Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (432)

Search Parameters:
Keywords = photoexcited

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 948 KiB  
Article
Extended Photoionization Cross Section Calculations for C III
by V. Stancalie
Appl. Sci. 2025, 15(14), 8099; https://doi.org/10.3390/app15148099 - 21 Jul 2025
Viewed by 219
Abstract
Spectral features of photoionization of various levels of C III are reported. These include characteristics of Rydberg and Seaton resonances, low and high excited levels, lifetimes, and total and partial cross sections. Calculations are performed in the relativistic Breit–Pauli R-matrix method with close-coupling [...] Read more.
Spectral features of photoionization of various levels of C III are reported. These include characteristics of Rydberg and Seaton resonances, low and high excited levels, lifetimes, and total and partial cross sections. Calculations are performed in the relativistic Breit–Pauli R-matrix method with close-coupling approximation, including damping effects on the resonance structure associated with the core-excited states produced by the electron excitation of C IV and photoionization of C III. For bound channel contribution, the close-coupling wavefunction expansion for photoionization includes ground and 14 excited states of the target ion CIV and 105 states configurations of C III. Extensive sets of atomic data for bound fine-structure levels, resulting in 762 dipole-allowed transitions, radiative probabilities, and photoionization cross sections out of Jπ = 0± − 4± fine-structure levels are obtained. The ground-level photoionization cross section smoothly decreases with increasing energy, showing a very narrow, strong Rydberg resonance converging to the CIV 1s22p threshold. The work shows that prominent Seaton resonances for 2sns states with n ≥ 5, caused by photoexcitation of the core electron below the 2p threshold, visibly contribute to photoabsorption from excited states of C III. The present results provide highly accurate parameters of various model applications in plasma spectroscopy. Full article
Show Figures

Figure 1

12 pages, 3178 KiB  
Article
Terahertz Optoelectronic Properties of Monolayer MoS2 in the Presence of CW Laser Pumping
by Ali Farooq, Wen Xu, Jie Zhang, Hua Wen, Qiujin Wang, Xingjia Cheng, Yiming Xiao, Lan Ding, Altayeb Alshiply Abdalfrag Hamdalnile, Haowen Li and Francois M. Peeters
Physics 2025, 7(3), 27; https://doi.org/10.3390/physics7030027 - 14 Jul 2025
Viewed by 341
Abstract
Monolayer (ML) molybdenum disulfide (MoS2) is a typical valleytronic material which has important applications in, for example, polarization optics and information technology. In this study, we examine the effect of continuous wave (CW) laser pumping on the basic optoelectronic properties of [...] Read more.
Monolayer (ML) molybdenum disulfide (MoS2) is a typical valleytronic material which has important applications in, for example, polarization optics and information technology. In this study, we examine the effect of continuous wave (CW) laser pumping on the basic optoelectronic properties of ML MoS2 placed on a sapphire substrate, where the pump photon energy is larger than the bandgap of ML MoS2. The pump laser source is provided by a compact semiconductor laser with a 445 nm wavelength. Through the measurement of THz time-domain spectroscopy, we obtain the complex optical conductivity for ML MoS2, which are found to be fitted exceptionally well with the Drude–Smith formula. Therefore, we expect that the reduction in conductivity in ML MoS2 is mainly due to the effect of electronic backscattering or localization in the presence of the substrate. Meanwhile, one can optically determine the key electronic parameters of ML MoS2, such as the electron density ne, the intra-band electronic relaxation time τ, and the photon-induced electronic localization factor c. The dependence of these parameters upon CW laser pump intensity is examined here at room temperature. We find that 445 nm CW laser pumping results in the larger ne, shorter τ, and stronger c in ML MoS2 indicating that laser excitation has a significant impact on the optoelectronic properties of ML MoS2. The origin of the effects obtained is analyzed on the basis of solid-state optics. This study provides a unique and tractable technique for investigating photo-excited carriers in ML MoS2. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

