Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = photoinduced intramolecular charge transfer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2240 KB  
Review
A Review of Fluorescent pH Probes: Ratiometric Strategies, Extreme pH Sensing, and Multifunctional Utility
by Weiqiao Xu, Zhenting Ma, Qixin Tian, Yuanqing Chen, Qiumei Jiang and Liang Fan
Chemosensors 2025, 13(8), 280; https://doi.org/10.3390/chemosensors13080280 - 2 Aug 2025
Cited by 7 | Viewed by 4070
Abstract
pH is a critical parameter requiring precise monitoring across scientific, industrial, and biological domains. Fluorescent pH probes offer a powerful alternative to traditional methods (e.g., electrodes, indicators), overcoming limitations in miniaturization, long-term stability, and electromagnetic interference. By utilizing photophysical mechanisms—including intramolecular charge transfer [...] Read more.
pH is a critical parameter requiring precise monitoring across scientific, industrial, and biological domains. Fluorescent pH probes offer a powerful alternative to traditional methods (e.g., electrodes, indicators), overcoming limitations in miniaturization, long-term stability, and electromagnetic interference. By utilizing photophysical mechanisms—including intramolecular charge transfer (ICT), photoinduced electron transfer (PET), and fluorescence resonance energy transfer (FRET)—these probes enable high-sensitivity, reusable, and biocompatible sensing. This review systematically details recent advances, categorizing probes by operational pH range: strongly acidic (0–3), weakly acidic (3–7), strongly alkaline (>12), weakly alkaline (7–11), near-neutral (6–8), and wide-dynamic range. Innovations such as ratiometric detection, organelle-specific targeting (lysosomes, mitochondria), smartphone colorimetry, and dual-analyte response (e.g., pH + Al3+/CN) are highlighted. Applications span real-time cellular imaging (HeLa cells, zebrafish, mice), food quality assessment, environmental monitoring, and industrial diagnostics (e.g., concrete pH). Persistent challenges include extreme-pH sensing (notably alkalinity), photobleaching, dye leakage, and environmental resilience. Future research should prioritize broadening functional pH ranges, enhancing probe stability, and developing wide-range sensing strategies to advance deployment in commercial and industrial online monitoring platforms. Full article
Show Figures

Figure 1

17 pages, 2704 KB  
Article
Computational Investigation about the Effects of Solvent Polarity and Chalcogen Element Electronegativity on ESIPT Behaviors for the Et2N-Substituted Flavonoid
by Tuo Chang, Fang Yang and Tangyan Chen
Molecules 2024, 29(13), 2957; https://doi.org/10.3390/molecules29132957 - 21 Jun 2024
Cited by 1 | Viewed by 1485
Abstract
Inspired by the outstanding nature of flavonoid derivatives in the fields of chemistry and medicine, in this work we mainly focus on exploring the photo-induced properties of the novel Et2N-substituted flavonoid (ENF) fluorophore theoretically. Considering the potential photo-induced properties in different [...] Read more.
Inspired by the outstanding nature of flavonoid derivatives in the fields of chemistry and medicine, in this work we mainly focus on exploring the photo-induced properties of the novel Et2N-substituted flavonoid (ENF) fluorophore theoretically. Considering the potential photo-induced properties in different solvents and the chalcogen atomic electronegativity-associated photoexcitation, by time-dependent density functional theory (TDDFT) methods we primarily explore the intramolecular hydrogen bonding interactions and photo-induced charge redistribution behaviors. Via comparing geometrical data and the infrared (IR) spectral shifts-associated hydroxy moiety of ENF, we confirm that the intramolecular hydrogen bond O-H···O should be enhanced with facilitating an excited-state intramolecular proton-transfer (ESIPT) reaction. Particularly, the charge reorganization around hydrogen bonding moieties further reveals the tendency of ESIPT behavior. Combined with the construction of the potential energy surface and the search for reaction transition states, we finally confirmed the solvent-polarity-regulated behaviors as well as the chalcogen elements’ electronegativity-dependent ESIPT mechanisms for the ENF fluorophore. We sincerely wish our work could accelerate the further development and applications of flavonoid derivatives. Full article
Show Figures

