Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (168)

Search Parameters:
Keywords = photocathodes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2093 KB  
Review
A Practical Guide Paper on Bulk and PLD Thin-Film Metals Commonly Used as Photocathodes in RF and SRF Guns
by Alessio Perrone, Muhammad Rizwan Aziz, Francisco Gontad, Nikolaos A. Vainos and Anna Paola Caricato
Chemistry 2025, 7(4), 123; https://doi.org/10.3390/chemistry7040123 - 30 Jul 2025
Viewed by 842
Abstract
This paper serves as a comprehensive and practical resource to guide researchers in selecting suitable metals for use as photocathodes in radio-frequency (RF) and superconducting radio-frequency (SRF) electron guns. It offers an in-depth review of bulk and thin-film metals commonly employed in many [...] Read more.
This paper serves as a comprehensive and practical resource to guide researchers in selecting suitable metals for use as photocathodes in radio-frequency (RF) and superconducting radio-frequency (SRF) electron guns. It offers an in-depth review of bulk and thin-film metals commonly employed in many applications. The investigation includes the photoemission, optical, chemical, mechanical, and physical properties of metallic materials used in photocathodes, with a particular focus on key performance parameters such as quantum efficiency, operational lifetime, chemical inertness, thermal emittance, response time, dark current, and work function. In addition to these primary attributes, this study examines essential parameters such as surface roughness, morphology, injector compatibility, manufacturing techniques, and the impact of chemical environmental factors on overall performance. The aim is to provide researchers with detailed insights to make well-informed decisions on materials and device selection. The holistic approach of this work associates, in tabular format, all photo-emissive, optical, mechanical, physical, and chemical properties of bulk and thin-film metallic photocathodes with experimental data, aspiring to provide unique tools for maximizing the effectiveness of laser cleaning treatment. Full article
(This article belongs to the Section Electrochemistry and Photoredox Processes)
Show Figures

Figure 1

16 pages, 4296 KB  
Article
Enhanced Photocathodic Protection Performance of TiO2/NiCo2S4 Composites for 304 Stainless Steel
by Honggang Liu, Hong Li, Xuan Zhang, Baizhao Xing, Zhuangzhuang Sun and Yanhui Li
Coatings 2025, 15(8), 874; https://doi.org/10.3390/coatings15080874 - 25 Jul 2025
Cited by 2 | Viewed by 614
Abstract
To address the corrosion of 304 stainless steel in marine environments, TiO2/NiCo2S4 composite photoanodes were fabricated via anodic oxidation and hydrothermal methods. X-ray diffraction, scanning electron microscope, energy-dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy analyses indicated the growth [...] Read more.
To address the corrosion of 304 stainless steel in marine environments, TiO2/NiCo2S4 composite photoanodes were fabricated via anodic oxidation and hydrothermal methods. X-ray diffraction, scanning electron microscope, energy-dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy analyses indicated the growth of hexagonal NiCo2S4 particles on anatase TiO2 nanotube arrays, forming a type-II heterojunction. Spectroscopy of ultraviolet-visible diffuse reflectance absorption showed that NiCo2S4 extended TiO2’s light absorption into the visible region. Electrochemical tests revealed that under visible light, the composite photoanode decreased the corrosion potential of 304ss to −0.7 V vs. SCE and reduced charge transfer resistance by 20% compared to pure TiO2. The enhanced performance stemmed from efficient electron-hole separation and transport enabled by the type-II heterojunction. Cyclic voltammetry tests indicated the composite’s electrochemical active surface area increased 1.8-fold, demonstrating superior catalytic activity. In conclusion, the TiO2/NiCo2S4 composite photoanode offers an effective approach for marine corrosion protection of 304ss. Full article
Show Figures