17 pages, 3368 KiB  
Article
Enhanced Photocatalytic Performances and Mechanistic Insights for Novel Ag-Bridged Dual Z-Scheme AgI/Ag3PO4/WO3 Composites
by Chunlei Ma, Jianke Tang, Qi Wang, Rongqian Meng and Qiaoling Li
Inorganics 2025, 13(7), 222; https://doi.org/10.3390/inorganics13070222 - 1 Jul 2025
Viewed by 544
Abstract
In this study, AgI/Ag3PO4/WO3 ternary composite photocatalysts with dual Z-scheme heterojunction were fabricated via the in situ loading of Ag3PO4 onto WO3 followed by anion exchange. Compared to single photocatalysts and binary composites, the [...] Read more.
In this study, AgI/Ag3PO4/WO3 ternary composite photocatalysts with dual Z-scheme heterojunction were fabricated via the in situ loading of Ag3PO4 onto WO3 followed by anion exchange. Compared to single photocatalysts and binary composites, the AgI/Ag3PO4/WO3 composites exhibited enhanced photocatalytic activity in the photodegradation of chlortetracycline hydrochloride (CTC) under visible-light irradiation. Notably, the AAW-40 photocatalyst, which contained an AgI/Ag3PO4 molar ratio of 40%, degraded 75.7% of the CTC within 75 min. Moreover, AAW-40 demonstrated an excellent performance in the cyclic degradation of CTC over four cyclic degradation experiments. The separation and transfer kinetics of the AgI/Ag3PO4/WO3 composite were investigated with photoluminescence spectroscopy, time-resolved photoluminescence spectroscopy, and electrochemical measurements. The improved photocatalytic performance was primarily due to the creation of a silver-bridged dual Z-scheme heterojunction, which facilitated the efficient separation of photoinduced electron–hole pairs, retained the strong reducing capability of electrons in AgI, and ensured the strongly oxidizing nature of the photoexcited holes in WO3. The dual Z-scheme charge-transfer mechanism was further validated using in situ X-ray photoelectron spectroscopy. This study provides a foundation for developing innovative dual Z-scheme photocatalytic systems aimed at the efficient degradation of antibiotics in wastewater. Full article
(This article belongs to the Special Issue Inorganic Photocatalysts for Environmental Applications)
Show Figures

Figure 1

16 pages, 7661 KiB  
Article
Study of Calcination Temperature Influence on Physicochemical Properties and Photodegradation Performance of Cu2O/WO3/TiO2
by Jenny Hui Foong Chau, Chin Wei Lai, Bey Fen Leo, Joon Ching Juan, Kian Mun Lee, Irfan Anjum Badruddin, Amit Kumar and Gaurav Sharma
Catalysts 2025, 15(6), 601; https://doi.org/10.3390/catal15060601 - 18 Jun 2025
Viewed by 422
Abstract
Photodegradation is a sustainable green technology that has been studied worldwide, especially for wastewater treatment. The calcination temperature has an important impact on the physicochemical properties of the prepared photocatalysts. In this study, a ternary photocatalyst of Cu2O/WO3/TiO2 [...] Read more.
Photodegradation is a sustainable green technology that has been studied worldwide, especially for wastewater treatment. The calcination temperature has an important impact on the physicochemical properties of the prepared photocatalysts. In this study, a ternary photocatalyst of Cu2O/WO3/TiO2 (CWT) was successfully synthesized using an ultrasonic-assisted hydrothermal technique, and the calcination temperature was varied from 500 to 800 °C. The characterization outcomes proved that the anatase phase titanium dioxide (TiO2) in the CWT composite transformed to rutile phase TiO2 when the calcination temperature reached 700 °C and 800 °C. The surface area of the CWT composite decreased from 35.77 to 8.09 m2.g−1 and the particle size of the CWT composite increased from 39.11 to 180.25 nm with an increasing calcination temperature from 500 to 800 °C. Photoelectrochemical (PEC) studies showed the charge-transfer resistance of 208.10 Ω, electron lifetime of 32.48 ms, current density of 1.40 mA.cm−2, transient photovoltage of 0.53 V, and p-n heterojunction properties for CWT-500. Reactive Black 5 (RB5) was used as the model pollutant to examine the photodegradation performance. The photodegradation rate of CWT-500 was the highest (0.70 × 10−2 min−1) due to its large surface area, effective separation of photoexcited electron-hole pairs, and low photoexcited charge carrier recombination rate. Full article
Show Figures