Figure 1

13 pages, 3621 KB  
Article
TDDFT Study on the ESIPT Properties of 2-(2′-Hydroxyphenyl)-Benzothiazole and Sensing Mechanism of a Derived Fluorescent Probe for Fluoride Ion
by Tingting Wang, Meiheng Lv, Yuhang Zhang, Yue Gao, Zexu Cai, Yifan Zhang, Jiaqi Song, Jianyong Liu, Hang Yin and Fangjian Shang
Molecules 2024, 29(7), 1541; https://doi.org/10.3390/molecules29071541 - 29 Mar 2024
Cited by 8 | Viewed by 2551
Abstract
The level of fluoride ions (F) in the human body is closely related to various pathological and physiological states, and the rapid detection of F is important for studying physiological processes and the early diagnosis of diseases. In this study, [...] Read more.
The level of fluoride ions (F) in the human body is closely related to various pathological and physiological states, and the rapid detection of F is important for studying physiological processes and the early diagnosis of diseases. In this study, the detailed sensing mechanism of a novel high-efficiency probe (PBT) based on 2-(2′-hydroxyphenyl)-benzothiazole derivatives towards F has been fully investigated based on density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. F attacks the O-P bond of PBT to cleavage the dimethylphosphinothionyl group, and the potential products were evaluated by Gibbs free energy and spectroscopic analyses, which ultimately identified the product as HBT-Enol1 with an intramolecular hydrogen bond. Bond parameters, infrared vibrational spectroscopy and charge analysis indicate that the hydrogen bond is enhanced at the excited state (S1), favoring excited state intramolecular proton transfer (ESIPT). The mild energy barrier further evidences the occurrence of ESIPT. Combined with frontier molecular orbital (FMO) analysis, the fluorescence quenching of PBT was attributed to the photoinduced electron transfer (PET) mechanism and the fluorescence turn-on mechanism of the product was attributed to the ESIPT process of HBT-Enol1. Full article
(This article belongs to the Special Issue Theoretical Study on Luminescent Properties of Organic Materials)
Show Figures

Graphical abstract

13 pages, 4009 KB  
Article
Effects of Chalcogen Atoms on Excited-State Double-Proton Transfer Behavior for 3,6-bis(4,5-Dihydroxyoxazo-2-yl)benzene-1,2-diol Derivatives: A Computational Investigation
by Dapeng Yang, Chang Liu, Meiyi Zhang and Jinfeng Zhao
Molecules 2024, 29(2), 461; https://doi.org/10.3390/molecules29020461 - 17 Jan 2024
Cited by 3 | Viewed by 1889
Abstract
The impact of the chalcogen atomic electronegativity (O, S, and Se atoms) of new organic molecules on excited-state dynamical reactions is self-evident. Inspired by this kind of distinguished photochemical characteristic, in this work, we performed a computational investigation of chalcogen-substituted 3,6-bis(4,5-dihydroxyoxazo-2-yl)benzene-1,2-diol (BDYBD) derivatives [...] Read more.
The impact of the chalcogen atomic electronegativity (O, S, and Se atoms) of new organic molecules on excited-state dynamical reactions is self-evident. Inspired by this kind of distinguished photochemical characteristic, in this work, we performed a computational investigation of chalcogen-substituted 3,6-bis(4,5-dihydroxyoxazo-2-yl)benzene-1,2-diol (BDYBD) derivatives (i.e., BDYBD-O, BDYBD-S, and BDYBD-Se). In this paper, we pay close attention to characteristic BDYBD derivatives that contain intramolecular double hydrogen bonds (O1–H2···N3 and O4–H5···N6). The main goal of this study was to explore how changes in atomic electronegativity affect the way hydrogen bonds interact and how excited molecules affect transfer protons. We go into further detail in the main text of the paper. By fixing our attention to geometrical variations and infrared (IR) vibrational spectra between the S0 and S1 states, exploring hydrogen bonding behaviors using the core-valence bifurcation (CVB) index, and simulating hydrogen bonding energy (EHB) via the atom in molecule (AIM) method, we clarified the photo-induced strengthened dual hydrogen bonding interactions that facilitate the excited-state dual-proton transfer (ESDPT) behavior of BDYBD derivatives. The reorganization of charge stemming from photoexcitation further verifies the tendencies of ESDPT reactions. We relied on constructing potential energy surfaces (PESs) by adopting a restrictive optimization approach, and herein, we finally clarify the gradual ESDPT mechanism of BDYBD derivatives. Particularly, we confirm that the variation in chalcogen atomic electronegativity has a regulatory effect on the ESDPT behavior of BDYBD derivatives; that is, the lower the atomic electronegativity, the more favorable it is for the gradual ESDPT reaction. Full article
(This article belongs to the Special Issue Multiconfigurational and DFT Methods Applied to Chemical Systems)
Show Figures