Figure 1

33 pages, 5307 KB  
Article
SiPM Developments for the Time-Of-Propagation Detector of the Belle II Experiment
by Flavio Dal Corso, Jakub Kandra, Roberto Stroili and Ezio Torassa
Sensors 2025, 25(13), 4018; https://doi.org/10.3390/s25134018 - 27 Jun 2025
Viewed by 442
Abstract
Belle II is a particle physics experiment working at an high luminosity collider within a hard irradiation environment. The Time-Of-Propagation detector, aimed at the charged particle identification, surrounds the Belle II tracking detector on the barrel part. This detector is composed by 16 [...] Read more.
Belle II is a particle physics experiment working at an high luminosity collider within a hard irradiation environment. The Time-Of-Propagation detector, aimed at the charged particle identification, surrounds the Belle II tracking detector on the barrel part. This detector is composed by 16 modules, each module contains a finely fused silica bar, coupled to microchannel plate photomultiplier tube (MCP-PMT) photo-detectors and readout by high-speed electronics. The MCP-PMT lifetime at the nominal collider luminosity is about one year, this is due to the high photon background degrading the quantum efficiency of the photocathode. An alternative to these MCP-PMTs is multi-pixel photon counters (MPPC), known as silicon photomultipliers (SiPM). The SiPMs, in comparison to MCP-PMTs, have a lower cost, higher photon detection efficiency and are unaffected by the presence of a magnetic field, but also have a higher dark count rate that rapidly increases with the integrated neutron flux. The dark count rate can be mitigated by annealing the damaged devices and/or operating them at low temperatures. We tested SiPMs, with different dimensions and pixel sizes from different producers, to study their time resolution (the main constraint that has to satisfy the photon detector) and to understand their behavior and tolerance to radiation. For these studies we irradiated the devices to radiation up to 5×10111 MeV neutrons equivalent (neq) per cm2 fluences; we also started studying the effect of annealing on dark count rates. We performed several measurements on these devices, on top of the dark count rate, at different conditions in terms of overvoltage and temperatures. These measurements are: IV-curves, amplitude spectra, time resolution. For the last two measurements we illuminated the devices with a picosecond pulsed laser at very low intensities (with a number of detected photons up to about twenty). We present results mainly on two types of SiPMs. A new SiPM prototype developed in collaboration with FBK with the aim of improving radiation hardness, is expected to be delivered in September 2025. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

23 pages, 4740 KB  
Article
Facile Fabrication of CuO Modified TiO2 Heterostructure for Enhanced Photocathodic Corrosion Protection of 304 Stainless Steel
by Abinaya Radhakrishnan, Manoja Tharmaraj, Anuradha Ramani and Nagarajan Srinivasan
Electrochem 2025, 6(2), 21; https://doi.org/10.3390/electrochem6020021 - 12 Jun 2025
Viewed by 1807
Abstract
In recent years, protecting stainless steel from corrosion has become crucial, particularly in harsh environments. The present study focuses on improving the photocathodic corrosion resistance of 304 stainless steel (304SS) by fabricating TiO2/CuO composite coatings using the spin coating technique with [...] Read more.
In recent years, protecting stainless steel from corrosion has become crucial, particularly in harsh environments. The present study focuses on improving the photocathodic corrosion resistance of 304 stainless steel (304SS) by fabricating TiO2/CuO composite coatings using the spin coating technique with varying CuO weight percentages. Structural characterization through X-ray diffraction (XRD) confirmed the presence of the anatase phase of TiO2 and the successful integration of CuO. Raman spectroscopy demonstrated redshifts in the TiO2 characteristic peaks, suggesting changes in bond lengths attributed to CuO incorporation. These findings were further corroborated by Fourier-transform infrared (FTIR) spectroscopy. Surface characterization showed uniform, porous coatings with pore sizes ranging from 75 to 200 nm, which contributed to improved barrier properties. UV–visible diffuse reflectance spectroscopy (UV-DRS) demonstrated enhanced visible light absorption in the heterostructures. Mott–Schottky analysis confirmed improved charge carrier density and favorable band alignment, facilitating efficient charge separation. The electrochemical performance was evaluated in 3.5% NaCl solution under dark and light environments. The results demonstrated that the TiO2/CuO heterostructure significantly enhanced electron transfer and suppressed electron-hole recombination, providing adequate photocathodic protection. Notably, under illumination, the TiO2/CuO (0.005 g) coating achieved a corrosion potential of −255 mV vs SCE and reduced the corrosion current density to 0.460 × 10−6 mA cm−2. These findings suggest that TiO2/CuO coatings offer a promising, durable, and cost-effective solution for corrosion protection in industries such as oil, shipbuilding, and pipelines. Full article
Show Figures

