV/dt) thresholds proposed in the previous research is not sufficiently sensitive in these conditions, leading to incorrect range selection. To address this, a new detection algorithm based on temporal slope differencing around the zero-crossing is proposed as an additional detection mechanism for these special cases. Thus, the improved hybrid algorithm additionally computes the derivative dV/dt at the FBG/PZT voltage signal within a focused 6 ms temporal window centered around the zero-crossing point, a 3 ms window before and after each zero-crossing instance. It then compares the difference between these two values to a predefined threshold. If the difference exceeds the threshold, a switching event is identified. This method reliably detects even subtle switching events near zero crossings, enabling the accurate reconstruction of the burden current. The performance of the improved algorithm is validated through simulations and experimental results involving zero-crossing switching scenarios. Results indicate that the proposed algorithm improves MOSFET switching detection and facilitates reliable waveform reconstruction without requiring additional hardware. Full article
(This article belongs to the Special Issue Optical Sensing in Power Systems)
Show Figures

Figure 1

Back to TopTop