Figure 1

13 pages, 4511 KB  
Article
Theoretical Investigation on the “ON-OFF” Mechanism of a Fluorescent Probe for Thiophenols: Photoinduced Electron Transfer and Intramolecular Charge Transfer
by Yuxi Wang, Meng Zhang, Wenzhi Li, Yi Wang and Panwang Zhou
Molecules 2023, 28(19), 6921; https://doi.org/10.3390/molecules28196921 - 3 Oct 2023
Cited by 10 | Viewed by 2967
Abstract
In this study, the sensing mechanism of (2E,4E)-5-(4-(dimethylamino)phenyl)-1-(2-(2,4dinitrophenoxy)phenyl)penta-2,4-dien-1-one (DAPH-DNP) towards thiophenols was investigated by density functional theory (DFT) and time-dependent DFT (TD-DFT). The DNP group plays an important role in charge transfer excitation. Due to the typical donor-excited photo-induced electron transfer (d-PET) process, [...] Read more.
In this study, the sensing mechanism of (2E,4E)-5-(4-(dimethylamino)phenyl)-1-(2-(2,4dinitrophenoxy)phenyl)penta-2,4-dien-1-one (DAPH-DNP) towards thiophenols was investigated by density functional theory (DFT) and time-dependent DFT (TD-DFT). The DNP group plays an important role in charge transfer excitation. Due to the typical donor-excited photo-induced electron transfer (d-PET) process, DAPH-DNP has fluorescence quenching behavior. After the thiolysis reaction between DAPH-DNP and thiophenol, the hydroxyl group is released, and DAPH is generated with the reaction showing strong fluorescence. The fluorescence enhancement of DAPH is not caused by an excited-state intramolecular proton transfer (ESIPT) process. The potential energy curves (PECs) show that DAPH-keto is less stable than DAPH-enol. The frontier molecular orbitals (FMOs) of DAPH show that the excitation process is accompanied by intramolecular charger transfer (ICT), and the corresponding character of DAPH was further confirmed by hole-electron and interfragment charge transfer (IFCT) analysis methods. Above all, the sensing mechanism of the turn-on type probe DAPH-DNP towards thiophenol is based on the PET mechanism. Full article
(This article belongs to the Special Issue Theoretical Study on Luminescent Properties of Organic Materials)
Show Figures

Graphical abstract

21 pages, 13569 KB  
Article
Physical Mechanism of One-Photon Absorption, Two-Photon Absorption, and Electron Circular Dichroism of 1,3,5 Triazine Derivatives Based on Molecular Planarity
by Xiangtao Chen, Xiaoyan Shi, Fuming Yang, Xiqing Zhang, Rui Dai, Yan Jia, Ningte Yan, Sixuan Li, Zihan Wang and Zhongzhu Liang
Molecules 2023, 28(12), 4700; https://doi.org/10.3390/molecules28124700 - 11 Jun 2023
Cited by 5 | Viewed by 3325
Abstract
We provide a method to regulate intramolecular charge transfer (ICT) through distorting fragment dipole moments based on molecular planarity and intuitively investigate the physical mechanisms of one-photon absorption (OPA), two-photon absorption (TPA), and electron circular dichroism (ECD) properties of the multichain 1,3,5 triazine [...] Read more.
We provide a method to regulate intramolecular charge transfer (ICT) through distorting fragment dipole moments based on molecular planarity and intuitively investigate the physical mechanisms of one-photon absorption (OPA), two-photon absorption (TPA), and electron circular dichroism (ECD) properties of the multichain 1,3,5 triazine derivatives o-Br-TRZ, m-Br-TRZ, and p-Br-TRZ containing three bromobiphenyl units. As the position of the C–Br bond on the branch chain becomes farther away, the molecular planarity is weakened, with the position of charge transfer (CT) on the branch chain of bromobiphenyl changing. The excitation energy of the excited states decreases, which leads to the redshift of the OPA spectrum of 1,3,5-triazine derivatives. The decrease in molecular plane results in a change in the magnitude and direction of the molecular dipole moment on the bromobiphenyl branch chain, which weakens the intramolecular electrostatic interaction of bromobiphenyl branch chain 1,3,5-triazine derivatives and weakens the charge transfer excitation of the second step transition in TPA, leading to an increase in the enhanced absorption cross-section. Furthermore, molecular planarity can also induce and regulate chiral optical activity through changing the direction of the transition magnetic dipole moment. Our visualization method helps to reveal the physical mechanism of TPA cross-sections generated via third-order nonlinear optical materials in photoinduced CT, which is of great significance for the design of large TPA molecules. Full article
(This article belongs to the Special Issue Development and Applications of Novel Photoelectric Nanomaterials)
Show Figures

