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Abstract: In this study, the sensing mechanism of (2E,4E)-5-(4-(dimethylamino)phenyl)-1-(2-(2,4dinitr
ophenoxy)phenyl)penta-2,4-dien-1-one (DAPH-DNP) towards thiophenols was investigated by
density functional theory (DFT) and time-dependent DFT (TD-DFT). The DNP group plays an
important role in charge transfer excitation. Due to the typical donor-excited photo-induced electron
transfer (d-PET) process, DAPH-DNP has fluorescence quenching behavior. After the thiolysis
reaction between DAPH-DNP and thiophenol, the hydroxyl group is released, and DAPH is generated
with the reaction showing strong fluorescence. The fluorescence enhancement of DAPH is not caused
by an excited-state intramolecular proton transfer (ESIPT) process. The potential energy curves
(PECs) show that DAPH-keto is less stable than DAPH-enol. The frontier molecular orbitals (FMOs)
of DAPH show that the excitation process is accompanied by intramolecular charger transfer (ICT),
and the corresponding character of DAPH was further confirmed by hole-electron and interfragment
charge transfer (IFCT) analysis methods. Above all, the sensing mechanism of the turn-on type probe
DAPH-DNP towards thiophenol is based on the PET mechanism.

Keywords: ESIPT; d-PET; thiophenol; frontier molecular orbital

1. Introduction

Thiophenols (PhSH) are colorless liquids with a foul odor. Due to the characteristics
of the S–H groups on the benzene rings [1,2], they are often utilized as intermediates in
the manufacture of fine chemicals such as colors, pharmaceuticals, insecticides, polymer
inhibitors, and antioxidants. Thiophenols are highly toxic and corrosive, when inhaled
or ingested by the human body, they can lead to larynx, bronchospasm, edema, chemical
pneumonia, and even death. The Environmental Protection Agency has identified thiophe-
nols as priority contaminants. In recent years, the detection of thiophenols in biological
and environmental samples has aroused great interest among scholars [3–7].

Traditional methods for detecting thiophenols include inductively coupled plasma
mass spectrometry (ICP-MS), electrochemistry, and high-performance liquid chromatogra-
phy (HPLC) [8,9]. Due to limitations such as poor coordination and low sensitivity, it is dif-
ficult to detect appropriately the concentration of thiophenols in vitro and in vivo. Recently,
near-infrared (NIR) fluorescent probes for the detection of thiophenols in water samples
and living cells have been reported, which have simple synthesis routes, high selectivity,
and high sensitivity [10–13]. Fluorescent probes can detect trace components by observable
wavelength changes and fluorescence intensities. Compared to other methods, fluorescent
probes can penetrate deep into the tissue, reducing the interference of the autofluorescence
of samples, and thus realizing the detection of biological samples. Fluorescent probes
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have been synthesized primarily by relying on a diverse array of sensing mechanisms,
including excited-state intramolecular proton transfer (ESIPT) [14–16], chelation-enhanced
fluorescence (CHEF) [17–19], photoinduced electron transfer (PET) [20–22], intramolecular
charge transfer (ICT) [23,24], and aggregation-induced enhanced emission (AIEE) [25,26].
ESIPT based fluorescent probes exhibit unique excited-state photophysical properties of
high fluorescence quantum yield and large Stokes shift. Fluorescence emission peaks of
ESIPT molecules are often red-shifted by tens to hundreds of nanometers compared to their
absorption peaks, and their fluorescence spectra have narrow peak widths, resulting in
high optical resolution and detection sensitivity. ESIPT is a completely reversible cyclic
process. Upon photoexcitation, the H atom of the hydrogen bond H–X. . . Y is transferred
from the electronegative atom X to another electronegative atom Y, accompanied by the
generation of a new hydrogen bond (H. . . X–Y), which is a typical enol–keto tautomeriza-
tion. As a result, they have broad applications in fields such as biological imaging and drug
screening [27–29].