Figure 1

23 pages, 4811 KiB  
Article
In2S3/C3N4 Nanocomposite and Its Photoelectric Properties in the Broadband Light Spectrum Range
by Xingfa Ma, Xintao Zhang, Mingjun Gao, Ruifen Hu, You Wang and Guang Li
Coatings 2025, 15(6), 718; https://doi.org/10.3390/coatings15060718 - 14 Jun 2025
Viewed by 389
Abstract
To extend the spectral utilisation of In2S3, an In2S3/C3N4 nanocomposite was prepared. The effects of different sulphur sources, electrodes, and bias voltages on the optoelectronic performance were examined. Photoelectric properties in response [...] Read more.
To extend the spectral utilisation of In2S3, an In2S3/C3N4 nanocomposite was prepared. The effects of different sulphur sources, electrodes, and bias voltages on the optoelectronic performance were examined. Photoelectric properties in response to light sources with wavelengths of 405, 532, 650, 780, 808, 980, and 1064 nm were investigated using Au electrodes and the carbon electrodes with 5B pencil drawings. This study shows that the aggregation states of the In2S3/C3N4 nanocomposite possess photocurrent switching responses in the broadband region of the light spectrum. Combining two types of partially visible light-absorbing material extends utilisation to the near-infrared region. Impurities or defects embody an electron-donating effect. Since the energy levels of defects or impurities with an electron-donating effect are close to the conduction band, low-energy lights (especially NIR) can be utilised. The non-equilibrium carrier concentration (photogenerated electrons) of the nanocomposites increases significantly under NIR photoexcitation conditions. Thus, photoconductive behaviour is manifested. A good photoelectric signal was still measured when zero bias was applied. This demonstrates self-powered photoelectric response characteristics. Different sulphur sources significantly affect the photoelectric performance, suggesting that they create different defects that affect charge transport and base current noise. It is believed that interfacial interactions in the In2S3/C3N4 nanocomposite create a built-in electric field that enhances the separation and transfer of electrons and holes produced by light stimulation. The presence of the built-in electric field also leads to energy band bending, which facilitates the utilisation of the light with longer wavelengths. This study provides a reference for multidisciplinary applications. Full article
Show Figures

Figure 1

20 pages, 883 KiB  
Article
Photoexcited Palladium Complex-Catalyzed Isocyanide Insertion into Inactivated Alkyl Iodides
by Andrea Messina, Filippo Monticelli, Tiziano Miroglio, Anna Gagliardi, Igor Viviani, Luca Banfi, Renata Riva, Lisa Moni, Andrea Basso and Chiara Lambruschini
Molecules 2025, 30(12), 2584; https://doi.org/10.3390/molecules30122584 - 13 Jun 2025
Viewed by 536
Abstract
Isocyanides insertions represent an important transformation in the palladium-catalyzed reactions landscape. However, one of their most significant limitations is in the use of inactivated alkyl electrophiles. Palladium photocatalysis has been proven as a solid tool for the generation of alkyl radicals from alkyl [...] Read more.
Isocyanides insertions represent an important transformation in the palladium-catalyzed reactions landscape. However, one of their most significant limitations is in the use of inactivated alkyl electrophiles. Palladium photocatalysis has been proven as a solid tool for the generation of alkyl radicals from alkyl halides, which may engage in subsequent transformations with a variety of reaction partners, closing the catalytic cycle. Herein, we report the mild three-component isocyanide insertions into inactivated alkyl iodides mediated by the catalytic activity of a photoexcited palladium complex. We investigated the scope of the reaction obtaining differently substituted secondary amides in good to high yields. We also investigated the mechanism, hypothesizing a key role of 4-(N,N-dimethylamino)pyridine in the outcome of the reaction. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry and Photocatalysis—2nd Edition)
Show Figures