Figure 1

49 pages, 23991 KB  
Review
Fluorescent Probes as a Tool in Diagnostic and Drug Delivery Systems
by Nikolai I. Georgiev, Ventsislav V. Bakov, Kameliya K. Anichina and Vladimir B. Bojinov
Pharmaceuticals 2023, 16(3), 381; https://doi.org/10.3390/ph16030381 - 1 Mar 2023
Cited by 75 | Viewed by 17174
Abstract
Over the last few years, the development of fluorescent probes has received considerable attention. Fluorescence signaling allows noninvasive and harmless real-time imaging with great spectral resolution in living objects, which is extremely useful for modern biomedical applications. This review presents the basic photophysical [...] Read more.
Over the last few years, the development of fluorescent probes has received considerable attention. Fluorescence signaling allows noninvasive and harmless real-time imaging with great spectral resolution in living objects, which is extremely useful for modern biomedical applications. This review presents the basic photophysical principles and strategies for the rational design of fluorescent probes as visualization agents in medical diagnosis and drug delivery systems. Common photophysical phenomena, such as Intramolecular Charge Transfer (ICT), Twisted Intramolecular Charge Transfer (TICT), Photoinduced Electron Transfer (PET), Excited-State Intramolecular Proton Transfer (ESIPT), Fluorescent Resonance Energy Transfer (FRET), and Aggregation-Induced Emission (AIE), are described as platforms for fluorescence sensing and imaging in vivo and in vitro. The presented examples are focused on the visualization of pH, biologically important cations and anions, reactive oxygen species (ROS), viscosity, biomolecules, and enzymes that find application for diagnostic purposes. The general strategies regarding fluorescence probes as molecular logic devices and fluorescence–drug conjugates for theranostic and drug delivery systems are discussed. This work could be of help for researchers working in the field of fluorescence sensing compounds, molecular logic gates, and drug delivery. Full article
(This article belongs to the Special Issue Fluorescence Approaches in Drug Delivery)
Show Figures

Figure 1

17 pages, 6576 KB  
Article
Self-Associated 1,8-Naphthalimide as a Selective Fluorescent Chemosensor for Detection of High pH in Aqueous Solutions and Their Hg2+ Contamination
by Awad I. Said, Desislava Staneva, Silvia Angelova and Ivo Grabchev
Sensors 2023, 23(1), 399; https://doi.org/10.3390/s23010399 - 30 Dec 2022
Cited by 15 | Viewed by 3663
Abstract
A novel diamino triazine based 1,8-naphthalimide (NI-DAT) has been designed and synthesized. Its photophysical properties have been investigated in different solvents and its sensory capability evaluated. The fluorescence emission of NI-DAT is significantly impacted by the solvent polarity due to its inherent intramolecular [...] Read more.
A novel diamino triazine based 1,8-naphthalimide (NI-DAT) has been designed and synthesized. Its photophysical properties have been investigated in different solvents and its sensory capability evaluated. The fluorescence emission of NI-DAT is significantly impacted by the solvent polarity due to its inherent intramolecular charge transfer character. Moreover, the fluorescence emission quenched at higher pH as a result of photo-induced electron transfer (PET) from triazine moiety to 1,8-naphthalimide after cleaving hydrogen bonds in the self-associated dimers. Furthermore, the new chemosensor exhibited a good selectivity and sensitivity towards Hg2+ among all the used various cations and anions in the aqueous solution of ethanol (5:1, v/v, pH = 7.2, Tampon buffer). NI-DAT emission at 540 nm was quenched remarkably only by Hg2+, even in the presence of other cations or anions as interfering analytes. Job’s plot revealed a 2:1 stoichiometric ratio for NI-DAT/Hg2+ complex, respectively. Full article
(This article belongs to the Special Issue Chemiresistive Sensors: Materials and Applications)
Show Figures