Graphical abstract

19 pages, 5298 KB  
Article
Efficient Generation of Transversely and Longitudinally Truncated Chirped Gaussian Laser Pulses for Application in High-Brightness Photoinjectors
by Andreas Hoffmann, Sumaira Zeeshan, James Good, Matthias Gross, Mikhail Krasilnikov and Frank Stephan
Photonics 2025, 12(5), 460; https://doi.org/10.3390/photonics12050460 - 9 May 2025
Viewed by 587
Abstract
The optimization of photoinjector brightness is crucial for achieving the highest performance at X-ray free-electron lasers. To this end, photocathode laser pulse shaping has been identified as a key technology for enhancing photon flux and lasing efficiency at short wavelengths. Supported by beam [...] Read more.
The optimization of photoinjector brightness is crucial for achieving the highest performance at X-ray free-electron lasers. To this end, photocathode laser pulse shaping has been identified as a key technology for enhancing photon flux and lasing efficiency at short wavelengths. Supported by beam dynamics simulations, we identify transversely and longitudinally truncated Gaussian electron bunches as a beneficial bunch shape in terms of the projected emittance and 5D brightness. The realization of such pulses from chirped Gaussian pulses is studied for 514 nm and 257 nm wavelengths by inserting an amplitude mask in the symmetry plane of the pulse stretcher to achieve longitudinal shaping and an aperture for transverse beam shaping. Using this scheme, transversely and longitudinally truncated Gaussian pulses can be generated and later used for the production of up to 3 nC electron bunches in the photoinjector. The 3D pulse shape at a wavelength of 514 nm is characterized via imaging spectroscopy, and second-harmonic generation frequency-resolved optical gating (SHG FROG) measurements are also performed to analyze the shaping scheme’s efficacy. Furthermore, this pulse-shaping scheme is transferred to a UV stretcher, allowing for direct application of the shaped pulses to cesium telluride photocathodes. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

15 pages, 3910 KB  
Article
Incorporating Ag Nanocrystals with LaFeO3 Photocathodes Towards Greatly Enhanced Photoelectrocatalytic Properties
by Sijie Li, Hao Zeng, Jiaqi Fan, Mei Zhu, Caiyi Zhang, Xizhong An, Zhifu Luo, Haitao Fu and Xiaohong Yang
Catalysts 2025, 15(5), 456; https://doi.org/10.3390/catal15050456 - 7 May 2025
Cited by 2 | Viewed by 803
Abstract
This study focuses on enhancing the photoelectrocatalytic (PEC) performance of LaFeO3 photocathodes by incorporating Ag nanocrystals. LaFeO3, a perovskite-type metal oxide semiconductor, has potential in PEC water splitting but suffers from fast charge carrier recombination. Ag nanoparticles are introduced due [...] Read more.
This study focuses on enhancing the photoelectrocatalytic (PEC) performance of LaFeO3 photocathodes by incorporating Ag nanocrystals. LaFeO3, a perovskite-type metal oxide semiconductor, has potential in PEC water splitting but suffers from fast charge carrier recombination. Ag nanoparticles are introduced due to their surface plasmon resonance (SPR) property and ability to form Schottky junctions with LaFeO3. A series of Ag/LaFeO3 materials are prepared using the molten salt method for LaFeO3 synthesis and the direct reduction method for Ag loading. The results show that Ag nanoparticles are uniformly dispersed on LaFeO3. The 3 mol% Ag/LaFeO3 photocathode demonstrates a remarkable ninefold increase in photocurrent density (15 mA·cm−2 at −0.2 V vs. RHE) compared to pure LaFeO3 (1.7 mA·cm−2). The band gap of LaFeO3 is reduced from 2.07 eV to 1.92 eV with 3 mol% Ag loading, and the charge transfer impedance is reduced by 77%, while the carrier concentration increases by 2.3 times. The novelty of this work lies in the comprehensive investigation of the interaction mechanisms between Ag nanoparticles and LaFeO3, which lead to enhanced light absorption, improved charge separation, and increased electrochemical activity. The optimized Ag loading not only improves the photocatalytic efficiency but also enhances the stability of the photocathode. This work provides valuable insights into the interaction between Ag and LaFeO3, and offers experimental and theoretical support for developing efficient photocatalytic materials for PEC water splitting. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Degradation of Pollutants in Wastewater)
Show Figures