Graphical abstract

13 pages, 3578 KiB  
Article
Prussian Blue Analogue-Derived p-n Junction Heterostructure for Photothermal Reverse Water–Gas Shift: Enhanced Activity and Selectivity via Synergistic Effects
by Shaorui Jia, Xinbo Zhang, Junhong Ma, Chaoyun Ma, Xue Yu and Yuanhao Wang
Nanomaterials 2025, 15(12), 904; https://doi.org/10.3390/nano15120904 - 11 Jun 2025
Viewed by 355
Abstract
Photothermal catalytic CO2 conversion into chemicals that provide added value represents a promising strategy for sustainable energy utilization, yet the development of highly efficient, stable, and selective catalysts remains a significant challenge. Herein, we report a rationally designed p-n junction heterostructure, T-CZ-PBA [...] Read more.
Photothermal catalytic CO2 conversion into chemicals that provide added value represents a promising strategy for sustainable energy utilization, yet the development of highly efficient, stable, and selective catalysts remains a significant challenge. Herein, we report a rationally designed p-n junction heterostructure, T-CZ-PBA (SC), synthesized via controlled pyrolysis of high crystalline Prussian blue analogues (PBA) precursor, which integrates CuCo alloy, ZnO, N-doped carbon (NC), and ZnII-CoIIIPBA into a synergistic architecture. This unique configuration offers dual functional advantages: (1) the abundant heterointerfaces provide highly active sites for enhanced CO2 and H2 adsorption/activation, and (2) the engineered energy band structure optimizes charge separation and transport efficiency. The optimized T-C3Z1-PBA (SC) achieves exceptional photothermal catalytic performance, demonstrating a CO2 conversion rate of 126.0 mmol gcat⁻1 h⁻1 with 98.8% CO selectivity under 350 °C light irradiation, while maintaining robust stability over 50 h of continuous operation. In situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) investigations have identified COOH* as a critical reaction intermediate and elucidated that photoexcitation accelerates charge carrier dynamics, thereby substantially promoting the conversion of key intermediates (CO2* and CO*) and overall reaction kinetics. This research provides insights for engineering high-performance heterostructured catalysts by controlling interfacial and electronic structures. Full article
Show Figures

Graphical abstract

16 pages, 2651 KiB  
Article
The Effect of Photoisomerization on the Antioxidant Properties of Sinapic Acid and Methyl Sinapate in Different Solvents: A DFT/TD-DFT Study
by Lei Wang, Chaofan Sun and Lingling Wang
Antioxidants 2025, 14(6), 633; https://doi.org/10.3390/antiox14060633 - 25 May 2025
Viewed by 619
Abstract
The impact of photoisomerization on antioxidant properties holds significant implications for fields such as medicine, chemistry, and consumer products. This investigation employs multistate complete active space second-order perturbation theory (MS-CASPT2), complemented by density functional theory (DFT) and time-dependent DFT (TD-DFT) methods, to examine [...] Read more.
The impact of photoisomerization on antioxidant properties holds significant implications for fields such as medicine, chemistry, and consumer products. This investigation employs multistate complete active space second-order perturbation theory (MS-CASPT2), complemented by density functional theory (DFT) and time-dependent DFT (TD-DFT) methods, to examine the photoisomerization behavior of sinapic acid (SA) and methyl sinapate (MS) under ultraviolet (UV) irradiation, while systematically analyzing their antioxidant properties in the S1 state. The computational results, validated by two independent theoretical approaches, confirm that both SA and MS can undergo photoisomerization through conical intersection pathways, providing crucial insights into their non-radiative transition mechanisms. In the S0 state, cis-SA and cis-MS exhibit higher antioxidant activity, while in the S1 state, antioxidant performance is strongly solvent-dependent: trans-SA outperforms in ethyl acetate (Eac) and water, whereas cis-SA is more effective in methanol (MeOH). Notably, the natural population analysis (NPA) charges of all four compounds increase upon photoexcitation, suggesting that photoexcitation enhances antioxidant properties. This study addresses a critical gap in our understanding of the relationship between photoisomerization and antioxidant activity in natural phenolic compounds. Full article
Show Figures

