Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = photoelectric detector

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1027 KiB  
Review
Photon Detector Technology for Laser Ranging: A Review of Recent Developments
by Zhihui Li, Xin Jin, Changfu Yuan and Kai Wang
Coatings 2025, 15(7), 798; https://doi.org/10.3390/coatings15070798 - 8 Jul 2025
Viewed by 568
Abstract
Laser ranging technology holds a key position in the military, aerospace, and industrial fields due to its high precision and non-contact measurement characteristics. As a core component, the performance of the photon detector directly determines the ranging accuracy and range. This paper systematically [...] Read more.
Laser ranging technology holds a key position in the military, aerospace, and industrial fields due to its high precision and non-contact measurement characteristics. As a core component, the performance of the photon detector directly determines the ranging accuracy and range. This paper systematically reviews the technological development of photonic detectors for laser ranging, with a focus on analyzing the working principles and performance differences of traditional photodiodes [PN (P-N junction photodiode), PIN (P-intrinsic-N photodiode), and APD (avalanche photodiode)] (such as the high-frequency response characteristics of PIN and the internal gain mechanism of APD), as well as their applications in short- and medium-range scenarios. Additionally, this paper discusses the unique advantages of special structures such as transmitting junction-type and Schottky-type detectors in applications like ultraviolet light detection. This article focuses on photon counting technology, reviewing the technological evolution of photomultiplier tubes (PMTs), single-photon avalanche diodes (SPADs), and superconducting nanowire single-photon detectors (SNSPDs). PMT achieves single-photon detection based on the external photoelectric effect but is limited by volume and anti-interference capability. SPAD achieves sub-decimeter accuracy in 100 km lidars through Geiger mode avalanche doubling, but it faces challenges in dark counting and temperature control. SNSPD, relying on the characteristics of superconducting materials, achieves a detection efficiency of 95% and a dark count rate of less than 1 cps in the 1550 nm band. It has been successfully applied in cutting-edge fields such as 3000 km satellite ranging (with an accuracy of 8 mm) and has broken through the near-infrared bottleneck. This study compares the differences among various detectors in core indicators such as ranging error and spectral response, and looks forward to the future technical paths aimed at improving the resolution of photon numbers and expanding the full-spectrum detection capabilities. It points out that the new generation of detectors represented by SNSPD, through material and process innovations, is promoting laser ranging to leap towards longer distances, higher precision, and wider spectral bands. It has significant application potential in fields such as space debris monitoring. Full article
Show Figures

Graphical abstract

19 pages, 5033 KiB  
Article
Development and Verification of Sampling Timing Jitter Noise Suppression System for Phasemeter
by Tao Yu, Ke Xue, Hongyu Long, Mingzhong Pan, Zhi Wang and Yunqing Liu
Photonics 2025, 12(6), 623; https://doi.org/10.3390/photonics12060623 - 19 Jun 2025
Viewed by 316
Abstract
As the primary electronic payload of laser interferometry system for space gravitational wave detection, the core function of the phasemeter is ultra-high precision phase measurement. According to the principle of laser heterodyne interferometry and the requirement of 1 pm ranging accuracy of the [...] Read more.
As the primary electronic payload of laser interferometry system for space gravitational wave detection, the core function of the phasemeter is ultra-high precision phase measurement. According to the principle of laser heterodyne interferometry and the requirement of 1 pm ranging accuracy of the phasemeter, the phase measurement noise should reach 2π μrad/Hz1/2@(0.1 mHz–1 Hz). The heterodyne interference signal first passes through the quadrant photoelectric detector (QPD) to achieve photoelectric conversion, then passes through the analog-to-digital converter (ADC) to achieve analog and digital conversion, and finally passes through the digital phase-locked loop (DPLL) for phase locking. The sampling timing jitter of the heterodyne interference signal caused by the ADC is the main noise affecting the phase measurement performance and must be suppressed. This paper proposes a sampling timing jitter noise suppression system (STJNSS), which can set system parameters for high-frequency signals used for inter-satellite clock noise transmission, the system clock of the phasemeter, and the pilot frequency for suppressing ADC sampling timing jitter noise, meeting the needs of the current major space gravitational wave detection plans. The experimental results after the integration of SJNSS and the phase meter show that the phase measurement noise of the heterodyne interferometer signal reaches 2π μrad/Hz1/2@(0.1 mHz–1 Hz), which meets the requirements of space gravitational wave missions. Full article
(This article belongs to the Special Issue Deep Ultraviolet Detection Materials and Devices)
Show Figures