Graphical abstract

11 pages, 5406 KB  
Article
Designing Fe2O3-Ti as Photoanode in H-Type Double-Electrode Coupling Systems for Bidirectional Photocatalytic Production of H2O2
by Danfeng Zhang, Changwei An, Dandan Liu, Tong Liu, Te Wang and Min Wang
Molecules 2025, 30(9), 1908; https://doi.org/10.3390/molecules30091908 - 25 Apr 2025
Viewed by 530
Abstract
Developing high-efficiency photoelectrodes plays an important role in the photoelectrocatalytic generation of hydrogen peroxide (H2O2) in the photoelectrochemical (PEC) water splitting field. In this work, an innovative strategy was proposed, the synergistic photocatalytic production of H2O2 [...] Read more.
Developing high-efficiency photoelectrodes plays an important role in the photoelectrocatalytic generation of hydrogen peroxide (H2O2) in the photoelectrochemical (PEC) water splitting field. In this work, an innovative strategy was proposed, the synergistic photocatalytic production of H2O2 using a bidirectional photoanode–photocathode coupling system under visible-light irradiation. Fe2O3-Ti, as the photoanode, which was built by way of Fe2O3 loaded on Ti-mesh using the hydrothermal-calcination method, was investigated in terms of the suitability of its properties for PEC H2O2 production after optimization of the bias voltage, the type of electrolyte solution, and the concentration of the electrolyte. Afterwards, a H-type double-electrode coupling system with an Fe2O3-Ti photoanode and a WO3@Co2SnO4 photocathode was established for the bidirectional synergistic production of H2O2 under visible-light irradiation. The yield of H2O2 reached 919.56 μmol·L−1·h−1 in 2 h over −0.7 V with 1 mol·L−1 of KHCO3 as the anolyte and 0.1 mol·L−1 Na2SO4 as the catholyte (pH = 3). It was inferred that H2O2 production on the WO3@Co2SnO4 photocathode was in line with the 2e- oxygen reduction reaction (ORR) principle, and on the Fe2O3-Ti photoanode was in line with the 2e- water oxidation reaction (WOR) rule, or it was indirectly promoted by the electrolyte solution KHCO3. This work provides an innovative idea and a reference for anode–cathode double coupling systems for the bidirectional production of H2O2. Full article
Show Figures