Figure 1

14 pages, 831 KB  
Article
Semiclassical Theory of Multistage Nonequilibrium Electron Transfer in Macromolecular Compounds in Polar Media with Several Relaxation Timescales
by Serguei V. Feskov
Int. J. Mol. Sci. 2022, 23(24), 15793; https://doi.org/10.3390/ijms232415793 - 13 Dec 2022
Cited by 2 | Viewed by 1872
Abstract
Many specific features of ultrafast electron transfer (ET) reactions in macromolecular compounds can be attributed to nonequilibrium configurations of intramolecular vibrational degrees of freedom and the environment. In photoinduced ET, nonequilibrium nuclear configurations are often produced at the stage of optical excitation, but [...] Read more.
Many specific features of ultrafast electron transfer (ET) reactions in macromolecular compounds can be attributed to nonequilibrium configurations of intramolecular vibrational degrees of freedom and the environment. In photoinduced ET, nonequilibrium nuclear configurations are often produced at the stage of optical excitation, but they can also be the result of electron tunneling itself, i.e., fast redistribution of charges within the macromolecule. A consistent theoretical description of ultrafast ET requires an explicit consideration of the nuclear subsystem, including its evolution between electron jumps. In this paper, the effect of the multi-timescale nuclear reorganization on ET transitions in macromolecular compounds is studied, and a general theory of ultrafast ET in non-Debye polar environments with a multi-component relaxation function is developed. Particular attention is paid to designing the multidimensional space of nonequilibrium nuclear configurations, as well as constructing the diabatic free energy surfaces for the ET states. The reorganization energies of individual ET transitions, the equilibrium energies of ET states, and the relaxation properties of the environment are used as input data for the theory. The effect of the system-environment interaction on the ET kinetics is discussed, and mechanisms for enhancing the efficiency of charge separation in macromolecular compounds are analyzed. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Russia)
Show Figures

Figure 1

10 pages, 2457 KB  
Article
Theoretical Investigations on the Sensing Mechanism of Phenanthroimidazole Fluorescent Probes for the Detection of Selenocysteine
by Zhe Tang, Xiaochen Wang, Runze Liu and Panwang Zhou
Molecules 2022, 27(23), 8444; https://doi.org/10.3390/molecules27238444 - 2 Dec 2022
Cited by 5 | Viewed by 2484
Abstract
The level of selenocysteine (Sec) in the human body is closely related to a variety of pathophysiological states, so it is important to study its fluorescence sensing mechanism for designing efficient fluorescent probes. Herein, we used time-dependent density functional theory to investigate the [...] Read more.
The level of selenocysteine (Sec) in the human body is closely related to a variety of pathophysiological states, so it is important to study its fluorescence sensing mechanism for designing efficient fluorescent probes. Herein, we used time-dependent density functional theory to investigate the fluorescence sensing mechanism of phenanthroimidazole derivates A4 and B4 for the detection of Sec, which are proposed to be designed based on excited state intramolecular proton transfer (ESIPT) and intramolecular charge transfer (ICT) mechanisms. The calculation results show that the fluorescence quenching mechanism of A4 and B4 is due to the photo-induced electron transfer (PET) process with the sulfonate group acts as the electron acceptor. Subsequently, A4 and B4 react with Sec, the sulfonate group is substituted by hydroxyl groups, PET is turned off, and significant fluorescence enhancement of the formed A3 and B3 is observed. The theoretical results suggest that the fluorescence enhancement mechanism of B3 is not based on ICT mechanism, and the charge transfer phenomenon was not observed by calculating the frontier molecular orbitals, and proved to be a local excitation mode. The reason for the fluorescence enhancement of A3 based on ESIPT is also explained by the calculated potential energy curves. Full article
(This article belongs to the Special Issue Fluorescent Probes for Imaging and Diagnostics)
Show Figures