Recently, a simple NIR-emitting fluorescent probe (DAPH-DNP), consisting of a
thiophenol recognition unit (2,4-dinitrophenyl (DNP) group) and a fluorophore (2E,4E)5-
(4-(dimethylamino)phenyl)-1-(2-hydroxyphenyl)penta-2,4dien-1-one (DAPH), with large
Stokes shift based on the ESIPT mechanism was presented by Li et al. [30], which could be
applied to detect effectively thiophenol in water samples and living cells with a remarkable
recovery rate (see Scheme 1). Because the DNP group is highly selective to thiophene, the
fluorescence of the probe DAPH-DNP is quenched, which hinders the ESIPT process. The
nucleophilic substitution process of dinitrophenyl ethers involved in thiophenol release
the hydroxyl group and thus restore the ESIPT process, resulting in fluorescence emission
(Scheme 1). However, the fluorescence quenching mechanism of DAPH-DNP and the
reason for the fluorescence emission of DAPH were not discussed in detail.
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Scheme 1. Sensing mechanism of probe DAPH-DNP towards thiophenols.

In this paper, a theoretical calculation approach was employed to provide a compre-
hensive account of the fluorescence quenching process of the probe. The potential energy
curves were established in order to analyze the ESIPT process. To further investigate the
photophysical characteristics and sensing mechanism of DAPH-DNP and DAPH, the charge
transfer process was studied utilizing hole-electron [31,32] and IFCT [33] analysis methods.
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2. Results and Discussion
2.1. DAPH-DNP

We first computed the spectral data with different functionals, and the results are
listed in Table S1, which indicate that the calculated absorption and emission energies
of DAPH-Enol at the B3LYP-D3(BJ) [34,35] level (2.49 eV/2.14 eV) are more comparable
to the experimental values (2.68 eV/1.90 eV). However, it is widely recognized that the
conventional functional B3LYP might tend to underestimate the energy of the charge
transfer (CT) state. On the other hand, the inclusion of solvent effects within the linear-
response (LR) scheme may lead to an overestimation of the CT state energy. The interplay
between these factors often results in an error-cancellation phenomenon in LR-B3LYP,
effectively describing the energy of the CT state [36,37]. By combining a range-separated
functional with a corrected LR (cLR) solvation scheme, it is possible to achieve a genuinely
accurate depiction of the CT state’s energy. Therefore, we performed the geometry opti-
mizations at the LR-B3LYP level, and then recalculated the energy landscape using the
cLR-ωB97XD approach.

Figure 1a shows the optimized structure of DAPH-DNP in the ground (S0-min) state,
and the major atoms are marked with numbers. The key geometric parameters of DAPH-
DNP are also marked (Figure 1). In the S0 state, the DNP group on the benzene ring is
not parallel to the fluorophore (DAPH). The plane of the DNP group is approximately
145.5◦ angle from the plane of the DAPH. As shown in Table 1, the excitation process is
dominated by the S0 → S1, corresponding to the electron transition from the highest occu-
pied molecular orbital (HOMO) to the lowest unoccupied molecular orbital+2 (LUMO+2),
and the oscillator strength is 1.8031, which indicates that the first (S1) excited state is a
bright state. The near-zero oscillator strength in S0→ S2 implies that the second (S2) excited
state of DAPH-DNP is a dark state, which corresponds to the electron transition from
HOMO-4→ LUMO+2. The key bond lengths and dihedral angles of DAPH-DNP in the S1
(LE-min) and S2 (CT-min) states are listed in Figure 1b,c. The parameters of the optimized
S1-state geometry are similar to those in the S0 state. The main difference is that the dihedral
angle of ∠C4C6C7O8 is reduced from 46.7◦ to 34.8◦, which means that the flatness of the
DAPH-DNP increases after reaching the S1 state. Compared with the S0 state, the structural
changes in the S1 state are mainly manifested by the slight torsion of the DNP group. Unlike
the S1 state, the dihedral angle of ∠C1C2O3C4 in the S2 state changes from 132.7◦ to 119.3◦,
and the C2–O3 bond length is increased from 1.353 Å to 1.377 Å. This indicates that the
fluorescence quenching behavior of DAPH-DNP may be affected by the DNP group on the
benzene ring.

Table 1. Detailed theoretical and experimental spectral data for DAPH-DNP and DPAH
(ωB97XD/TZVP/IEFPCM).