Figure 1

15 pages, 5235 KB  
Article
Sb2S3/Sb2O3 Heterojunction for Improving Photoelectrochemical Properties of Sb2S3 Thin Films
by Honglei Tan, Jia Yang, Zhaofeng Cui, Renjie Tan, Teng Li, Baoqiang Xu, Shaoyuan Li and Bin Yang
Metals 2025, 15(5), 478; https://doi.org/10.3390/met15050478 - 24 Apr 2025
Cited by 2 | Viewed by 778
Abstract
We prepared antimony metal films via electrodeposition, followed by the synthesis of Sb2S3 films through a chemical vapor phase reaction. Finally, an Sb2O3 film was deposited onto the Sb2S3 film using a chemical bath [...] Read more.
We prepared antimony metal films via electrodeposition, followed by the synthesis of Sb2S3 films through a chemical vapor phase reaction. Finally, an Sb2O3 film was deposited onto the Sb2S3 film using a chemical bath method, successfully constructing a heterojunction photocathode of Sb2S3/Sb2O3; the synthesized Sb2S3/Sb2O3 heterojunction is classified as a Type I heterostructure. The resulting Sb2S3/Sb2O3 heterojunction exhibited a photocurrent density of −0.056 mA cm−2 at −0.15 V (vs. RHE), which is 1.40 times higher than that of Sb2S3 alone under simulated solar illumination. Additionally, the Sb2S3/Sb2O3 heterojunction demonstrated a lower carrier recombination rate and a faster charge transfer rate compared to Sb2S3, as evidenced by photoluminescence and electrochemical impedance spectroscopy tests. For these reasons, the Sb2S3/Sb2O3 heterojunction obtained a hydrogen precipitation rate of 0.163mL cm−2 h−1, which is twice the hydrogen precipitation rate of Sb2S3, under the condition of 60 min of light exposure. The significant enhancement in photoelectrochemical performance is attributed to the formation of the Sb2S3/Sb2O3 heterojunction, which improves both carrier separation and charge transfer efficiency. This heterojunction strategy holds promising potential for visible light-driven photoelectrochemical water splitting. Full article
Show Figures

Figure 1

17 pages, 6829 KB  
Article
Titanosilicate ETS-10-Modified Cu2O for Enhanced Visible-Light Photoelectrochemical Activity
by Ewelina Szaniawska-Białas, Aleksandra Parzuch, Linh Trinh, Pavla Eliášová and Renata Solarska
Catalysts 2025, 15(4), 313; https://doi.org/10.3390/catal15040313 - 26 Mar 2025
Viewed by 728
Abstract
Copper(I) oxide (Cu2O)-based photocathodes are promising materials for carbon dioxide (CO2) reduction under visible light due to copper’s abundance and favorable energy band alignment. However, Cu2O suffers from photocorrosion and chemical instability. Here, we present a novel [...] Read more.
Copper(I) oxide (Cu2O)-based photocathodes are promising materials for carbon dioxide (CO2) reduction under visible light due to copper’s abundance and favorable energy band alignment. However, Cu2O suffers from photocorrosion and chemical instability. Here, we present a novel approach utilizing a porous titanosilicate material (ETS-10) as a protective layer for Cu2O, addressing these limitations. The Cu2O was electrodeposited and coated with a thin ETS-10 layer, which prevents photocorrosion, enhances charge separation and transfer, and facilitates CO2 capture through its highly porous structure. Comprehensive structural, compositional, and morphological analyses confirmed that ETS-10 effectively stabilized Cu2O while maintaining its electronic properties (UV–Vis, XPS). The Cu2O/ETS-10 photocathode exhibited a 25% enhancement in the photocurrent density at 0.0–0.1 V vs. RHE and significantly improved stability compared to bare Cu2O. The thin ETS-10 layer acted as a passivation layer, improving charge transfer via tunneling mechanisms. This study introduces a multicomponent photocathode system, demonstrating a new application of ETS-10 in photoelectrochemical cells. The results highlight the potential of ETS-10 to enhance the efficiency and stability of photocathodes, offering a pathway for the design of advanced systems for solar-driven CO2 reduction and artificial photosynthesis. Full article
Show Figures