Graphical abstract

24 pages, 4491 KiB  
Review
Bioimaging and Sensing Properties of Curcumin and Derivatives
by Chiara Maria Antonietta Gangemi, Salvatore Mirabile, Maura Monforte, Anna Barattucci and Paola Maria Bonaccorsi
Int. J. Mol. Sci. 2025, 26(10), 4871; https://doi.org/10.3390/ijms26104871 - 19 May 2025
Viewed by 588
Abstract
Curcumin (Cur) is one of the most studied natural polyphenolic compounds, with many pharmacological properties and a luminescent skeleton. Natural fluorescent molecules are peculiar tools in nanomedicine for bioimaging and sensing, and this review focuses on the photophysical properties and applications of Cur [...] Read more.
Curcumin (Cur) is one of the most studied natural polyphenolic compounds, with many pharmacological properties and a luminescent skeleton. Natural fluorescent molecules are peculiar tools in nanomedicine for bioimaging and sensing, and this review focuses on the photophysical properties and applications of Cur in these biomedical fields. The first part of the review opens with a description of the Cur chemical skeleton and its connection with the luminescent nature of this molecule. The 1,6-heptadiene-3,5-dionyl chain causes the involvement of Cur in a keto–enol tautomerism, which influences its solvatochromism. The polyphenolic nature of its skeleton justifies the Cur generation of singlet oxygen and ROS upon photoexcitation, and this is responsible for the photophysical processes that may be related to the photodynamic therapy (PDT) effects of Cur. In the second part of the review, bioimaging based on Cur derivatives is reviewed, with a deeper attention paid to the molecular diagnostic and nano-formulations in which Cur is involved, either as a drug or a source of fluorescence. Theragnostics is an innovative idea in medicine based on the integration of diagnosis and therapy with nanotechnology. The combination of diagnostics and therapy provides optimal and targeted treatment of the disease from its early stages. Curcumin has been involved in a series of nano-formulations exploiting its pharmacological and photophysical characteristics and overcoming its strong lipophilicity using biocompatible nanomaterials. In the third part of the review, modifications of the Cur skeleton were employed to synthesize probes that change their color in response to specific stimuli as a consequence of the trapping of specific molecules. Finally, the methodologies of sensing biothiols, anions, and cations by Cur are described, and the common features of such luminescent probes reveal how each modification of the skeleton can deeply influence its natural luminescence. Full article
(This article belongs to the Special Issue Luminescent Dyes as Tools for Biological and Medical Applications)
Show Figures

Graphical abstract

14 pages, 1851 KiB  
Article
The Natural Anthraquinone Parietin Inactivates Candida tropicalis Biofilm by Photodynamic Mechanisms
by Juliana Marioni, Bianca C. Romero, Ma. Laura Mugas, Florencia Martinez, Tomas I. Gómez, Jesús M. N. Morales, Brenda S. Konigheim, Claudio D. Borsarelli and Susana C. Nuñez-Montoya
Pharmaceutics 2025, 17(5), 548; https://doi.org/10.3390/pharmaceutics17050548 - 23 Apr 2025
Viewed by 593
Abstract
Background/Objectives: Parietin (PTN), a blue-light absorbing pigment from Teloschistes spp. lichens, exhibit photosensitizing properties via Type I (superoxide anion, O2•−) and Type II (singlet oxygen, 1O2) mechanisms, inactivating bacteria in vitro after photoexcitation. We evaluate the [...] Read more.
Background/Objectives: Parietin (PTN), a blue-light absorbing pigment from Teloschistes spp. lichens, exhibit photosensitizing properties via Type I (superoxide anion, O2•−) and Type II (singlet oxygen, 1O2) mechanisms, inactivating bacteria in vitro after photoexcitation. We evaluate the in vitro antifungal activity of PTN against Candida tropicalis biofilms under actinic irradiation, its role in O2•− and 1O2 production, and the cellular stress response. Methods: Minimum inhibitory concentration (MIC) of PTN was determined in C. tropicalis NCPF 3111 under dark and actinic light conditions. Biofilm susceptibility was assessed at MIC/2, MIC, MICx2, MICx4, and MICx6 in the same conditions, and viability was measured by colony-forming units. Photodynamic mechanisms were examined using Tiron (O2•− scavenger) or sodium azide (1O2 quencher). O2•− production was measured by the nitro-blue tetrazolium (NBT) reduction and nitric oxide (NO) generation by Griess assay. Total antioxidant capacity was studied by FRAP (Ferrous Reduction Antioxidant Potency) assay and superoxide dismutase (SOD) activity by NBT assay. Results: Photoexcitation of PTN reduced C. tropicalis biofilm viability by four logs at MICx2. Sodium azide partially reversed the effect, whereas Tiron fully inhibited it, indicating the critical role of O2•−. PTN also increased O2•− and NO levels, enhancing SOD activity and FRAP. However, this antioxidant response was insufficient to prevent biofilm photoinactivation. Conclusions: Photoinactivation of C. tropicalis biofilms by PTN is primarily mediated by O2•−, with a minor contribution from 1O2 and an imbalance in NO levels. These findings suggest PTN is a promising photosensitizer for antifungal photodynamic therapy. Full article
(This article belongs to the Special Issue Natural Products in Photodynamic Therapy)
Show Figures