Electronic
Transition

Energy (nm/eV)
f Contrib CI

Exp
(nm/eV)LR cLR

DAPH-
DNP

Absorption S0 → S1 395/3.14 395/3.14 1.8031 H→ L + 2 81.3% 447/2.77
Absorption S0 → S2 335/3.70 339/3.66 0.0007 H-4→ L + 2 48.1% /
Emission S1 → S0 800/1.55 800/1.55 0.4340 H→ L 63.8% /
Emission S2 → S0 477/2.60 458/2.71 1.8673 H→ L + 2 70.1% /
DAPH

Absorption S0 → S1 419/2.96 429/2.89 1.8406 H→ L 86.1% 462/2.68
Emission S1 → S0 453/2.74 475/2.61 1.8491 H→ L 88.1% 654/1.90
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Figure 1. The optimized structures of DAPH-DNP in the S0 (a), LE (S1) (b), and CT (S2) states (c).
The labeling of atomic color: O: red; C: blue; H: white; N: yellow, the bond length in Å, the dihedral
angle in degrees.

The plotted FMOs (shown in Figure 2) show that no significant change in electron dis-
tribution is observed during the HOMO→ LUMO+2 while a substantial charge separation
occurs in the HOMO-4→ LUMO+2 transition. Thus, it can be preliminarily judged that the
S1 and S2 states are the LE state and the CT state, respectively. To describe more accurately
the characteristics of electron excitation, hole-electron analysis is used. For S0 → S1, there
is incomplete separation of the distribution regions of holes and electrons (corresponding
to the location of center of the blue and green iso-surfaces), the centers of the blue and
green iso-surfaces are slightly farther apart, the D-index is 2.979 Å, and the t-index is
negative (−0.122), indicating a small degree of charge transfer within the fluorophore. For
S0 → S2, there is an obvious charge separation in which holes and electrons are mainly
distributed in the o-hydroxyacetophenone group and DAPH group, respectively. Moreover,
the centers of the hole and electron are relatively far apart, indicating that a significant
charge transfer has occurred during the excitation process. As listed in Table 2, the D index
of S0 → S2 excitation is as large as 2.225, the Sr index is very small (0.384), and the t index
is 0.201, significantly larger than 0. Therefore, the S0 → S2 are charge transfer excitations in
the o-hydroxyacetophenone group in the N,N-dimethylamino direction. Meanwhile, we
also used the IFCT method to quantitatively describe the contribution of each segment of
DAPH-DNP to charge transfer. The detailed information is shown in Table S2 and Figure 3.
DAPH-DNP is divided into two fragments (Figure 3a). The calculated results show that the
contribution of fragment 2 in the S1 state to electrons is as high as 96.87%, and differences in
the electron transfer of fragment 1 (−12.84%) and fragment 2 (12.84%) indicate that only a
small amount of electron transfer from fragment 2 to fragment 1 during S0 → S1 excitation
occurs. Figure 3c shows that the fragment in the S2 state has the highest contribution to
holes (96.87%), which can be seen from the difference of charge transfer (Table S2) in that
the electrons of fragment 1 are significantly reduced (−29.55%), while the electrons of
fragment 2 are significantly increased. This means that a significant intramolecular charge
transfer during S0→ S2 excitation is shown. The calculated vertical excitation energy (VEE)
in the S1 state is 3.14 eV (395 nm) (Table 1), which slightly overestimates the experimental
date (2.77 eV, 447 nm).
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Figure 2. Excitation processes of DAPH-DNP. Molecular orbitals are given in blue and red iso-surfaces,
holes and electrons are given in blue and green iso-surfaces, respectively (ωB97XD/TZVP/IEFPCM).

Table 2. The calculated results of the excited states for DAPH-DNP and DAPH, including the centroid
distance (D), the degree of overlap (Sr), the width distribution (H), degree of separation (t), hole
delocalization index (HDI), and electron delocalization index (EDI) (ωB97XD/TZVP/IEFPCM).