Figure 1

12 pages, 3151 KiB  
Article
Photocurrent Generation and Collection in a WSe2-Based Composite Detector
by Yulin Zhu, Sheng Ni, Fengyi Zhu, Zhenzhi Hu, Changyi Pan, Xuhao Fan, Yuhang Ma, Shian Mi, Changlong Liu, Weiwei Tang, Guanhai Li and Xiaoshuang Chen
Coatings 2025, 15(6), 672; https://doi.org/10.3390/coatings15060672 - 31 May 2025
Viewed by 616
Abstract
Two-dimensional (2D) van der Waals materials have been actively investigated for broadband, high-sensitivity, low-power-consumption photodetection owing to their highly customizable band structures and fast interfacial charge transfers. Studying photocurrent generation mechanisms provides insights into charge carrier dynamics in WSe2-based detectors, linking [...] Read more.
Two-dimensional (2D) van der Waals materials have been actively investigated for broadband, high-sensitivity, low-power-consumption photodetection owing to their highly customizable band structures and fast interfacial charge transfers. Studying photocurrent generation mechanisms provides insights into charge carrier dynamics in WSe2-based detectors, linking spatial factors (e.g., photocurrent generation/collection) with interfacial band alignment. Here, we employ scanning photocurrent microscopy to spatially resolve the processes of photocurrent generation and collection in WSe2-based composite structures. Photocurrent polarity and magnitude at interface reflects interfacial band alignment and potential gradients at metal–WSe2 and WSe2–In2Se3 junctions. Strong electric fields at metal–WSe2 interfaces drive more efficient electron–hole separation and yield higher photocurrents, compared with WSe2–In2Se3 interfaces. The photodetector exhibits broadband detection capabilities from visible to infrared light, achieving a high responsivity of 17.7 A/W and an excellent detectivity of 3.7 × 1012 Jones, as well as fast response times of <113 µs. Furthermore, object imaging with a resolution better than 0.5 mm was successfully demonstrated, highlighting the potential of this photoresponse for practical imaging applications. This work reveals that photocurrent is distributed with a clear dependence on device configuration, offering a new avenue for optimizing 2D material-based photoelectric devices. Full article
Show Figures

Figure 1

10 pages, 3266 KiB  
Article
Extended Shortwave Infrared T2SL Detector Based on AlAsSb/GaSb Barrier Optimization
by Jing Yu, Yuegang Fu, Lidan Lu, Weiqiang Chen, Jianzhen Ou and Lianqing Zhu
Micromachines 2025, 16(5), 575; https://doi.org/10.3390/mi16050575 - 14 May 2025
Viewed by 503
Abstract
Extended shortwave infrared (eSWIR) detectors operating at high temperatures are widely utilized in planetary science. A high-performance eSWIR based on pBin InAs/GaSb/AlSb type-II superlattice (T2SL) grown on a GaSb substrate is demonstrated. It achieves the optimization of the device’s optoelectronic performance by adjusting [...] Read more.
Extended shortwave infrared (eSWIR) detectors operating at high temperatures are widely utilized in planetary science. A high-performance eSWIR based on pBin InAs/GaSb/AlSb type-II superlattice (T2SL) grown on a GaSb substrate is demonstrated. It achieves the optimization of the device’s optoelectronic performance by adjusting the p-type doping concentration in the AlAs0.1Sb0.9/GaSb barrier. Experimental and TCAD simulation results demonstrate that both the device’s dark current and responsivity grow as the doping concentration rises. Here, the bulk dark current density and bulk differential resistance area are extracted to calculate the bulk detectivity for evaluating the photoelectric performance of the device. When the barrier concentration is 5 × 1016 cm−3, the bulk detectivity is 2.1 × 1011 cm·Hz1/2/W, which is 256% higher than the concentration of 1.5 × 1018 cm−3. Moreover, at 300 K (−10 mV), the 100% cutoff wavelength of the device is 1.9 μm, the dark current density is 9.48 × 10−6 A/cm2, and the peak specific detectivity is 7.59 × 1010 cm·Hz1/2/W (at 1.6 μm). An eSWIR focal plane array (FPA) detector with a 320 × 256 array scale was fabricated for this purpose. It demonstrates a remarkably low blind pixel rate of 0.02% and exhibits an excellent imaging quality at room temperature, indicating its vast potential for applications in infrared imaging. Full article
(This article belongs to the Special Issue Integrated Photonics and Optoelectronics, 2nd Edition)
Show Figures