Graphical abstract

25 pages, 8071 KiB  
Article
The Interface Interaction of C3N4/Bi2S3 Promoted the Separation of Excitons and the Extraction of Free Photogenerated Carriers in the Broadband Light Spectrum Range
by Xingfa Ma, Xintao Zhang, Mingjun Gao, Ruifen Hu, You Wang and Guang Li
Inorganics 2025, 13(4), 122; https://doi.org/10.3390/inorganics13040122 - 12 Apr 2025
Cited by 1 | Viewed by 580
Abstract
Exciton generation and separation play an important role in the photoelectric properties and the luminescence performance of materials. In order to tailor the defects and grain boundaries and improve the exciton separation and light harvesting of the graphitic carbon nitride (g-C3N [...] Read more.
Exciton generation and separation play an important role in the photoelectric properties and the luminescence performance of materials. In order to tailor the defects and grain boundaries and improve the exciton separation and light harvesting of the graphitic carbon nitride (g-C3N4) nanosheets, a C3N4/bismuth sulfide (Bi2S3) nanocomposite was synthesized. The photoelectric properties of the 405, 532, 650, 780, 808, 980 and 1064 nm light sources were studied using Au electrodes and graphite electrodes with 4B and 5B pencil drawings. The results indicate that the C3N4/Bi2S3 nanocomposite exhibited photocurrent switching behavior in the broadband light spectrum range. It is noted that even with zero bias applied, a good photoelectric signal was still measured. The resulting nanocomposite exhibited good photophysical stability. Physical mechanisms are discussed herein. It is suggested that the interfacial interaction of C3N4 and Bi2S3 in the nanocomposite creates a strong built-in electric field, which accelerates the separation of excitons. Therefore, as a dynamic process of photoexcitation, fluorescence, the photoelectric effect, and scattering are three main competing processes; the separation of excitons and the extraction of free photogenerated charge can be used as a reference for the fluorescent materials or other photoelectric materials studies as photophysical properties. This study also serves as an important reference for the design, defect and grain boundary modulation or interdisciplinary application of functional nanocomposites, especially for the bandgap modulation and suppression of photogenerated carrier recombination. Full article
(This article belongs to the Special Issue Synthesis and Application of Luminescent Materials, 2nd Edition)
Show Figures