D (Å) Sr H (Å) t (Å) HDI EDI

DAPH-DNP
S0 → S1 2.979 0.62145 3.658 −0.122 6.88 7.21
S0 → S2 2.225 0.38421 2.693 0.201 17.99 6.99
S1 → S0 3.671 0.57021 3.971 0.192 6.84 5.99
DAPH
S0 → S1 2.159 0.73058 3.814 −1.399 6.97 7.30
S1 → S0 1.991 0.73102 3.868 −1.599 6.91 7.30
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To further explain the fluorescence quenching mechanism of the probe, the calculated
energy diagrams involved in the excitation and emission processes are plotted. As indicated
in Figure 4, at both of the FC point and LE-min, the S1 and S2 states of DAPH-DNP are
in LE and CT states, respectively, and the energy gaps between these two states (CT and
LE state) are 0.62 eV and 0.58 eV, respectively. However, at the CT-min, the order of
the CT and LE states is reversed, with the S1 state transitioning into a CT state. This
suggests that the fluorescence quenching mechanism at the cLR-ωB97XD level involves a
transformation from the LE to the CT state through a nearly barrierless minimal energy
conical intersection (MECI). This mechanism, as reported in previous studies [38,39], aligns
well with experimental observations. According to Kasha’s rule [40], the fluorescence
emitted by a molecule can only be excited from the S1 state. Since the S1 state has become a
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dark CT state at CT-min, this can only return to the ground state by non-radiative decay
and is in accordance with the experimentally observed fluorescence quenching behavior of
the probe. Briefly, the significant charge transfer from the DAPH unit to the DNP group in
relaxation is well in line with the definition of the typical d-PET (donor-excited PET) [41,42].
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Additionally, we conducted single point energy calculations using the COSMO-ADC(2)
method within the perturbation theory on the energy and density (PTED) reaction field
scheme as implemented in Turbomole [43]. The COSMO-ADC(2)/PTED results (Table S3)
exhibit a similar energy landscape to that of the cLR-ωB97XD. Moreover, the computed
vertical excitation energy is in closer agreement with the experimentally measured absorp-
tion maximum compared to the cLR-ωB97XD. However, at the CT-min, the computed
energy gap between the ground state and the CT state is only 0.08 eV, suggesting that
the COSMO-ADC(2)/PTED might underestimate the energy of the CT state, in line with
previous benchmark studies [44].

2.2. DAPH

The optimized geometries of DAPH and the corresponding parameters in the S0
(S0-min) and S1 (S1-min) states are shown in Figure 5. All structures are ensured to be
located at the minimum energy point, without virtual frequency. Compared with the
structure in the S0 state, the dihedral angles of O3–C4–C5–C6 and C7–C8–C9–C10 in the S1
state change from −179.924◦ to 179.980◦ and −0.029◦ to −0.004◦, respectively, indicating
that the geometry of DAPH tends to be flattened after photoexcitation. In addition, after
the reaction with thiophenol, the DNP group of DAPH-DNP is eliminated, releasing the
phenol group, which can form an intramolecular hydrogen bond with the adjacent O
atom. The O1–H2 bond length of DAPH is increased from 1.003 Å (S0-min) to 1.025 Å
(S1-min), and the H2. . . O3 bond length is reduced from 1.582 Å (S0-min) to 1.499 Å (S1-min).
Moreover, the bond angles of O1–H2. . . O3 increased by 4.0◦ from 150.9◦ (S0-min) to 154.9◦

(S1-min). After photoexcitation, the strength of the hydrogen bond is increased, thereby
promoting the ESIPT process. To further verify whether the hydrogen bonding in the S1
state is enhanced, the calculated IR vibrational spectra of the relevant hydrogen bond are
presented. The results depicted in Figure 6 indicate a significant red-shift of 403 cm−1 in
the IR vibrational frequency of O1–H2, from 3035 cm−1 (S0-min) to 2632 cm−1 (S1-min),
confirming the enhancement of the hydrogen bonding phenomenon. This observation is
consistent with the structural analysis view.
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PT process entails a rearrangement of the electron structure within the π system, which
subsequently impacts the molecule’s geometry. To gain a deeper understanding of the PT
process, we generated PECs for DAPH in both the S0 and S1 states by conducting a relaxed
potential energy scan along the O1–H2 bond (as illustrated in Figure 7). The results show
that in the S0 state, the energy of DAPH system continues to rise along the direction of
increasing bond length, and there is no low energy point, which means that DAPH-keto
cannot exist stably. The PEC of the S1 state shows that DAPH-enol can be transformed into
DAPH-keto at a low energy point after overcoming an energy barrier of 2.36 kcal/mol at the
cLR-ωB97XD/TZVP level. The forward reaction exhibits a higher energy barrier compared
to the reverse process (0.65 kcal/mol), suggesting that the conversion of DAPH-keto to
DAPH-enol can occur with ease. The above results illustrate that DAPH is not prone to the
GSIPT or ESIPT process; this is the reason why DAPH-keto could not be optimized in the
S0 and S1 states. Therefore, the onset of the fluorescence emission of DAPH may not be
caused by the ESIPT mechanism proposed in the experiment. It is important to highlight
that a relaxed potential energy scan may yield energy profiles that differ significantly
from those obtained through a rigid potential energy scan. To verify that the relaxation of
molecular geometry does not introduce qualitative changes or alter our conclusions, we
also presented the results of a rigid potential energy scan (see Figure S7), which supports
the same conclusion.
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(ωB97XD/TZVP/IEFPCM).