Figure 1

12 pages, 4447 KiB  
Article
Solar-Blind Ultraviolet Four-Quadrant Detector and Spot Positioning System Based on AlGaN Diodes
by Longfei Peng, Shangqing Li, Yong Huang and Yang Yang
Sensors 2025, 25(7), 2206; https://doi.org/10.3390/s25072206 - 31 Mar 2025
Viewed by 493
Abstract
The four-quadrant detector (4QD), as a highly sensitive and fast-response position-sensitive device, is widely used in laser guidance, target tracking, and related fields. However, traditional visible and infrared 4QDs exhibit significant vulnerability to ambient light interference, particularly under high-intensity background illumination. To address [...] Read more.
The four-quadrant detector (4QD), as a highly sensitive and fast-response position-sensitive device, is widely used in laser guidance, target tracking, and related fields. However, traditional visible and infrared 4QDs exhibit significant vulnerability to ambient light interference, particularly under high-intensity background illumination. To address this issue, this paper presents a solar-blind ultraviolet (UV) 4QD and a spot positioning system based on AlGaN diodes, achieving a UV/visible suppression ratio of 2.17 × 104 (without solar-blind filters). The system employs a high-linearity, low-noise capacitive transimpedance amplifier (CTIA) as the readout circuit for the high-sensitivity and rapid-response solar-blind UV detectors, enabling the precise conversion of weak photocurrent signals into voltage signals for digitization. Utilizing a third-order polynomial least-squares fitting algorithm without introducing complex filtering techniques, the system achieves a maximum positioning error of 0.0101 mm and a root-mean-square error (RMSE) of 0.0057 mm, among of one the best-performing solar-blind UV 4QDs. The experimental results demonstrate exceptional spot positioning performance under a 275 nm laser source, meeting the high-precision requirements for space target detection. This research provides a reference for the application of solar-blind UV 4QDs in positioning, alignment, and monitoring scenarios, thereby holding significant practical implications. Full article
(This article belongs to the Special Issue State-of-the-Art Optical Sensors Technology in China 2024–2025)
Show Figures

Figure 1

14 pages, 2851 KiB  
Article
Characterization of Different Types of Micro-Fission and Micro-Ionization Chambers Under X-Ray Beams
by Juan Antonio Moreno-Pérez, Álvaro Marchena, Pablo Araya, Jesús J. López-Peñalver, Juan Alejandro de la Torre, Antonio M. Lallena, Santiago Becerril, Marta Anguiano, Alberto J. Palma and Miguel A. Carvajal
Sensors 2025, 25(6), 1862; https://doi.org/10.3390/s25061862 - 17 Mar 2025
Viewed by 546
Abstract
Various models of ionization and fission chambers for ionizing radiation detection, designed to operate under harsh conditions such as those found in fusion reactors or particle accelerators, have been experimentally characterized and numerically simulated. These models were calibrated using a photon beam in [...] Read more.
Various models of ionization and fission chambers for ionizing radiation detection, designed to operate under harsh conditions such as those found in fusion reactors or particle accelerators, have been experimentally characterized and numerically simulated. These models were calibrated using a photon beam in the X-ray spectrum. Irradiations were performed at the Biomedical Research Center of the University of Granada (CIBM) with a bipolar metal-ceramic X-ray tube operating at a voltage of 150 kV and a dose rate ranging from 0.05 to 2.28 Gy/min. All detectors under study featured identical external structures but varied in detection volume, anode configuration, and filling gas composition. To assess inter- and intra-model response variations, the tested models included 12 micro-ionization chambers (CRGR10/C5B/UG2), 3 micro-fission chambers (CFUR43/C5B-U5/UG2), 8 micro-fission chambers (CFUR43/C5B-U8/UG2), and 3 micro-fission chambers (CFUR44/C5B-U8/UG2), all manufactured by Photonis (Merignac, France). The experimental setup was considered suitable for the tests, as the leakage current was below 20 pA. The optimal operating voltage range was determined to be 130–150 V, and the photon sensitivities for the chambers were measured as 29.8 ± 0.3 pA/(Gy/h), 43.0 ± 0.8 pA/(Gy/h), 39.2 ± 0.3 pA/(Gy/h), and 96.0 ± 0.9 pA/(Gy/h), respectively. Monte Carlo numerical simulations revealed that the U layer in the fission chambers was primarily responsible for their higher sensitivities due to photoelectric photon absorption. Additionally, the simulations explained the observed differences in sensitivity based on the filling gas pressure. The detectors demonstrated linear responses to dose rates and high reproducibility, making them reliable tools for accurate determination of ionizing photon beams across a range of applications. Full article
(This article belongs to the Special Issue Detectors & Sensors in Nuclear Physics and Nuclear Astrophysics)
Show Figures