Figure 1

28 pages, 6457 KiB  
Article
Photocatalytic and Photo-Fenton-like Degradation of Cationic Dyes Using SnFe2O4/g-C3N4 Under LED Irradiation: Optimization by RSM-BBD and Artificial Neural Networks (ANNs)
by Yassine Elkahoui, Fatima-Zahra Abahdou, Majda Ben Ali, Said Alahiane, Mohamed Elhabacha, Youssef Boutarba and Souad El Hajjaji
Reactions 2025, 6(2), 23; https://doi.org/10.3390/reactions6020023 - 28 Mar 2025
Viewed by 1276
Abstract
The development of heterostructures incorporating photocatalysts optimized for visible-light activity represents a major breakthrough in the field of environmental remediation research, offering innovative and sustainable solutions for environmental purification. This study explores the photocatalytic capabilities of a SnFe2O4/g-C3 [...] Read more.
The development of heterostructures incorporating photocatalysts optimized for visible-light activity represents a major breakthrough in the field of environmental remediation research, offering innovative and sustainable solutions for environmental purification. This study explores the photocatalytic capabilities of a SnFe2O4/g-C3N4 heterojunction nanocomposite, successfully synthesized from graphitic carbon nitride (g-C3N4) and tin ferrate (SnFe2O4) and applied to the degradation of the cationic dye brilliant cresyl blue (BCB) in an aqueous solution. These two components are particularly attractive due to their low cost and ease of fabrication. Various characterization techniques, including XRD, FTIR, SEM, and TEM, were used to confirm the successful integration of SnFe2O4 and g-C3N4 phases in the synthesized catalysts. The photocatalytic and photo-Fenton-like activity of the heterojunction composites was evaluated by the degradation of brilliant cresyl blue under visible LED illumination. Compared to the pure components SnFe2O4 and g-C3N4, the SnFe2O4/g-C3N4 nanocomposite demonstrated a superior photocatalytic performance. Furthermore, the photo-Fenton-like performance of the composites is much higher than the photocatalytic performances. The significant improvement in photo-Fenton activity is attributed to the synergistic effect between SnFe2O4 and g-C3N4, as well as the efficient separation of photoexcited electron/hole pairs. The recyclability of the SnFe2O4/g-C3N4 composite toward BCB photo-Fenton like degradation was also shown. This study aimed to assess the modeling and optimization of photo-Fenton-like removal BCB using the SnFe2O4/g-C3N4 nanomaterial. The main parameters (photocatalyst dose, initial dye concentration, H2O2 volume, and reaction time) affecting this system were modeled by two approaches: a response surface methodology (RSM) based on a Box–Behnken design and artificial neural network (ANN). A comparison was made between the predictive accuracy of RSM for brilliant cresyl blue (BCB) removal and that of the artificial neural network (ANN) approach. Both methodologies provided satisfactory and comparable predictions, achieving R2 values of 0.97 for RSM and 0.99 for ANN. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2025)
Show Figures

Figure 1

18 pages, 2314 KiB  
Article
Photochemical Redox Cycling of Naphthoquinones Mediated by Methylene Blue and Pheophorbide A
by Lisa M. Landino and Joseph A. Reed
Molecules 2025, 30(6), 1351; https://doi.org/10.3390/molecules30061351 - 18 Mar 2025
Cited by 1 | Viewed by 925
Abstract
The photoreduction of plastoquinone, a para-benzoquinone, by chlorophyll initiates photosynthesis in chloroplasts. The direct photoreduction of biologically relevant quinones by dietary chlorophyll metabolites has been reported and may influence health outcomes. We examined red light-mediated photoreduction of ortho- and para-naphthoquinones including vitamin K [...] Read more.
The photoreduction of plastoquinone, a para-benzoquinone, by chlorophyll initiates photosynthesis in chloroplasts. The direct photoreduction of biologically relevant quinones by dietary chlorophyll metabolites has been reported and may influence health outcomes. We examined red light-mediated photoreduction of ortho- and para-naphthoquinones including vitamin K3 using the photosensitizers methylene blue and pheophorbide A, a chlorophyll metabolite. Naphthoquinone reduction was monitored by UV/Visible spectroscopy and required a photosensitizer, red light and a tertiary amine electron donor. Combinations of methylene blue and ethylenediaminetetraacetic acid or pheophorbide A and triethanolamine in 20% dimethylformamide were employed for all photoreduction experiments. Hydrogen peroxide was generated during the photochemical reactions by singlet oxygen-dependent oxidation of the reduced naphthoquinones. Hydrogen peroxide was quantified with horseradish peroxidase following irradiation; the reduced naphthoquinones acted as peroxidase co-substrates. Histidine, a singlet oxygen scavenger, enhanced the rate of photoreduction by limiting the re-oxidation process. Catalase slowed the rate of photoreduction by regenerating molecular oxygen from hydrogen peroxide so that it could be photoexcited to singlet oxygen. The rates and extent of naphthoquinone photoreduction were dependent on molecular oxygen exposure in different reaction formats including in a cuvette and a plate well. Reduction of the tetrazolium salt MTT to the formazan via electron transfer from the photoreduced quinones was also used to quantitate the extent of photoreduction. Full article
Show Figures