To study the fluorescence enhancement mechanism, we calculated the absorption and
emission spectra of DAPH at theωB97XD/TZVP level. Moreover, the vertical excitation
and emission energies of DAPH involved in orbital transitions, as well as the oscillator
strengths, are listed in Table 1. The calculated results show that the S0→ S1 is the dominant
excitation pathway characterized by the transition from HOMO→ LUMO, which blocks
the occurrence of the PET process. And the excitation energy of DAPH is 2.96 eV (419 nm),
which is very consistent with the experiment value (2.68 eV, 462 nm). Compared with
DAPH-DNP, the maximum absorption peak of DAPH is shifted in the direction of long
wavelength, the 24 nm red-shift indicates that the n-π conjugation effect of the DNP group
on the probe is eliminated after the thiolysis reaction. The calculated emission data show
that the oscillator strength of DAPH-enol during emission is 1.8406, which means that the
decay of DAPH-enol from the S1 state to the S0 state occurs via radiative transition. In
addition, the emission energy of DAPH-enol is also calculated to be 2.74 eV (453 nm), which
is significantly overestimated by the ωB97XD functional. This is not surprising because
the range-separated functional typically overestimates the energy of the LE state. We then
computed the computed emission energy at the LR-B3LYP level, which is 2.14 eV and
agrees well with the experimental value (1.90 eV). That is to say, the observed fluorescence
should be emitted from DPAH-enol, which agrees with the conclusion we discussed in the
PEC section.

It is worth mentioning that, according to our conclusion, the significant Stokes shift
observed is not attributed to the ESIPT mechanism and requires further investigation to
elucidate the underlying factors contributing to the observed phenomenon. As shown in
Figure 8, the contribution of the phenol group to HOMO is not obvious, while the contribu-
tion to LUMO is significantly increased; the electron distribution of LUMO delocalizes over
the DAPH conjugate system after photoexcitation, which indicates that DAPH in the S1
state exhibits ICT character. Moreover, to describe the characters of electron excitation more
accurately, the hole-electron distribution of DAPH was analyzed. Compared to the hole,
the centroid of the electrons shifts in the direction of the phenol group. As listed in Table 2,
the D index is 2.159 Å, and the t-index has a negative value (−1.399 Å), significantly less
than 0, indicating an obvious separation between holes and electrons. Meanwhile, the IFCT
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analysis (Figure 9) is provided to describe quantitatively the charge transfer characteristics
of DAPH, and is divided into three fragments. Table S4 shows that the contributions of
fragment 2 and fragment 3 to electrons and holes are 70.68% and 50.54%, respectively, and
the charge transfer differences of fragment 1, fragment 2, and fragment 3 in the excitation
of S0 → S1 are 2.31%, 27.79%, and −30.10%, respectively, indicating that the dominant
contribution of electron transfer is from fragment 3 to fragment 2 during excitation. Thus,
it further confirms the ICT character of the S1 state, and the large Stokes shift observed in
the experiment could be caused by the ICT process of DAPH.

Molecules 2023, 28, x FOR PEER REVIEW 10 of 15 
 

 

trons. Meanwhile, the IFCT analysis (Figure 9) is provided to describe quantitatively the 

charge transfer characteristics of DAPH, and is divided into three fragments. Table S4 

shows that the contributions of fragment 2 and fragment 3 to electrons and holes are 

70.68% and 50.54%, respectively, and the charge transfer differences of fragment 1, 

fragment 2, and fragment 3 in the excitation of S0 → S1 are 2.31%, 27.79%, and −30.10%, 

respectively, indicating that the dominant contribution of electron transfer is from frag-

ment 3 to fragment 2 during excitation. Thus, it further confirms the ICT character of the 

S1 state, and the large Stokes shift observed in the experiment could be caused by the 

ICT process of DAPH. 