Figure 1

37 pages, 6344 KiB  
Review
IR Sensors, Related Materials, and Applications
by Nikolaos Argirusis, Achilleas Achilleos, Niyaz Alizadeh, Christos Argirusis and Georgia Sourkouni
Sensors 2025, 25(3), 673; https://doi.org/10.3390/s25030673 - 23 Jan 2025
Cited by 5 | Viewed by 6328
Abstract
Infrared (IR) sensors are widely used in various applications due to their ability to detect infrared radiation. Currently, infrared detector technology is in its third generation and faces enormous challenges. IR radiation propagation is categorized into distinct transmission windows with the most intriguing [...] Read more.
Infrared (IR) sensors are widely used in various applications due to their ability to detect infrared radiation. Currently, infrared detector technology is in its third generation and faces enormous challenges. IR radiation propagation is categorized into distinct transmission windows with the most intriguing aspects of thermal imaging being mid-wave infrared (MWIR) and long-wave infrared (LWIR). Infrared detectors for thermal imaging have many uses in industrial applications, security, search and rescue, surveillance, medical, research, meteorology, climatology, and astronomy. Presently, high-performance infrared imaging technology mostly relies on epitaxially grown structures of the small-bandgap bulk alloy mercury–cadmium–telluride (MCT), indium antimonide (InSb), and GaAs-based quantum well infrared photodetectors (QWIPs), contingent upon the application and wavelength range. Nanostructures and nanomaterials exhibiting appropriate electrical and mechanical properties including two-dimensional materials, graphene, quantum dots (QDs), quantum dot in well (DWELL), and colloidal quantum dot (CQD) will significantly enhance the electronic characteristics of infrared photodetectors, transition metal dichalcogenides, and metal oxides, which are garnering heightened interest. The present manuscript gives an overview of IR sensors, their types, materials commonly used in them, and examples of related applications. Finally, a summary of the manuscript and an outlook on prospects are given. Full article
(This article belongs to the Special Issue Feature Review Papers in Physical Sensors)
Show Figures

Figure 1

18 pages, 8217 KiB  
Article
Multi-Sensor Photoelectric Fire Alarm Device Implementation for Early Fire Detection in Campsites
by Wonjun Choi and Im Y. Jung
Appl. Sci. 2024, 14(21), 9965; https://doi.org/10.3390/app14219965 - 31 Oct 2024
Cited by 2 | Viewed by 2018
Abstract
With the growing popularity of leisure activities such as camping and glamping, the incidence of fires at camping sites has increased. This study focuses on improving the effectiveness of photoelectric fire alarm devices by incorporating temperature and humidity data for early fire detection [...] Read more.
With the growing popularity of leisure activities such as camping and glamping, the incidence of fires at camping sites has increased. This study focuses on improving the effectiveness of photoelectric fire alarm devices by incorporating temperature and humidity data for early fire detection in confined spaces, such as campsites. This study proposes a novel multi-sensor fire alarm system that dynamically adjusts fire detection threshold values based on temperature and humidity data collected by unmanned automatic weather observation systems. The prototype, which was implemented using Raspberry Pi and multiple sensors, demonstrated approximately 20% faster fire detection speed than existing photoelectric fire alarm systems, as verified through experiments in a simulated camping environment. The proposed approach is expected to advance fire alarm systems, enabling faster and more accurate fire detection in diverse environments, particularly at campsites. Full article
Show Figures