Figure 1

21 pages, 6308 KB  
Article
Design of a One-Dimensional Zn3In2S6/NiFe2O4 Composite Material and Its Photocathodic Protection Mechanism Against Corrosion
by Xiaotong Wang, Yuehua Chen and Xiaoying Zhang
Buildings 2025, 15(6), 958; https://doi.org/10.3390/buildings15060958 - 18 Mar 2025
Cited by 1 | Viewed by 560
Abstract
Z-scheme Zn3In2S6/NiFe2O4 nanocomposites were prepared by electrospinning and hydrothermal methods, and their photocathodic protection performance was studied on 304 SS and Q235 CS in NaCl solution (3.5 wt.%). The two-dimensional Zn3In2 [...] Read more.
Z-scheme Zn3In2S6/NiFe2O4 nanocomposites were prepared by electrospinning and hydrothermal methods, and their photocathodic protection performance was studied on 304 SS and Q235 CS in NaCl solution (3.5 wt.%). The two-dimensional Zn3In2S6 loaded on the one-dimensional NiFe2O4 resulted in faster electron migration and enhanced light absorption capability. Moreover, it had been observed through electrochemical testing that the assembly of Zn3In2S6/NiFe2O4 heterojunctions improves the efficacy of photocathodic protection. Following illumination, the self-corrosion potentials of 304 SS and Q235 CS coupled with Zn3In2S6/NiFe2O4 nanocomposites decreased by 1040 mV and 560 mV, and the photoinduced current densities were 1.2 times and 3.9 times greater than the value of Zn3In2S6. Furthermore, the mechanism of enhanced photocathodic protection performance for Zn3In2S6/NiFe2O4 heterojunctions was systematically discussed. XPS and ESR analysis indicated that Zn3In2S6/NiFe2O4 composites follow the Z-scheme electron migration path and retain the stronger reduction and oxidation capacity of Zn3In2S6/NiFe2O4. Therefore, the Z-scheme heterostructures are responsible for the realization of cathodic protection for carbon steel. Full article
(This article belongs to the Special Issue Application of Nanotechnology in Building Materials)
Show Figures

Figure 1

24 pages, 2365 KB  
Article
Green Hydrogen Generation by Water Photoelectrolysis: Economic and Environmental Analysis
by Gaetano Maggio, Salvatore Vasta, Agatino Nicita, Stefano Trocino and Mauro Giorgianni
Energies 2025, 18(6), 1439; https://doi.org/10.3390/en18061439 - 14 Mar 2025
Cited by 1 | Viewed by 1272
Abstract
Water photoelectrolysis cells based on photoelectrochemical water splitting seem to be an interesting alternative to other traditional green hydrogen generation processes (e.g., water electrolysis). Unfortunately, the practical application of this technology is currently hindered by several difficulties: low solar-to-hydrogen (STH) efficiency, expensive electrode [...] Read more.
Water photoelectrolysis cells based on photoelectrochemical water splitting seem to be an interesting alternative to other traditional green hydrogen generation processes (e.g., water electrolysis). Unfortunately, the practical application of this technology is currently hindered by several difficulties: low solar-to-hydrogen (STH) efficiency, expensive electrode materials, etc. A novel concept, based on a tandem photoelectrolysis cell configuration with an anion-conducting membrane separating the photoanode from the photocathode, has already been proposed in the literature. This approach allows the use of low-cost metal oxide electrodes and nickel-based co-catalysts. In this paper, we conducted a study to evaluate the economic and environmental sustainability of this technology, using the environmental life cycle cost. Preliminary results have revealed two main interesting aspects: the negligible percentage of externalities in the total cost (<0.15%), which means a positive environmental impact, and as evidenced by the net present value (NPV), there are potentially financial conditions that favour future investment. In fact, an NPV higher than 150,000 EUR can be achieved after 15 years. Full article
Show Figures