 

Figure 8. Excitation processes of DAPH. Molecular orbitals are given in blue and red iso-surfaces, 

holes and electrons are given in blue and green iso-surfaces, respectively 

(ωB97XD/TZVP/IEFPCM). 

 

Figure 9. The DAPH molecular fragments electron excitation process analyzed by the IFCT (a) and 

the amount of inter-fragment electron transfer from the S0 to S1 States (b) 

(ωB97XD/TZVP/IEFPCM). 

As Figure 10 shows, at the FC point, the S1 state is a bright ICT state. By calculating 

the MOs, the LUMO transformation of DAPH includes intramolecular CT (ICT) from 

o-hydroxyacetophenone to N,N-dimethylamino. Thus, under photoexcitation, DAPH re-

laxes directly from the FC point to S1-min via vibration relaxation, then returns to the 

ground state by fluorescence emission. 

Figure 8. Excitation processes of DAPH. Molecular orbitals are given in blue and red iso-surfaces,
holes and electrons are given in blue and green iso-surfaces, respectively (ωB97XD/TZVP/IEFPCM).

Molecules 2023, 28, x FOR PEER REVIEW 10 of 15 
 

 

trons. Meanwhile, the IFCT analysis (Figure 9) is provided to describe quantitatively the 

charge transfer characteristics of DAPH, and is divided into three fragments. Table S4 

shows that the contributions of fragment 2 and fragment 3 to electrons and holes are 

70.68% and 50.54%, respectively, and the charge transfer differences of fragment 1, 

fragment 2, and fragment 3 in the excitation of S0 → S1 are 2.31%, 27.79%, and −30.10%, 

respectively, indicating that the dominant contribution of electron transfer is from frag-

ment 3 to fragment 2 during excitation. Thus, it further confirms the ICT character of the 

S1 state, and the large Stokes shift observed in the experiment could be caused by the 

ICT process of DAPH. 

 

Figure 8. Excitation processes of DAPH. Molecular orbitals are given in blue and red iso-surfaces, 

holes and electrons are given in blue and green iso-surfaces, respectively 

(ωB97XD/TZVP/IEFPCM). 

 

Figure 9. The DAPH molecular fragments electron excitation process analyzed by the IFCT (a) and 

the amount of inter-fragment electron transfer from the S0 to S1 States (b) 

(ωB97XD/TZVP/IEFPCM). 

As Figure 10 shows, at the FC point, the S1 state is a bright ICT state. By calculating 

the MOs, the LUMO transformation of DAPH includes intramolecular CT (ICT) from 

o-hydroxyacetophenone to N,N-dimethylamino. Thus, under photoexcitation, DAPH re-

laxes directly from the FC point to S1-min via vibration relaxation, then returns to the 

ground state by fluorescence emission. 

Figure 9. The DAPH molecular fragments electron excitation process analyzed by the IFCT (a) and
the amount of inter-fragment electron transfer from the S0 to S1 States (b) (ωB97XD/TZVP/IEFPCM).

As Figure 10 shows, at the FC point, the S1 state is a bright ICT state. By calculating
the MOs, the LUMO transformation of DAPH includes intramolecular CT (ICT) from o-
hydroxyacetophenone to N,N-dimethylamino. Thus, under photoexcitation, DAPH relaxes
directly from the FC point to S1-min via vibration relaxation, then returns to the ground
state by fluorescence emission.
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3. Computational Details

Gaussian 16 program package [45] was utilized for all theoretical calculations con-
ducted in this research. The density functional theory (DFT) and time-dependent DFT
(TDDFT) approaches were employed with B3LYP functional and TZVP [46,47] basis set
to optimize the geometry. The range-separated functional ωB97XD approach was used
to calculate the single point energy. Furthermore, to make the calculation results more
accurate, the polarizable continuum model using the integral equation formalism variant
(IEFPCM) [34,48] was utilized with water (H2O, ε = 78.3553) as the solvent. To verify the
TDDFT results, we also used the COSMO-ADC(2)/PTED method to compute the excitation
energies. For comparison, all the results by B3LYP functional are also provided in the
Supplementary Materials (Tables S5–S8, Figures S1, S2 and S5–S7).