Graphical abstract

24 pages, 3507 KB  
Article
Charge Transfer Chromophores Derived from 3d-Row Transition Metal Complexes
by Kira I. Pashanova, Irina V. Ershova, Olesya Yu. Trofimova, Roman V. Rumyantsev, Georgy K. Fukin, Artem S. Bogomyakov, Maxim V. Arsenyev and Alexandr V. Piskunov
Molecules 2022, 27(23), 8175; https://doi.org/10.3390/molecules27238175 - 24 Nov 2022
Cited by 19 | Viewed by 3816
Abstract
A series of new charge transfer (CT) chromophores of “α-diimine-MII-catecholate” type (where M is 3d-row transition metals—Cu, Ni, Co) were derived from 4,4′-di-tert-butyl-2,2′-bipyridyl and 3,6-di-tert-butyl-o-benzoquinone (3,6-DTBQ) in accordance with three modified synthetic approaches, [...] Read more.
A series of new charge transfer (CT) chromophores of “α-diimine-MII-catecholate” type (where M is 3d-row transition metals—Cu, Ni, Co) were derived from 4,4′-di-tert-butyl-2,2′-bipyridyl and 3,6-di-tert-butyl-o-benzoquinone (3,6-DTBQ) in accordance with three modified synthetic approaches, which provide high yields of products. A square-planar molecular structure is inherent for monomeric [CuII(3,6-Cat)(bipytBu)]∙THF (1) and NiII(3,6-Cat)(bipytBu) (2) chromophores, while dimeric complex [CoII(3,6-Cat)(bipytBu)]2∙toluene (3) units two substantially distorted heteroleptic D-MII-A (where D, M, A are donor, metal and acceptor, respectively) parts through a donation of oxygen atoms from catecholate dianions. Chromophores 13 undergo an effective photoinduced intramolecular charge transfer (λ = 500–715 nm, extinction coefficient up to 104 M−1·cm−1) with a concomitant generation of a less polar excited species, the energy of which is a finely sensitive towards solvent polarity, ensuring a pronounced negative solvatochromic effect. Special attention was paid to energetic characteristics for CT and interacting HOMO/LUMO orbitals that were explored by a synergy of UV-vis-NIR spectroscopy, cyclic voltammetry, and DFT study. The current work sheds light on the dependence of CT peculiarities on the nature of metal centers from various groups of the periodic law. Moreover, the “α-diimine-MII-catecholate” CT chromophores on the base of “late” transition elements with differences in d-level’s electronic structure were compared for the first time. Full article
(This article belongs to the Special Issue Applications of Metal Complexes)
Show Figures