Figure 1

16 pages, 7837 KB  
Article
Light Output Response of a Barium Fluoride (BaF2) Inorganic Scintillator Under X-Ray Radiation
by Vasileios Ntoupis, Christos Michail, Nektarios Kalyvas, Athanasios Bakas, Ioannis Kandarakis, George Fountos and Ioannis Valais
Inorganics 2025, 13(3), 83; https://doi.org/10.3390/inorganics13030083 - 13 Mar 2025
Viewed by 1180
Abstract
In this study, the luminescence efficiency of a crystal-form barium fluoride (BaF2) inorganic scintillator was assessed for medical imaging applications. For the experiments, we used a typical medical X-ray tube (50–140 kVp) for estimating the absolute luminescence efficiency (AE). Furthermore, we [...] Read more.
In this study, the luminescence efficiency of a crystal-form barium fluoride (BaF2) inorganic scintillator was assessed for medical imaging applications. For the experiments, we used a typical medical X-ray tube (50–140 kVp) for estimating the absolute luminescence efficiency (AE). Furthermore, we examined the spectral matching of the inorganic scintillator with a series of optical detectors. BaF2 showed a higher AE than cerium fluoride (CeF3), comparable to that of commercially available bismuth germanate (Bi4Ge3O12-BGO), but lower than that of the gadolinium orthosilicate (Gd2SiO5:Ce-GSO:Ce) inorganic scintillator. The maximum AE of BaF2 was 2.36 efficiency units (EU is the S.I. equivalent μWm−2/(mR/s) at 140 kVp, which is higher than that of the corresponding fluoride-based CeF3 (0.8334 EU)) at the same X-ray energy. GSO:Ce and BGO crystals, which are often integrated in commercial positron emission tomography (PET) scanners, had AE values of 7.76 and 3.41, respectively. The emission maximum (~310 nm) of BaF2 is adequate for coupling with flat-panel position-sensitive (PS) photomultipliers (PMTs) and various photocathodes. The luminescence efficiency results of BaF2 were comparable to those of BGO; thus, it could possibly be used in medical imaging modalities, considering its significantly lower cost. Full article
Show Figures

Graphical abstract

15 pages, 6828 KB  
Article
Influence of Manganese Addition on Structural, Dielectric, and Wastewater Bioconversion in LiTaO3 Ferroelectric Material
by Mohamed El Habib Hitar, Latifa Tajounte, Manal Benyoussef, Abdellah Benzaouak, Noureddine Touach, Mohammed Hadouchi, Abdelilah Lahmar, Mohammed El Mahi and El Mostapha Lotfi
Crystals 2025, 15(3), 253; https://doi.org/10.3390/cryst15030253 - 8 Mar 2025
Viewed by 1090
Abstract
The present study investigates the effect of manganese incorporation on the structural, dielectric, and waste bioconversion of LiTaO3 ferroelectric material. Conventional solid-state synthesis techniques were utilized to produce powder samples, which were subsequently analyzed using room-temperature X-ray diffraction (XRD) for phase identification. [...] Read more.
The present study investigates the effect of manganese incorporation on the structural, dielectric, and waste bioconversion of LiTaO3 ferroelectric material. Conventional solid-state synthesis techniques were utilized to produce powder samples, which were subsequently analyzed using room-temperature X-ray diffraction (XRD) for phase identification. The analysis revealed that the material forms a continuous solid solution within the composition range of 0 to 25 mol% of manganese (Mn), exhibiting R3c-Rombohedral symmetry. Thermal investigations of Raman spectra permitted approaching the ferroelectric–paraelectric phase transition, and dielectric measurements were performed in all investigated samples. The results show that the temperature of ferroelectric-paraelectric phase transition (Tc) decreased with the increasing Mn content. Optical properties of the prepared materials were also measured and tested as photocathodes for microbial fuel cells (MFCs), showing promising performance for x = 0.10, which exceeds values found with other dopants. Full article
(This article belongs to the Special Issue Crystal Structure and Dielectric Properties of Ceramics)
Show Figures