All the geometric structures were at local minima with no imaginary frequency through
harmonic frequency analysis. In order to analyze the ESIPT process, the relaxed potential
energy curves (PECs) were constructed for both S0 and S1 states by fixing the O–H distance
and incrementally varying it by 0.05 Å. The fluorescence quenching mechanism of the probe
was investigated by analyzing the FMOs and the fragment charge transfer via Multiwfn 3.8
software [33].

To investigate the charge transfer mechanism, we utilized hole-electron analysis. The
methodology involved using various indices, including the centroid distance (D) index, the
degree of overlap (Sr) index, the width distribution (H) index, degree of separation (t) index,
hole delocalization index (HDI), and electron delocalization index (EDI) via the Multiwfn
program. The Sr index was utilized to measure the extent of hole-electron overlap, while
the D index quantified the distance between the hole and the electron’s mass center. The
H index provided an average distribution range of electrons and holes, and the t index
evaluated the separation of electrons and holes. HDI and EDI were used to assess the
degree of hole-electron delocalization, which indicated the uniformity of the distribution.
The relevant formula is as follows:

Sr index =
∫

Sr(r)dr =
∫ √

ρhole(r)ρele(r)dr

Dx = |Xele − Xhole| Dy = |Yele −Yhole| DZ =
∣∣Zele − Zhole

∣∣
D index =

√
(Dx)

2 + (Dy)
2 + (Dz)

2

H index = (|σele|+ |σhole|)/2

t index = D index− HCT

HDI = 100×
√∫

[ρhole(r)]2dr

EDI = 100×
√∫

[ρele(r)]2dr

4. Conclusions

The work provided a detailed theoretical basis for the photophysical characteristics of
DAPH-DNP and DAPH based on the DFT and TD-DFT methods at theωB97XD/TZVP
level. The fluorescence quenching pathway of DAPH-DNP is caused by the typical d-PET
mechanism. By comparing the charge transfer characteristics of the S0, S1, and S2 states of
DAPH-DNP using hole-electron and IFCT analysis methods, it was found that the DNP
group makes a significant contribution to the charge transfer excitation. The geometric
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structure information and infrared vibration spectra data show that the intramolecular
hydrogen bonds of DAPH are enhanced in the S1 state. The calculated PECs indicate
that the ESIPT process could not occur in DAPH due to the unstable nature of the keto
structure; it quickly reverted back to the enol structure. ICT is the main cause of the large
Stokes shift, which is inconsistent with the conclusion proposed in the experiment. This
further suggests that the fluorescence enhancement of DAPH is not based on the ESIPT
process. By the analysis of the FMOs of DAPH, the process of electronic excitation was
found to be accompanied by the ICT process, indicating that the large Stokes shift observed
in the experiment can be attributed to the ICT characteristic in the S1 state of DAPH-enol.
Our theoretical study not only explains the sensing mechanism but also confirms the
inefficiency of the ESIPT process in the probe DAPH-DNP, which is of great significance for
the synthesis of novel probes in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28196921/s1, Table S1: Comparing calculated spectral
data for DAPH based on different functionals (B3LYP, CAM-B3LYP, PBE0, and PBEPBE); Table S2:
Contribution of different segments of DAPH-DNP to the electron orbitals from S0 to S1 state and S3
state (ωB97XD/TZVP/IEFPCM); Table S3. The COSMO-ADC(2)/PTED computed vertical excitation
energies (in eV) of DAPH-DAP. Table S4: Contribution of different segments of DAPH to the electron
orbitals from S0 to S1 state (ωB97XD/TZVP/IEFPCM); Table S5: Detailed theoretical and experimen-
tal spectral data for DAPH-DNP and DPAH (B3LYP/TZVP/IEFPCM); Table S6: The calculated results
of the excited states for DAPH-DNP and DAPH, including the centroid distance (D), the degree of
overlap (Sr), the width distribution (H), degree of separation (t), hole delocalization index (HDI), and
electron delocalization index (EDI) (B3LYP/TZVP/IEFPCM); Table S7: Contribution of different seg-
ments of DAPH-DNP to the electron orbitals from S0 to S1 state and S3 state (B3LYP/TZVP/IEFPCM);
Table S8. Contribution of different segments of DAPH to the electron orbitals from S0 to S1 state
(B3LYP/TZVP/IEFPCM); Figure S1: The B3LYP/TZVP/IEFPCM calculated energies of DAPH-DNP
showing the PET mechanism; Figure S2: Excitation processes of DAPH-DNP (molecular orbitals
are given in blue and red iso-surfaces, holes and electrons are given in blue and green iso-surfaces,
respectively); Figure S3: The IFCT analyzing the electron excitation process of DAPH-DNP molecular
fragments (a), the amount of electron transfer between fragments from the S0 to S1 (b) and S3 states
(c); Figure S4: Frontier molecular orbitals showing the excitation process of DAPH; Figure S5: The
B3LYP/TZVP/IEFPCM calculated energies of DAPH showing the ICT mechanism; Figure S6: The
PECs of the S0 and S1 states for DAPH along with the O1–H2 bond length; Figure S7: The PECs of the
S0 and S1 states for DAPH along with the O1–H2 bond length (rigid scan).