Graphical abstract

8 pages, 890 KiB  
Article
Near-Infrared Phosphorescence of Raman Photogenerated Singlet Oxygen
by Aristides Marcano Olaizola
Photochem 2025, 5(1), 7; https://doi.org/10.3390/photochem5010007 - 11 Mar 2025
Viewed by 888
Abstract
We report on the phosphorescence of singlet oxygen photogenerated through a stimulated Raman process. Nanosecond radiation in the green spectral region focused on hexane and carbon tetrachloride induces a Raman transition of the dissolved solvent oxygen molecules towards the singlet oxygen state, producing [...] Read more.
We report on the phosphorescence of singlet oxygen photogenerated through a stimulated Raman process. Nanosecond radiation in the green spectral region focused on hexane and carbon tetrachloride induces a Raman transition of the dissolved solvent oxygen molecules towards the singlet oxygen state, producing a Stokes signal in the near-infrared. The excited oxygen relaxes to the ground, emitting an infrared photon at 1272 nm. While the Stokes signal’s wavelength changes with the light’s wavelength, the wavelength of the phosphorescent photon remains unaltered. The result confirms previous reports on the stimulated Raman excitation of singlet oxygen. Full article
Show Figures

Graphical abstract

16 pages, 2907 KiB  
Article
Thermodynamic Cards of Classic NADH Models and Their Related Photoexcited States Releasing Hydrides in Nine Elementary Steps and Their Applications
by Bao-Chen Qian, Xiao-Qing Zhu and Guang-Bin Shen
Molecules 2025, 30(5), 1053; https://doi.org/10.3390/molecules30051053 - 25 Feb 2025
Viewed by 601
Abstract
Thermodynamic cards of three classic NADH models (XH), namely 1-benzyl-1,4-dihydronicotinamide (BNAH), Hantzsch ester (HEH), and 10-methyl-9,10-dihydroacridine (AcrH), as well as their photoexcited states (XH*: BNAH*, HEH*, AcrH*) releasing hydrides in nine elementary steps in acetonitrile are established. According to these thermodynamic cards, the [...] Read more.
Thermodynamic cards of three classic NADH models (XH), namely 1-benzyl-1,4-dihydronicotinamide (BNAH), Hantzsch ester (HEH), and 10-methyl-9,10-dihydroacridine (AcrH), as well as their photoexcited states (XH*: BNAH*, HEH*, AcrH*) releasing hydrides in nine elementary steps in acetonitrile are established. According to these thermodynamic cards, the thermodynamic reducing abilities of XH* are remarkably enhanced upon photoexcitation, rendering them thermodynamically highly potent electron, hydrogen atom, and hydride donors. The application of these thermodynamic cards to imine reduction is demonstrated in detail, revealing that photoexcitation enables XH* to act as better hydride donors, transforming the hydride transfer process from thermodynamically unfeasible to feasible. Most intriguingly, AcrH* is identified as the most thermodynamically favorable electron, hydride, and hydrogen atom donor among the three classic NADH models and their photoexcited states. The exceptional thermodynamic properties of XH* in hydride release inspire further investigation into the excited wavelengths, excited potentials, and excited state stabilities of more organic hydrides, as well as the discovery of novel and highly effective photoexcited organic hydride reductants. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

Back to TopTop