Figure 1

26 pages, 4506 KB  
Review
Making Solar Hydrogen: A Review of the Challenges and Strategies of Synthesizing CuFeO2 Photocathodes for Photoelectrochemical Water Splitting
by Mohamed El Idrissi, Bastian Mei, Mohammed Abd-Lefdil and Lahoucine Atourki
Molecules 2025, 30(5), 1152; https://doi.org/10.3390/molecules30051152 - 4 Mar 2025
Cited by 2 | Viewed by 1724
Abstract
Delafossite CuFeO2 has emerged as a promising earth-abundant p-type photocathode for solar fuel generation due to its stability in aqueous conditions and its favorable light absorption characteristics. However, practical photocurrent generation in CuFeO2 has consistently fallen short of its theoretical potential. [...] Read more.
Delafossite CuFeO2 has emerged as a promising earth-abundant p-type photocathode for solar fuel generation due to its stability in aqueous conditions and its favorable light absorption characteristics. However, practical photocurrent generation in CuFeO2 has consistently fallen short of its theoretical potential. This limitation is attributed primarily to suboptimal practical visible light absorption, resulting in diminished incident photon-to-current conversion efficiency (IPCE). Challenges related to charge separation and transport, originating from low acceptor density and inherent low conductivity, further contribute to the reported suboptimal performance of delafossite CuFeO2. Thus, the present review comprehensively documents the latest advancements in the field of CuFeO2 photocathode research, with a particular emphasis on strategies to overcome the challenges currently being faced and on the illustration of pathways that may lead to the enhancement of critical performance parameters such as photocurrents, photovoltage, and fill factor. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

20 pages, 4168 KB  
Article
Development and Testing of a Novel Microstrip Photocathode ICCD for Lunar Remote Raman Detection
by Haiting Zhao, Xiangfeng Liu, Chao Chen, Weiming Xu, Jianan Xie, Zhenqiang Zhang, Ziqing Jiang, Xuesen Xu, Zhiping He, Rong Shu and Jianyu Wang
Sensors 2025, 25(5), 1528; https://doi.org/10.3390/s25051528 - 28 Feb 2025
Viewed by 1074
Abstract
The intensified charge-coupled device (ICCD), known for its exceptional low-light detection performance and time-gating capability, has been widely applied in remote Raman spectroscopy systems. However, existing ICCDs face significant challenges in meeting the comprehensive requirements of high gating speed, high sensitivity, high resolution, [...] Read more.
The intensified charge-coupled device (ICCD), known for its exceptional low-light detection performance and time-gating capability, has been widely applied in remote Raman spectroscopy systems. However, existing ICCDs face significant challenges in meeting the comprehensive requirements of high gating speed, high sensitivity, high resolution, miniaturization, and adaptability to extreme environments for the upcoming lunar remote Raman spectroscopy missions. To address these challenges, this study developed a microstrip photocathode (MP-ICCD) specifically designed for lunar remote Raman spectroscopy. A comprehensive testing method was also proposed to evaluate critical performance parameters, including optical gating width, optimal gain voltage, and relative resolution. The MP-ICCD was integrated into a prototype remote Raman spectrometer equipped with a 40 mm aperture telescope and tested under outdoor sunlight conditions. The experimental results demonstrated that the developed MP-ICCD successfully achieved a minimum optical gating width of 6.0 ns and an optimal gain voltage of 870 V, with resolution meeting the requirements for Raman spectroscopy detection. Under outdoor solar illumination, the prototype remote Raman spectrometer utilizing the MP-ICCD accurately detected the Raman spectra of typical lunar minerals, including quartz, olivine, pyroxene, and plagioclase, at a distance of 1.5 m. This study provides essential technical support and experimental validation for the application of MP-ICCD in lunar Raman spectroscopy missions. Full article
(This article belongs to the Special Issue Advances in Raman Spectroscopic Sensing and Imaging)
Show Figures

Figure 1

Back to TopTop