Author Contributions: Y.W. (Yuxi Wang): Investigation, Writing—original draft. M.Z.: Investigation,
Data curation, Formal analysis. W.L.: Data curation. Y.W. (Yi Wang): Conceptualization, Writing—
review and editing. P.Z.: Writing—review and editing, supervision, funding acquisition. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Science Foundation of Shandong Province, China
(Grant No: ZR2023MB146).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The authors confirm that the data supporting the findings of this study
are available within the article [and/or] its Supplementary Materials.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; collection, analyses, or interpretation of data; writing of the manuscript, or decision to
publish the results.

Sample Availability: Not applicable.

https://www.mdpi.com/article/10.3390/molecules28196921/s1
https://www.mdpi.com/article/10.3390/molecules28196921/s1


Molecules 2023, 28, 6921 12 of 13

References
1. Ji, H.-F.; Shen, L.; Zhang, H.-Y. Theoretical Reinvestigation of Opposite Electronic Effects on Bond Lengths in Thiophenols and

Thiophenolic Radicals. J. Struct. Chem. 2005, 46, 347–351. [CrossRef]
2. dos Santos, D.J.V.A.; Newton, A.S.; Bernardino, R.; Guedes, R.C. Substituent Effects on O–H and S–H Bond Dissociation Enthalpies

of Disubstituted Phenols and Thiophenols. Int. J. Quantum Chem. 2008, 108, 754–761. [CrossRef]
3. Wang, H.; Wu, X.; Yang, S.; Tian, H.; Liu, Y.; Sun, B. A Rapid and Visible Colorimetric Fluorescent Probe for Benzenethiol Flavor

Detection. Food Chem. 2019, 286, 322–328. [CrossRef] [PubMed]
4. Zhang, Y.; Hao, Y.; Ma, X.; Chen, S.; Xu, M. A Dicyanoisophorone-Based Highly Sensitive and Selective near-Infrared Fluorescent

Probe for Sensing Thiophenol in Water Samples and Living Cells. Environ. Pollut. 2020, 265, 114958. [CrossRef]
5. Xiao, M.-M.; Ren, H.; Liu, T.-Z.; Li, Z.-Y.; Wang, J.-Z.; Miao, J.-Y.; Zhao, B.-X. Two Fluorescent Turn-on Probes for Detecting

Thiophenols in Environmental Water and in Living Cell Imaging. Microchem. J. 2022, 175, 107220. [CrossRef]
6. Chen, C.; Chen, H.; Yang, Y.; Zhu, H.-L. Selective and Rapid Detection of Thiophenol by a Novel Fluorescent Probe with Cellular

Imaging. Anal. Lett. 2022, 55, 2727–2737. [CrossRef]
7. Wu, F.; Wang, H.; Xu, J.; Yuan, H.-Q.; Zeng, L.; Bao, G.-M. A New Fluorescent Chemodosimeter for Ultra-Sensitive Determination

of Toxic Thiophenols in Environmental Water Samples and Cancer Cells. Sens. Actuators B Chem. 2018, 254, 21–29. [CrossRef]
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