Figure 1

18 pages, 6410 KB  
Article
Square-Planar Heteroleptic Complexes of α-Diimine-NiII-Catecholate Type: Intramolecular Ligand-to-Ligand Charge Transfer
by Kira I. Pashanova, Vladlena O. Bitkina, Ilya A. Yakushev, Maxim V. Arsenyev and Alexandr V. Piskunov
Molecules 2021, 26(15), 4622; https://doi.org/10.3390/molecules26154622 - 30 Jul 2021
Cited by 20 | Viewed by 4045
Abstract
Two heteroleptic NiII complexes combined the redox-active catecholate and 2,2′- bipyridine ligand platforms were synthesized to observe a photoinduced intramolecular ligand-to-ligand charge transfer (LL’CT, HOMOcatecholate → LUMOα-diimine). A molecular design of compound [NiII(3,6-Cat)(bipy)]∙CH3CN (1 [...] Read more.
Two heteroleptic NiII complexes combined the redox-active catecholate and 2,2′- bipyridine ligand platforms were synthesized to observe a photoinduced intramolecular ligand-to-ligand charge transfer (LL’CT, HOMOcatecholate → LUMOα-diimine). A molecular design of compound [NiII(3,6-Cat)(bipy)]∙CH3CN (1) on the base of bulky 3,6-di-tert-butyl-o-benzoquinone (3,6-DTBQ) was an annelation of the ligand with an electron donor glycol fragment, producing derivative [NiII(3,6-Catgly)(bipy)]∙CH2Cl2 (2), in order to influence the energy of LL’CT transition. A substantial longwave shift of the absorption peak was observed in the UV-Vis-NIR spectra of 2 compared with those in 1. In addition, the studied NiII derivatives demonstrated a pronounced negative solvatochromism, which was established using a broad set of solvents. The molecular geometry of both compounds can be ascribed as an insignificantly distorted square-planar type, and the π–π intermolecular stacking of the neighboring α-diimines is realized in a crystal packing. There is a lamellar crystal structure for complex 1, whereas the perpendicular T-motifs with the inter-stacks attractive π–π interactions form the packing of complex 2. The redox-active nature of ligand systems was clearly shown through the electrochemical study: a quasi-reversible one-electron reduction of 2,2′-bipyridine and two reversible successive one-electron oxidative conversations (“catecholate dianion—o-benzosemiquinonato radical anion—neutral o-benzoquinone”) were detected. Full article
(This article belongs to the Special Issue Reactivity of Metal Complexes with Redox-Active Ligands)
Show Figures

Figure 1

10 pages, 1413 KB  
Article
Synthesis and Physical Properties of Tetrathiafulvalene-8-Quinolinato Zinc(II) and Nickel(II) Complexes
by Keijiro Tsujimoto, Shinya Yamamoto and Hideki Fujiwara
Inorganics 2021, 9(2), 11; https://doi.org/10.3390/inorganics9020011 - 1 Feb 2021
Cited by 2 | Viewed by 3689
Abstract
To develop donor–acceptor–donor (D–A–D) type new photo-electric conversion materials, new tetrathiafulvalene (TTF)-Mq2-TTF complexes 1 and 2 were synthesized, where two bis(n-hexylthio)tetrathiafulvalene moieties were attached to the Mq2 part (1: M = Zn, 2: M = [...] Read more.
To develop donor–acceptor–donor (D–A–D) type new photo-electric conversion materials, new tetrathiafulvalene (TTF)-Mq2-TTF complexes 1 and 2 were synthesized, where two bis(n-hexylthio)tetrathiafulvalene moieties were attached to the Mq2 part (1: M = Zn, 2: M = Ni, q = 8-quinolinato) through amide bonds. UV-Vis absorption spectra of these complexes showed strong and sharp absorption maxima at 268 nm and small absorption maxima around 410 nm, corresponding to those of Znq2 and Niq2 parts. Furthermore, complexes 1 and 2 exhibited absorption tails up to a much longer wavelength region of ca. 700 nm, suggesting the appearance of charge transfer absorption from TTF to the Mq2 parts. The photoelectrochemical measurements on the thin films of these complexes casted on ITO-coated glass substrates suggest that positive photocurrents can be generated by the photoinduced intramolecular electron transfer process between the TTF and Mq2 parts. Full article
(This article belongs to the Special Issue Redox-Active Ligand Complexes)
Show Figures