Figure 1

44 pages, 27385 KiB  
Review
Performance of Low-Dimensional Solid Room-Temperature Photodetectors—Critical View
by Antoni Rogalski, Weida Hu, Fang Wang and Piotr Martyniuk
Materials 2024, 17(18), 4522; https://doi.org/10.3390/ma17184522 - 14 Sep 2024
Cited by 2 | Viewed by 1885
Abstract
In the last twenty years, nanofabrication progress has allowed for the emergence of a new photodetector family, generally called low-dimensional solids (LDSs), among which the most important are two-dimensional (2D) materials, perovskites, and nanowires/quantum dots. They operate in a wide wavelength range from [...] Read more.
In the last twenty years, nanofabrication progress has allowed for the emergence of a new photodetector family, generally called low-dimensional solids (LDSs), among which the most important are two-dimensional (2D) materials, perovskites, and nanowires/quantum dots. They operate in a wide wavelength range from ultraviolet to far-infrared. Current research indicates remarkable advances in increasing the performance of this new generation of photodetectors. The published performance at room temperature is even better than reported for typical photodetectors. Several articles demonstrate detectivity outperforming physical boundaries driven by background radiation and signal fluctuations. This study attempts to explain these peculiarities. In order to achieve this goal, we first clarify the fundamental differences in the photoelectric effects of the new generation of photodetectors compared to the standard designs dominating the commercial market. Photodetectors made of 2D transition metal dichalcogenides (TMDs), quantum dots, topological insulators, and perovskites are mainly considered. Their performance is compared with the fundamental limits estimated by the signal fluctuation limit (in the ultraviolet region) and the background radiation limit (in the infrared region). In the latter case, Law 19 dedicated to HgCdTe photodiodes is used as a standard reference benchmark. The causes for the performance overestimate of the different types of LDS detectors are also explained. Finally, an attempt is made to determine their place in the global market in the long term. Full article
(This article belongs to the Special Issue Recent Advances in Photoelectric Functional Materials and Devices)
Show Figures

Figure 1

14 pages, 5354 KiB  
Article
Preparation of Sn-Doped Ga2O3 Thin Films and MSM Ultraviolet Detectors Using Magnetron Co-Sputtering
by Yantao Liu, Rong Huang, Tao Lin, Jiale Dang, Haoxiang Huang, Jiahao Shi and Sui Chen
Materials 2024, 17(13), 3227; https://doi.org/10.3390/ma17133227 - 1 Jul 2024
Cited by 5 | Viewed by 1864
Abstract
Sn-doped Ga2O3 thin films and metal–semiconductor–metal (MSM) ultraviolet detectors were prepared using the co-sputtering method to enhance their photoelectric performance. The results revealed that Sn doping can effectively change the optical and electrical properties of thin films, greatly improving the [...] Read more.
Sn-doped Ga2O3 thin films and metal–semiconductor–metal (MSM) ultraviolet detectors were prepared using the co-sputtering method to enhance their photoelectric performance. The results revealed that Sn doping can effectively change the optical and electrical properties of thin films, greatly improving the photoelectric responsiveness of the devices. Through microstructure testing results, all of the thin film structures were determined to be monoclinic beta phase gallium oxide. At a DC power of 30 W, the thickness of the Sn-doped thin film was 430 nm, the surface roughness of the thin film was 4.94 nm, and the carrier concentration, resistivity, and mobility reached 9.72 × 1018 cm−3, 1.60 × 10−4 Ω·cm, and 45.05 cm3/Vs, respectively. The optical results show that Sn doping clearly decreases the transmission of thin films and that the bandgap can decrease to 3.91 eV. Under 30 W DC power, the photo dark current ratio of the detector can reach 101, time responses of tr = 31 s and tf = 22.83 s were obtained, and the spectral responsivity reached 19.25 A/W. Full article
Show Figures