Figure 1

15 pages, 3892 KB  
Article
Stereoselectivity of Electron and Energy Transfer in the Quenching of (S/R)-Ketoprofen-(S)-Tryptophan Dyad Excited State
by Aleksandra A. Ageeva, Simon V. Babenko, Ilya M. Magin, Victor F. Plyusnin, Polina S. Kuznetsova, Alexander A. Stepanov, Sergey F. Vasilevsky, Nikolay E. Polyakov, Alexander B. Doktorov and Tatyana V. Leshina
Int. J. Mol. Sci. 2020, 21(15), 5370; https://doi.org/10.3390/ijms21155370 - 28 Jul 2020
Cited by 10 | Viewed by 2880
Abstract
Photoinduced elementary processes in chiral linked systems, consisting of drugs and tryptophan (Trp) residues, attract considerable attention due to several aspects. First of all, these are models that allow one to trace the full and partial charge transfer underlying the binding of drugs [...] Read more.
Photoinduced elementary processes in chiral linked systems, consisting of drugs and tryptophan (Trp) residues, attract considerable attention due to several aspects. First of all, these are models that allow one to trace the full and partial charge transfer underlying the binding of drugs to enzymes and receptors. On the other hand, Trp fluorescence is widely used to establish the structure and conformational mobility of proteins due to its high sensitivity to the microenvironment. Therefore, the study of mechanisms of Trp fluorescence quenching in various systems has both fundamental and practical interest. An analysis of the photo-chemically induced dynamic nuclear polarization (CIDNP) and Trp fluorescence quenching in (R/S)-ketoprofen-(S)-tryptophan ((S/R)-KP-(S)-Trp) dyad carried out in this work allowed us to trace the intramolecular reversible electron transfer (ET) and obtain evidence in favor of the resonance energy transfer (RET). The fraction of dyad’s singlet excited state, quenched via ET, was shown to be 7.5 times greater for the (S,S)-diastereomer than for the (R,S) analog. At the same time, the ratio of the fluorescence quantum yields shows that quenching effectiveness of (S,S)-diastereomer to be 5.4 times lower than for the (R,S) analog. It means that the main mechanism of Trp fluorescence quenching in (S/R)-KP-(S)-Trp dyad is RET. Full article
Show Figures

Graphical abstract

20 pages, 3001 KB  
Review
Synergistic Approach of Ultrafast Spectroscopy and Molecular Simulations in the Characterization of Intramolecular Charge Transfer in Push-Pull Molecules
by Barbara Patrizi, Concetta Cozza, Adriana Pietropaolo, Paolo Foggi and Mario Siciliani de Cumis
Molecules 2020, 25(2), 430; https://doi.org/10.3390/molecules25020430 - 20 Jan 2020
Cited by 34 | Viewed by 9770
Abstract
The comprehensive characterization of Intramolecular Charge Transfer (ICT) stemming in push-pull molecules with a delocalized π-system of electrons is noteworthy for a bespoke design of organic materials, spanning widespread applications from photovoltaics to nanomedicine imaging devices. Photo-induced ICT is characterized by structural reorganizations, [...] Read more.
The comprehensive characterization of Intramolecular Charge Transfer (ICT) stemming in push-pull molecules with a delocalized π-system of electrons is noteworthy for a bespoke design of organic materials, spanning widespread applications from photovoltaics to nanomedicine imaging devices. Photo-induced ICT is characterized by structural reorganizations, which allows the molecule to adapt to the new electronic density distribution. Herein, we discuss recent photophysical advances combined with recent progresses in the computational chemistry of photoactive molecular ensembles. We focus the discussion on femtosecond Transient Absorption Spectroscopy (TAS) enabling us to follow the transition from a Locally Excited (LE) state to the ICT and to understand how the environment polarity influences radiative and non-radiative decay mechanisms. In many cases, the charge transfer transition is accompanied by structural rearrangements, such as the twisting or molecule planarization. The possibility of an accurate prediction of the charge-transfer occurring in complex molecules and molecular materials represents an enormous advantage in guiding new molecular and materials design. We briefly report on recent advances in ultrafast multidimensional spectroscopy, in particular, Two-Dimensional Electronic Spectroscopy (2DES), in unraveling the ICT nature of push-pull molecular systems. A theoretical description at the atomistic level of photo-induced molecular transitions can predict with reasonable accuracy the properties of photoactive molecules. In this framework, the review includes a discussion on the advances from simulation and modeling, which have provided, over the years, significant information on photoexcitation, emission, charge-transport, and decay pathways. Density Functional Theory (DFT) coupled with the Time-Dependent (TD) framework can describe electronic properties and dynamics for a limited system size. More recently, Machine Learning (ML) or deep learning approaches, as well as free-energy simulations containing excited state potentials, can speed up the calculations with transferable accuracy to more complex molecules with extended system size. A perspective on combining ultrafast spectroscopy with molecular simulations is foreseen for optimizing the design of photoactive compounds with tunable properties. Full article
(This article belongs to the Special Issue Computational Spectroscopy 2020)
Show Figures

Graphical abstract

Back to TopTop