Figure 1

14 pages, 2637 KiB  
Article
Analysis of Long-Distance Geometric Error Measurement and Uncertainty Based on PSD Laser Collimation Principle
by Yinbao Cheng, Penghuang Luo, Bin Shen, Yinghui Wang, Yaru Li and Shaohui Li
Photonics 2024, 11(6), 538; https://doi.org/10.3390/photonics11060538 - 4 Jun 2024
Cited by 3 | Viewed by 1556
Abstract
Due to the limitations of traditional geometric error measurement, the measurement accuracy of long-stroke geometric errors is generally not high and the operation is complicated. In response to the above situation, in this study, a geometric error measurement system is built with a [...] Read more.
Due to the limitations of traditional geometric error measurement, the measurement accuracy of long-stroke geometric errors is generally not high and the operation is complicated. In response to the above situation, in this study, a geometric error measurement system is built with a laser beam as the reference line and 2D position sensitive detector as the photoelectric conversion device. The single measurement range is 40 m, and the measurement range is further expanded through the principle of segmented splicing. Using an ultra-long guide rail as the measurement object for straightness measurement, the experimental results are similar to those of a laser interferometer. The uncertainty analysis model was obtained through the analysis of quantity characteristics, and based on this, the variance synthesis theorem and probability distribution propagation principle were studied to form two uncertainty synthesis methods. The measurement evaluation results showed that the two methods were basically consistent. The work provided a reference method for the uncertainty evaluation of position-sensitive detector measurement systems in the future. Full article
(This article belongs to the Special Issue Advanced Photonic Sensing and Measurement II)
Show Figures

Figure 1

14 pages, 9113 KiB  
Article
Design of Lidar Receiving Optical System with Large FoV and High Concentration of Light to Resist Background Light Interference
by Qingyan Li, Shuo Wang, Jiajie Wu, Feiyue Chen, Han Gao and Hai Gong
Micromachines 2024, 15(6), 712; https://doi.org/10.3390/mi15060712 - 28 May 2024
Cited by 3 | Viewed by 4472
Abstract
Lidar has the advantages of high accuracy, high resolution, and is not affected by sunlight. It has been widely used in many fields, such as autonomous driving, remote sensing detection, and intelligent robots. However, the current lidar detection system belongs to weak signal [...] Read more.
Lidar has the advantages of high accuracy, high resolution, and is not affected by sunlight. It has been widely used in many fields, such as autonomous driving, remote sensing detection, and intelligent robots. However, the current lidar detection system belongs to weak signal detection and generally uses avalanche photoelectric detector units as detectors. Limited by the current technology, the photosensitive surface is small, the receiving field of view is limited, and it is easy to cause false alarms due to background light. This paper proposes a method based on a combination of image-side telecentric lenses, microlens arrays, and interference filters. The small-area element detector achieves the high-concentration reception of echo beams in a large field of view while overcoming the interference of ambient background light. The image-side telecentric lens realizes that the center lines of the echo beams at different angles are parallel to the central axis, and the focus points converge on the same focal plane. The microlens array collimates the converged light beams one by one into parallel light beams. Finally, a high-quality aspherical focusing lens is used to focus the light on the small-area element detector to achieve high-concentration light reception over a large field of view. The system achieves a receiving field of view greater than 40° for a photosensitive surface detector with a diameter of 75 μm and is resistant to background light interference. Full article
Show Figures

Figure 1

14 pages, 8667 KiB  
Article
Improvement of X-ray Photoelectric Conversion Performance of MAPbI3 Perovskite Crystals by Ionic Liquid Treatment
by Xueqiong Su, Ruimin Wang, Huimin Yu, Jin Wang, Ruixiang Chen, He Ma and Li Wang
Coatings 2024, 14(5), 633; https://doi.org/10.3390/coatings14050633 - 16 May 2024
Viewed by 1331
Abstract
Although perovskite has great potential in optoelectronic devices, the simultaneous satisfaction of material stability and high performance is still an issue that needs to be solved. Most perovskite optoelectronic devices use quantum dot spin coating or the gas-phase growth of perovskite thin films [...] Read more.
Although perovskite has great potential in optoelectronic devices, the simultaneous satisfaction of material stability and high performance is still an issue that needs to be solved. Most perovskite optoelectronic devices use quantum dot spin coating or the gas-phase growth of perovskite thin films as the photoelectric conversion layer. Due to stability limitations, these materials often experience a significant decrease in photoelectric conversion efficiency when encountering liquid reagents. The self-assembled growth of hybrid perovskite crystals determines superior lattice ordering and stability. There are three types of ionic liquids—[Emim]BF4, EMIMNTF2, and HMITFSI—that can effectively enhance the X-ray photoelectric conversion performance of hybrid perovskite crystal CH3NH3PbI3 (MAPbI3), and the enhancement in the photocurrent leads to an improvement in the sensitivity of X-ray detectors. We soak the perovskite crystals in an ionic liquid and perform two treatment methods: electrification and dilution with ETOH solution. It is interesting to find that MAPbI3 perovskite single crystal materials choose the same optimized ionic liquid species in X-ray detection and photovoltaic power generation applications, and the effect is quite the opposite. Compared with untreated MAPbI3 crystals, the average photocurrent density of Electrify-HMITFSI MAPbI3 increased by 826.85% under X-ray excitation and the sensitivity of X-ray detectors made from these treated MAPbI3 crystals significantly increased by 72.6%, but the intensity of the PL spectrum decreased to 90% of the untreated intensity. Full article
Show Figures

Figure 1

11 pages, 13409 KiB  
Article
Heterojunctions of Mercury Selenide Quantum Dots and Halide Perovskites with High Lattice Matching and Their Photodetection Properties
by Chengye Yu, Yufeng Shan, Jiaqi Zhu, Dingyue Sun, Xiaohong Zheng, Na Zhang, Jingshan Hou, Yongzheng Fang, Ning Dai and Yufeng Liu
Materials 2024, 17(8), 1864; https://doi.org/10.3390/ma17081864 - 18 Apr 2024
Cited by 3 | Viewed by 1711
Abstract
Heterojunction semiconductors have been extensively applied in various optoelectronic devices due to their unique carrier transport characteristics. However, it is still a challenge to construct heterojunctions based on colloidal quantum dots (CQDs) due to stress and lattice mismatch. Herein, HgSe/CsPbBrxI3−x [...] Read more.
Heterojunction semiconductors have been extensively applied in various optoelectronic devices due to their unique carrier transport characteristics. However, it is still a challenge to construct heterojunctions based on colloidal quantum dots (CQDs) due to stress and lattice mismatch. Herein, HgSe/CsPbBrxI3−x heterojunctions with type I band alignment are acquired that are derived from minor lattice mismatch (~1.5%) via tuning the ratio of Br and I in halide perovskite. Meanwhile, HgSe CQDs with oleylamine ligands can been exchanged with a halide perovskite precursor, acquiring a smooth and compact quantum dot film. The photoconductive detector based on HgSe/CsPbBrxI3−x heterojunction presents a distinct photoelectric response under an incident light of 630 nm. The work provides a promising strategy to construct CQD-based heterojunctions, simultaneously achieving inorganic ligand exchange, which paves the way to obtain high-performance photodetectors based on CQD heterojunction films. Full article
(This article belongs to the Topic Advances in Inorganic Synthesis)
Show Figures

Figure 1

16 pages, 5568 KiB  
Article
Absolute Photoelectric Encoder Based on Position-Sensitive Detector Sensor
by Liming Geng, Guohua Cao, Chunmin Shang and Hongchang Ding
Electronics 2024, 13(8), 1446; https://doi.org/10.3390/electronics13081446 - 11 Apr 2024
Cited by 3 | Viewed by 1772
Abstract
In response to the engineering, miniaturization, and high measurement accuracy requirements of encoders, this paper proposes a new type of absolute photoelectric encoder based on a position-sensitive detector (PSD). It breaks the traditional encoder’s code track design and adopts a continuous and transparent [...] Read more.
In response to the engineering, miniaturization, and high measurement accuracy requirements of encoders, this paper proposes a new type of absolute photoelectric encoder based on a position-sensitive detector (PSD). It breaks the traditional encoder’s code track design and adopts a continuous and transparent code track design, which has the advantages of small volume, high angle measurement accuracy, and easy engineering. The research content of this article mainly includes the design of a new code disk, decoding circuit, linear light source, and calibration method. The experimental results show that the encoder designed in this article has achieved miniaturization, simple installation and adjustment, and easy engineering. The volume of the encoder is Φ50 mm × 30 mm; after calibration, the resolution is better than 18 bits, and the accuracy reaches 5.4″, which further demonstrates the feasibility of the encoder’s encoding and decoding scheme. Full article
Show Figures

Figure 1

Back to TopTop